also set initial det(Fp)=0

Marc element lib test failed otherwise for type 117
This commit is contained in:
Martin Diehl 2020-02-13 17:10:27 +01:00
parent 0f70a19266
commit 64e86666c6
1 changed files with 112 additions and 110 deletions

View File

@ -22,10 +22,10 @@ module crystallite
use discretization use discretization
use lattice use lattice
use results use results
implicit none implicit none
private private
real(pReal), dimension(:,:,:), allocatable, public :: & real(pReal), dimension(:,:,:), allocatable, public :: &
crystallite_dt !< requested time increment of each grain crystallite_dt !< requested time increment of each grain
real(pReal), dimension(:,:,:), allocatable :: & real(pReal), dimension(:,:,:), allocatable :: &
@ -33,7 +33,7 @@ module crystallite
crystallite_subFrac, & !< already calculated fraction of increment crystallite_subFrac, & !< already calculated fraction of increment
crystallite_subStep !< size of next integration step crystallite_subStep !< size of next integration step
type(rotation), dimension(:,:,:), allocatable :: & type(rotation), dimension(:,:,:), allocatable :: &
crystallite_orientation !< current orientation crystallite_orientation !< current orientation
real(pReal), dimension(:,:,:,:,:), allocatable, public, protected :: & real(pReal), dimension(:,:,:,:,:), allocatable, public, protected :: &
crystallite_Fe, & !< current "elastic" def grad (end of converged time step) crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
crystallite_P !< 1st Piola-Kirchhoff stress per grain crystallite_P !< 1st Piola-Kirchhoff stress per grain
@ -74,33 +74,33 @@ module crystallite
crystallite_converged, & !< convergence flag crystallite_converged, & !< convergence flag
crystallite_todo, & !< flag to indicate need for further computation crystallite_todo, & !< flag to indicate need for further computation
crystallite_localPlasticity !< indicates this grain to have purely local constitutive law crystallite_localPlasticity !< indicates this grain to have purely local constitutive law
type :: tOutput !< new requested output (per phase) type :: tOutput !< new requested output (per phase)
character(len=pStringLen), allocatable, dimension(:) :: & character(len=pStringLen), allocatable, dimension(:) :: &
label label
end type tOutput end type tOutput
type(tOutput), allocatable, dimension(:) :: output_constituent type(tOutput), allocatable, dimension(:) :: output_constituent
type :: tNumerics type :: tNumerics
integer :: & integer :: &
iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp
nState, & !< state loop limit nState, & !< state loop limit
nStress !< stress loop limit nStress !< stress loop limit
real(pReal) :: & real(pReal) :: &
subStepMinCryst, & !< minimum (relative) size of sub-step allowed during cutback subStepMinCryst, & !< minimum (relative) size of sub-step allowed during cutback
subStepSizeCryst, & !< size of first substep when cutback subStepSizeCryst, & !< size of first substep when cutback
subStepSizeLp, & !< size of first substep when cutback in Lp calculation subStepSizeLp, & !< size of first substep when cutback in Lp calculation
subStepSizeLi, & !< size of first substep when cutback in Li calculation subStepSizeLi, & !< size of first substep when cutback in Li calculation
stepIncreaseCryst, & !< increase of next substep size when previous substep converged stepIncreaseCryst, & !< increase of next substep size when previous substep converged
rTol_crystalliteState, & !< relative tolerance in state loop rTol_crystalliteState, & !< relative tolerance in state loop
rTol_crystalliteStress, & !< relative tolerance in stress loop rTol_crystalliteStress, & !< relative tolerance in stress loop
aTol_crystalliteStress !< absolute tolerance in stress loop aTol_crystalliteStress !< absolute tolerance in stress loop
end type tNumerics end type tNumerics
type(tNumerics) :: num ! numerics parameters. Better name? type(tNumerics) :: num ! numerics parameters. Better name?
