mean free path and threshold stres don't have to be part of the state
This commit is contained in:
parent
28ec50a6a9
commit
64e9c7fb77
|
@ -113,9 +113,7 @@ module plastic_disloUCLA
|
|||
real(pReal), pointer, dimension(:,:) :: &
|
||||
rhoEdge, &
|
||||
rhoEdgeDip, &
|
||||
accshear_slip, &
|
||||
mfp_slip, &
|
||||
threshold_stress_slip
|
||||
accshear_slip
|
||||
end type
|
||||
|
||||
type, private :: tDisloUCLAMicrostructure
|
||||
|
@ -507,8 +505,7 @@ plastic_disloUCLA_Noutput(phase_plasticityInstance(p)) = plastic_disloUCLA_Noutp
|
|||
|
||||
sizeDotState = int(size(['rhoEdge ','rhoEdgeDip ','accshearslip']),pInt) * ns
|
||||
sizeDeltaState = 0_pInt
|
||||
sizeState = sizeDotState &
|
||||
+ int(size(['meanFreePathSlip ','tauSlipThreshold ']),pInt) * ns
|
||||
sizeState = sizeDotState
|
||||
|
||||
call material_allocatePlasticState(phase,NofMyPhase,sizeState,sizeDotState,0_pInt, &
|
||||
ns,0_pInt,0_pInt)
|
||||
|
@ -555,12 +552,14 @@ plastic_disloUCLA_Noutput(phase_plasticityInstance(p)) = plastic_disloUCLA_Noutp
|
|||
startIndex=1_pInt
|
||||
endIndex=ns
|
||||
stt%rhoEdge=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
stt%rhoEdge= spread(prm%rho0,2,NofMyPhase)
|
||||
dotState(instance)%rhoEdge=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolRho
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
stt%rhoEdgeDip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
stt%rhoEdgeDip= spread(prm%rhoDip0,2,NofMyPhase)
|
||||
dotState(instance)%rhoEdgeDip=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolRho
|
||||
|
||||
|
@ -570,13 +569,6 @@ plastic_disloUCLA_Noutput(phase_plasticityInstance(p)) = plastic_disloUCLA_Noutp
|
|||
dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = 1e6_pReal
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
stt%mfp_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
stt%threshold_stress_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
|
||||
allocate(mse%mfp(prm%totalNslip,NofMyPhase),source=0.0_pReal)
|
||||
allocate(mse%threshold_stress(prm%totalNslip,NofMyPhase),source=0.0_pReal)
|
||||
|
@ -618,7 +610,7 @@ subroutine plastic_disloUCLA_stateInit(ph,instance)
|
|||
tauSlipThreshold0
|
||||
tempState = 0.0_pReal
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
associate(prm => param(instance))
|
||||
associate(prm => param(instance),mse => microstructure(instance))
|
||||
|
||||
tempState(1_pInt:ns) = prm%rho0
|
||||
tempState(ns+1_pInt:2_pInt*ns) = prm%rhoDip0
|
||||
|
@ -632,16 +624,16 @@ subroutine plastic_disloUCLA_stateInit(ph,instance)
|
|||
forall (i = 1_pInt:ns) &
|
||||
MeanFreePathSlip0(i) = &
|
||||
prm%grainSize/(1.0_pReal+invLambdaSlip0(i)*prm%grainSize)
|
||||
tempState(3_pInt*ns+1:4_pInt*ns) = MeanFreePathSlip0
|
||||
|
||||
mse%mfp= spread(MeanFreePathSlip0,2,size(plasticState(ph)%state(1,:)))
|
||||
|
||||
forall (i = 1_pInt:ns) &
|
||||
tauSlipThreshold0(i) = &
|
||||
lattice_mu(ph)*prm%burgers(i) * &
|
||||
sqrt(dot_product((prm%rho0+prm%rhoDip0),plastic_disloUCLA_interactionMatrix_SlipSlip(i,1:ns,instance)))
|
||||
|
||||
tempState(4_pInt*ns+1:5_pInt*ns) = tauSlipThreshold0
|
||||
mse%threshold_stress= spread(tauSlipThreshold0,2,size(plasticState(ph)%state(1,:)))
|
||||
|
||||