procedure(), pointer :: integrateState procedure(), pointer :: integrateState
public :: & public :: &
crystallite_init, & crystallite_init, &
crystallite_stress, & crystallite_stress, &
@ -116,7 +116,7 @@ contains
!> @brief allocates and initialize per grain variables !> @brief allocates and initialize per grain variables
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine crystallite_init subroutine crystallite_init
logical, dimension(discretization_nIP,discretization_nElem) :: devNull logical, dimension(discretization_nIP,discretization_nElem) :: devNull
integer :: & integer :: &
c, & !< counter in integration point component loop c, & !< counter in integration point component loop
@ -126,13 +126,13 @@ subroutine crystallite_init
iMax, & !< maximum number of integration points iMax, & !< maximum number of integration points
eMax, & !< maximum number of elements eMax, & !< maximum number of elements
myNcomponents !< number of components at current IP myNcomponents !< number of components at current IP
write(6,'(/,a)') ' <<<+- crystallite init -+>>>' write(6,'(/,a)') ' <<<+- crystallite init -+>>>'
cMax = homogenization_maxNgrains cMax = homogenization_maxNgrains
iMax = discretization_nIP iMax = discretization_nIP
eMax = discretization_nElem eMax = discretization_nElem
allocate(crystallite_S0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_S0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedS0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partionedS0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_S(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_S(3,3,cMax,iMax,eMax), source=0.0_pReal)
@ -172,23 +172,23 @@ subroutine crystallite_init
allocate(crystallite_requested(cMax,iMax,eMax), source=.false.) allocate(crystallite_requested(cMax,iMax,eMax), source=.false.)
allocate(crystallite_todo(cMax,iMax,eMax), source=.false.) allocate(crystallite_todo(cMax,iMax,eMax), source=.false.)
allocate(crystallite_converged(cMax,iMax,eMax), source=.true.) allocate(crystallite_converged(cMax,iMax,eMax), source=.true.)
num%subStepMinCryst = config_numerics%getFloat('substepmincryst', defaultVal=1.0e-3_pReal) num%subStepMinCryst = config_numerics%getFloat('substepmincryst', defaultVal=1.0e-3_pReal)
num%subStepSizeCryst = config_numerics%getFloat('substepsizecryst', defaultVal=0.25_pReal) num%subStepSizeCryst = config_numerics%getFloat('substepsizecryst', defaultVal=0.25_pReal)
num%stepIncreaseCryst = config_numerics%getFloat('stepincreasecryst', defaultVal=1.5_pReal) num%stepIncreaseCryst = config_numerics%getFloat('stepincreasecryst', defaultVal=1.5_pReal)
num%subStepSizeLp = config_numerics%getFloat('substepsizelp', defaultVal=0.5_pReal) num%subStepSizeLp = config_numerics%getFloat('substepsizelp', defaultVal=0.5_pReal)
num%subStepSizeLi = config_numerics%getFloat('substepsizeli', defaultVal=0.5_pReal) num%subStepSizeLi = config_numerics%getFloat('substepsizeli', defaultVal=0.5_pReal)
num%rTol_crystalliteState = config_numerics%getFloat('rtol_crystallitestate', defaultVal=1.0e-6_pReal) num%rTol_crystalliteState = config_numerics%getFloat('rtol_crystallitestate', defaultVal=1.0e-6_pReal)
num%rTol_crystalliteStress = config_numerics%getFloat('rtol_crystallitestress',defaultVal=1.0e-6_pReal) num%rTol_crystalliteStress = config_numerics%getFloat('rtol_crystallitestress',defaultVal=1.0e-6_pReal)
num%aTol_crystalliteStress = config_numerics%getFloat('atol_crystallitestress',defaultVal=1.0e-8_pReal) num%aTol_crystalliteStress = config_numerics%getFloat('atol_crystallitestress',defaultVal=1.0e-8_pReal)
num%iJacoLpresiduum = config_numerics%getInt ('ijacolpresiduum', defaultVal=1) num%iJacoLpresiduum = config_numerics%getInt ('ijacolpresiduum', defaultVal=1)
num%nState = config_numerics%getInt ('nstate', defaultVal=20) num%nState = config_numerics%getInt ('nstate', defaultVal=20)
num%nStress = config_numerics%getInt ('nstress', defaultVal=40) num%nStress = config_numerics%getInt ('nstress', defaultVal=40)
if(num%subStepMinCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinCryst') if(num%subStepMinCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinCryst')