plasticState(ph)%state = spread(tempState,2,size(plasticState(ph)%state(1,:)))
|
||||
end associate
|
||||
end subroutine plastic_disloUCLA_stateInit
|
||||
|
||||
|
@ -681,7 +673,7 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
|
||||
|
||||
associate(prm => param(instance), stt => state(instance))
|
||||
associate(prm => param(instance), stt => state(instance),mse => microstructure(instance))
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:ns) &
|
||||
invLambdaSlip(s) = &
|
||||
|
@ -691,14 +683,14 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,ns
|
||||
stt%mfp_slip(s,of) = &
|
||||
mse%mfp(s,of) = &
|
||||
prm%grainSize/&
|
||||
(1.0_pReal+prm%grainSize*(invLambdaSlip(s)))
|
||||
enddo
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:ns) &
|
||||
stt%threshold_stress_slip(s,of) = &
|
||||
mse%threshold_stress(s,of) = &
|
||||
lattice_mu(ph)*prm%burgers(s)*&
|
||||
sqrt(dot_product((stt%rhoEdge(1_pInt:ns,of)+stt%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
plastic_disloUCLA_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||||
|
@ -811,7 +803,7 @@ subroutine plastic_disloUCLA_dotState(Mp,Temperature,ipc,ip,el)
|
|||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
|
||||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||||
associate(prm => param(instance), stt => state(instance))
|
||||
associate(prm => param(instance), stt => state(instance),mse => microstructure(instance))
|
||||
!* Dislocation density evolution
|
||||
call kinetics(Mp,Temperature,ph,instance,of, &
|
||||
gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg)
|
||||
|
@ -826,7 +818,7 @@ subroutine plastic_disloUCLA_dotState(Mp,Temperature,ipc,ip,el)
|
|||
!* Multiplication
|
||||
DotRhoMultiplication = abs(dotState(instance)%accshear_slip(j,of))/&
|
||||
(prm%burgers(j)* &
|
||||
stt%mfp_slip(j,of))
|
||||
mse%mfp(j,of))
|
||||
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = &
|
||||
|
@ -837,7 +829,7 @@ subroutine plastic_disloUCLA_dotState(Mp,Temperature,ipc,ip,el)
|
|||
EdgeDipDistance = &
|
||||
(3.0_pReal*lattice_mu(ph)*prm%burgers(j))/&
|
||||
(16.0_pReal*pi*abs(tau_slip_pos(j)))
|
||||
if (EdgeDipDistance>stt%mfp_slip(j,of)) EdgeDipDistance=stt%mfp_slip(j,of)
|
||||
if (EdgeDipDistance>mse%mfp(j,of)) EdgeDipDistance=mse%mfp(j,of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = &
|
||||
((2.0_pReal*EdgeDipDistance)/prm%burgers(j))*&
|
||||
|
@ -937,7 +929,7 @@ math_mul33xx33
|
|||
!* Required output
|
||||
c = 0_pInt
|
||||
postResults = 0.0_pReal
|
||||
associate (prm => param(instance),stt =>state(instance))
|
||||
associate (prm => param(instance),stt =>state(instance),mse => microstructure(instance))
|
||||
do o = 1_pInt,plastic_disloUCLA_Noutput(instance)
|
||||
select case(plastic_disloUCLA_outputID(o,instance))
|
||||
|
||||
|
@ -973,7 +965,7 @@ math_mul33xx33
|
|||
c = c + ns
|
||||
case (mfp_ID)
|
||||
postResults(c+1_pInt:c+ns) =&
|
||||
stt%mfp_slip(1_pInt:ns, of)
|
||||
mse%mfp(1_pInt:ns, of)
|
||||
c = c + ns
|
||||
case (resolvedstress_ID)
|
||||
j = 0_pInt
|
||||
|
@ -987,7 +979,7 @@ math_mul33xx33
|
|||
c = c + ns
|
||||
case (thresholdstress_ID)
|
||||
postResults(c+1_pInt:c+ns) = &
|
||||
stt%threshold_stress_slip(1_pInt:ns,of)
|
||||