if(num%subStepSizeCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeCryst') if(num%subStepSizeCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeCryst')
if(num%stepIncreaseCryst <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseCryst') if(num%stepIncreaseCryst <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseCryst')
@ -199,12 +199,12 @@ subroutine crystallite_init
if(num%rTol_crystalliteState <= 0.0_pReal) call IO_error(301,ext_msg='rTol_crystalliteState') if(num%rTol_crystalliteState <= 0.0_pReal) call IO_error(301,ext_msg='rTol_crystalliteState')
if(num%rTol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='rTol_crystalliteStress') if(num%rTol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='rTol_crystalliteStress')
if(num%aTol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='aTol_crystalliteStress') if(num%aTol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='aTol_crystalliteStress')
if(num%iJacoLpresiduum < 1) call IO_error(301,ext_msg='iJacoLpresiduum') if(num%iJacoLpresiduum < 1) call IO_error(301,ext_msg='iJacoLpresiduum')
if(num%nState < 1) call IO_error(301,ext_msg='nState') if(num%nState < 1) call IO_error(301,ext_msg='nState')
if(num%nStress< 1) call IO_error(301,ext_msg='nStress') if(num%nStress< 1) call IO_error(301,ext_msg='nStress')
select case(numerics_integrator) select case(numerics_integrator)
case(1) case(1)
integrateState => integrateStateFPI integrateState => integrateStateFPI
@ -217,11 +217,11 @@ subroutine crystallite_init
case(5) case(5)
integrateState => integrateStateRKCK45 integrateState => integrateStateRKCK45
end select end select
allocate(output_constituent(size(config_phase))) allocate(output_constituent(size(config_phase)))
do c = 1, size(config_phase) do c = 1, size(config_phase)
#if defined(__GFORTRAN__) #if defined(__GFORTRAN__)
allocate(output_constituent(c)%label(1)) allocate(output_constituent(c)%label(1))
output_constituent(c)%label(1)= 'GfortranBug86277' output_constituent(c)%label(1)= 'GfortranBug86277'
output_constituent(c)%label = config_phase(c)%getStrings('(output)',defaultVal=output_constituent(c)%label ) output_constituent(c)%label = config_phase(c)%getStrings('(output)',defaultVal=output_constituent(c)%label )
if (output_constituent(c)%label (1) == 'GfortranBug86277') output_constituent(c)%label = [character(len=pStringLen)::] if (output_constituent(c)%label (1) == 'GfortranBug86277') output_constituent(c)%label = [character(len=pStringLen)::]
@ -239,6 +239,8 @@ subroutine crystallite_init
myNcomponents = homogenization_Ngrains(material_homogenizationAt(e)) myNcomponents = homogenization_Ngrains(material_homogenizationAt(e))
do i = FEsolving_execIP(1), FEsolving_execIP(2); do c = 1, myNcomponents do i = FEsolving_execIP(1), FEsolving_execIP(2); do c = 1, myNcomponents
crystallite_Fp0(1:3,1:3,c,i,e) = material_orientation0(c,i,e)%asMatrix() ! plastic def gradient reflects init orientation crystallite_Fp0(1:3,1:3,c,i,e) = material_orientation0(c,i,e)%asMatrix() ! plastic def gradient reflects init orientation
crystallite_Fp0(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e) &
/ math_det33(crystallite_Fp0(1:3,1:3,c,i,e))**(1.0_pReal/3.0_pReal)
crystallite_Fi0(1:3,1:3,c,i,e) = constitutive_initialFi(c,i,e) crystallite_Fi0(1:3,1:3,c,i,e) = constitutive_initialFi(c,i,e)
crystallite_F0(1:3,1:3,c,i,e) = math_I3 crystallite_F0(1:3,1:3,c,i,e) = math_I3
crystallite_localPlasticity(c,i,e) = phase_localPlasticity(material_phaseAt(c,e)) crystallite_localPlasticity(c,i,e) = phase_localPlasticity(material_phaseAt(c,e))
@ -250,16 +252,16 @@ subroutine crystallite_init
enddo; enddo enddo; enddo
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
if(any(.not. crystallite_localPlasticity) .and. .not. usePingPong) call IO_error(601) ! exit if nonlocal but no ping-pong ToDo: Why not check earlier? or in nonlocal? if(any(.not. crystallite_localPlasticity) .and. .not. usePingPong) call IO_error(601) ! exit if nonlocal but no ping-pong ToDo: Why not check earlier? or in nonlocal?
crystallite_partionedFp0 = crystallite_Fp0 crystallite_partionedFp0 = crystallite_Fp0
crystallite_partionedFi0 = crystallite_Fi0 crystallite_partionedFi0 = crystallite_Fi0
crystallite_partionedF0 = crystallite_F0 crystallite_partionedF0 = crystallite_F0
crystallite_partionedF = crystallite_F0 crystallite_partionedF = crystallite_F0
call crystallite_orientations() call crystallite_orientations()
!$OMP PARALLEL DO !$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2) do i = FEsolving_execIP(1),FEsolving_execIP(2)
@ -271,7 +273,7 @@ subroutine crystallite_init
enddo enddo
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
devNull = crystallite_stress() devNull = crystallite_stress()
call crystallite_stressTangent call crystallite_stressTangent
@ -283,7 +285,7 @@ subroutine crystallite_init
write(6,'(a42,1x,i10)') ' # of nonlocal constituents: ',count(.not. crystallite_localPlasticity) write(6,'(a42,1x,i10)') ' # of nonlocal constituents: ',count(.not. crystallite_localPlasticity)
flush(6) flush(6)
endif endif
call debug_info call debug_info
call debug_reset call debug_reset
#endif #endif
@ -295,7 +297,7 @@ end subroutine crystallite_init
!> @brief calculate stress (P) !> @brief calculate stress (P)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC) function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
logical, dimension(discretization_nIP,discretization_nElem) :: crystallite_stress logical, dimension(discretization_nIP,discretization_nElem) :: crystallite_stress
real(pReal), intent(in), optional :: & real(pReal), intent(in), optional :: &
dummyArgumentToPreventInternalCompilerErrorWithGCC dummyArgumentToPreventInternalCompilerErrorWithGCC
@ -308,7 +310,7 @@ function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
e, & !< counter in element loop e, & !< counter in element loop
startIP, endIP, & startIP, endIP, &
s s
#ifdef DEBUG #ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0 & if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0 &
.and. FEsolving_execElem(1) <= debug_e & .and. FEsolving_execElem(1) <= debug_e &
@ -460,7 +462,7 @@ function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
crystallite_stress = .false. crystallite_stress = .false.
elementLooping5: do e = FEsolving_execElem(1),FEsolving_execElem(2) elementLooping5: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2) do i = FEsolving_execIP(1),FEsolving_execIP(2)
crystallite_stress(i,e) = all(crystallite_converged(:,i,e)) crystallite_stress(i,e) = all(crystallite_converged(:,i,e))
enddo enddo
enddo elementLooping5 enddo elementLooping5
@ -605,12 +607,12 @@ end subroutine crystallite_stressTangent
!> @brief calculates orientations !> @brief calculates orientations
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine crystallite_orientations subroutine crystallite_orientations
integer & integer &
c, & !< counter in integration point component loop c, & !< counter in integration point component loop
i, & !< counter in integration point loop i, & !< counter in integration point loop
e !< counter in element loop e !< counter in element loop
!$OMP PARALLEL DO !$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2) do i = FEsolving_execIP(1),FEsolving_execIP(2)
@ -618,7 +620,7 @@ subroutine crystallite_orientations
call crystallite_orientation(c,i,e)%fromMatrix(transpose(math_rotationalPart33(crystallite_Fe(1:3,1:3,c,i,e)))) call crystallite_orientation(c,i,e)%fromMatrix(transpose(math_rotationalPart33(crystallite_Fe(1:3,1:3,c,i,e))))
enddo; enddo; enddo enddo; enddo; enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
nonlocalPresent: if (any(plasticState%nonLocal)) then nonlocalPresent: if (any(plasticState%nonLocal)) then
!$OMP PARALLEL DO !$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
@ -636,7 +638,7 @@ end subroutine crystallite_orientations
!> @brief Map 2nd order tensor to reference config !> @brief Map 2nd order tensor to reference config
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function crystallite_push33ToRef(ipc,ip,el, tensor33) function crystallite_push33ToRef(ipc,ip,el, tensor33)
real(pReal), dimension(3,3) :: crystallite_push33ToRef real(pReal), dimension(3,3) :: crystallite_push33ToRef
real(pReal), dimension(3,3), intent(in) :: tensor33 real(pReal), dimension(3,3), intent(in) :: tensor33
real(pReal), dimension(3,3) :: T real(pReal), dimension(3,3) :: T
@ -644,7 +646,7 @@ function crystallite_push33ToRef(ipc,ip,el, tensor33)
el, & el, &
ip, & ip, &
ipc ipc
T = matmul(material_orientation0(ipc,ip,el)%asMatrix(), & ! ToDo: initial orientation correct? T = matmul(material_orientation0(ipc,ip,el)%asMatrix(), & ! ToDo: initial orientation correct?