mse%threshold_stress(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (dipoleDistance_ID)
|
||||
j = 0_pInt
|
||||
|
@ -1003,7 +995,7 @@ math_mul33xx33
|
|||
postResults(c+j) = huge(1.0_pReal)
|
||||
endif
|
||||
postResults(c+j)=min(postResults(c+j),&
|
||||
stt%mfp_slip(j,of))
|
||||
mse%mfp(j,of))
|
||||
enddo slipSystems2; enddo slipFamilies2
|
||||
c = c + ns
|
||||
end select
|
||||
|
@ -1050,7 +1042,7 @@ ph, instance,of
|
|||
dvel_slip, vel_slip
|
||||
real(pReal), intent(out), dimension(plastic_disloUCLA_totalNslip(instance)) :: &
|
||||
gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg
|
||||
associate(prm => param(instance), stt => state(instance))
|
||||
associate(prm => param(instance), stt => state(instance),mse => microstructure(instance))
|
||||
!* Shortened notation
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
|
||||
|
@ -1074,9 +1066,9 @@ ph, instance,of
|
|||
tau_slip_pos(j) = math_mul33xx33(Mp,prm%nonSchmid_pos(1:3,1:3,j))
|
||||
tau_slip_neg(j) = math_mul33xx33(Mp,prm%nonSchmid_neg(1:3,1:3,j))
|
||||
|
||||
significantPositiveTau: if((abs(tau_slip_pos(j))-stt%threshold_stress_slip(j, of)) > tol_math_check) then
|
||||
significantPositiveTau: if((abs(tau_slip_pos(j))-mse%threshold_stress(j, of)) > tol_math_check) then
|
||||
!* Stress ratio
|
||||
stressRatio = ((abs(tau_slip_pos(j))-stt%threshold_stress_slip(j, of))/&
|
||||
stressRatio = ((abs(tau_slip_pos(j))-mse%threshold_stress(j, of))/&
|
||||
(plastic_disloUCLA_SolidSolutionStrength(instance)+&
|
||||
prm%tau_Peierls(j)))
|
||||
stressRatio_p = stressRatio** prm%p(j)
|
||||
|
@ -1084,13 +1076,13 @@ ph, instance,of
|
|||
!* Shear rates due to slip
|
||||
vel_slip = 2.0_pReal*prm%burgers(j) &
|
||||
* prm%kink_height(j) * prm%omega(j) &
|
||||
* ( stt%mfp_slip(j,of) - prm%kink_width(j) ) &
|
||||
* ( mse%mfp(j,of) - prm%kink_width(j) ) &
|
||||
* (tau_slip_pos(j) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) ) &
|
||||
/ ( &
|
||||
2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_pos(j) &
|
||||
+ prm%omega(j) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( stt%mfp_slip(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
*(( mse%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
|
||||
)
|
||||
|
||||
|
@ -1102,7 +1094,7 @@ ph, instance,of
|
|||
dvel_slip = &
|
||||
2.0_pReal*prm%burgers(j) &
|
||||
* prm%kink_height(j) * prm%omega(j) &
|
||||
* ( stt%mfp_slip(j,of) - prm%kink_width(j) ) &
|
||||
* ( mse%mfp(j,of) - prm%kink_width(j) ) &
|
||||
* ( &
|
||||
(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
|
||||
+ tau_slip_pos(j) &
|
||||
|
@ -1114,14 +1106,14 @@ ph, instance,of
|
|||
) &
|
||||
* (2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_pos(j) &
|
||||
+ prm%omega(j) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( stt%mfp_slip(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
*(( mse%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
|
||||
) &
|
||||
- (tau_slip_pos(j) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) ) &
|
||||
* (2.0_pReal*(prm%burgers(j)**2.0_pReal) &
|
||||
+ prm%omega(j) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( stt%mfp_slip(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
*(( mse%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)))& !deltaf(i)