transpose(math_inv33(crystallite_subF(1:3,1:3,ipc,ip,el)))) transpose(math_inv33(crystallite_subF(1:3,1:3,ipc,ip,el))))
crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T)) crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T))
@ -661,11 +663,11 @@ subroutine crystallite_results
real(pReal), allocatable, dimension(:,:,:) :: selected_tensors real(pReal), allocatable, dimension(:,:,:) :: selected_tensors
type(rotation), allocatable, dimension(:) :: selected_rotations type(rotation), allocatable, dimension(:) :: selected_rotations
character(len=pStringLen) :: group,lattice_label character(len=pStringLen) :: group,lattice_label
do p=1,size(config_name_phase) do p=1,size(config_name_phase)
group = trim('current/constituent')//'/'//trim(config_name_phase(p))//'/generic' group = trim('current/constituent')//'/'//trim(config_name_phase(p))//'/generic'
call results_closeGroup(results_addGroup(group)) call results_closeGroup(results_addGroup(group))
do o = 1, size(output_constituent(p)%label) do o = 1, size(output_constituent(p)%label)
select case (output_constituent(p)%label(o)) select case (output_constituent(p)%label(o))
@ -722,19 +724,19 @@ subroutine crystallite_results
end select end select
enddo enddo
enddo enddo
contains contains
!------------------------------------------------------------------------------------------------ !------------------------------------------------------------------------------------------------
!> @brief select tensors for output !> @brief select tensors for output
!------------------------------------------------------------------------------------------------ !------------------------------------------------------------------------------------------------
function select_tensors(dataset,instance) function select_tensors(dataset,instance)
integer, intent(in) :: instance integer, intent(in) :: instance
real(pReal), dimension(:,:,:,:,:), intent(in) :: dataset real(pReal), dimension(:,:,:,:,:), intent(in) :: dataset
real(pReal), allocatable, dimension(:,:,:) :: select_tensors real(pReal), allocatable, dimension(:,:,:) :: select_tensors
integer :: e,i,c,j integer :: e,i,c,j
allocate(select_tensors(3,3,count(material_phaseAt==instance)*homogenization_maxNgrains*discretization_nIP)) allocate(select_tensors(3,3,count(material_phaseAt==instance)*homogenization_maxNgrains*discretization_nIP))
j=0 j=0
@ -748,20 +750,20 @@ subroutine crystallite_results
enddo enddo
enddo enddo
enddo enddo
end function select_tensors end function select_tensors
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief select rotations for output !> @brief select rotations for output
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function select_rotations(dataset,instance) function select_rotations(dataset,instance)
integer, intent(in) :: instance integer, intent(in) :: instance
type(rotation), dimension(:,:,:), intent(in) :: dataset type(rotation), dimension(:,:,:), intent(in) :: dataset
type(rotation), allocatable, dimension(:) :: select_rotations type(rotation), allocatable, dimension(:) :: select_rotations
integer :: e,i,c,j integer :: e,i,c,j
allocate(select_rotations(count(material_phaseAt==instance)*homogenization_maxNgrains*discretization_nIP)) allocate(select_rotations(count(material_phaseAt==instance)*homogenization_maxNgrains*discretization_nIP))
j=0 j=0
@ -775,7 +777,7 @@ subroutine crystallite_results
enddo enddo
enddo enddo
enddo enddo
end function select_rotations end function select_rotations
end subroutine crystallite_results