|
||||
*BoltzmannRatio*prm%p(j)&
|
||||
*prm%q(j)/&
|
||||
|
@ -1133,7 +1125,7 @@ ph, instance,of
|
|||
( &
|
||||
2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_pos(j) &
|
||||
+ prm%omega(j) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( stt%mfp_slip(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
*(( mse%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
|
||||
)**2.0_pReal &
|
||||
)
|
||||
|
@ -1141,9 +1133,9 @@ ph, instance,of
|
|||
dgdot_dtauslip_pos(j) = DotGamma0 * dvel_slip
|
||||
|
||||
endif significantPositiveTau
|
||||
significantNegativeTau: if((abs(tau_slip_neg(j))-stt%threshold_stress_slip(j, of)) > tol_math_check) then
|
||||
significantNegativeTau: if((abs(tau_slip_neg(j))-mse%threshold_stress(j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio = ((abs(tau_slip_neg(j))-stt%threshold_stress_slip(j, of))/&
|
||||
stressRatio = ((abs(tau_slip_neg(j))-mse%threshold_stress(j, of))/&
|
||||
(plastic_disloUCLA_SolidSolutionStrength(instance)+&
|
||||
prm%tau_Peierls(j)))
|
||||
stressRatio_p = stressRatio** prm%p(j)
|
||||
|
@ -1151,13 +1143,13 @@ ph, instance,of
|
|||
!* Shear rates due to slip
|
||||
vel_slip = 2.0_pReal*prm%burgers(j) &
|
||||
* prm%kink_height(j) * prm%omega(j) &
|
||||
* ( stt%mfp_slip(j,of) - prm%kink_width(j) ) &
|
||||
* ( mse%mfp(j,of) - prm%kink_width(j) ) &
|
||||
* (tau_slip_neg(j) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) ) &
|
||||
/ ( &
|
||||
2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_neg(j) &
|
||||
+ prm%omega(j) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( stt%mfp_slip(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
*(( mse%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
|
||||
)
|
||||
|
||||
|
@ -1168,7 +1160,7 @@ ph, instance,of
|
|||
dvel_slip = &
|
||||
2.0_pReal*prm%burgers(j) &
|
||||
* prm%kink_height(j) * prm%omega(j) &
|
||||
* ( stt%mfp_slip(j,of) - prm%kink_width(j) ) &
|
||||
* ( mse%mfp(j,of) - prm%kink_width(j) ) &
|
||||
* ( &
|
||||
(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
|
||||
+ tau_slip_neg(j) &
|
||||
|
@ -1180,14 +1172,14 @@ ph, instance,of
|
|||
) &
|
||||
* (2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_neg(j) &
|
||||
+ prm%omega(j) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( stt%mfp_slip(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
*(( mse%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
|
||||
) &
|
||||
- (tau_slip_neg(j) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) ) &
|
||||
* (2.0_pReal*(prm%burgers(j)**2.0_pReal) &
|
||||
+ prm%omega(j) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( stt%mfp_slip(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
*(( mse%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)))& !deltaf(i)
|
||||
*BoltzmannRatio*prm%p(j)&
|
||||
*prm%q(j)/&
|
||||
|
@ -1199,7 +1191,7 @@ ph, instance,of
|
|||
( &
|
||||
2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_neg(j) &
|
||||
+ prm%omega(j) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( stt%mfp_slip(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
*(( mse%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
|
||||
)**2.0_pReal &
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue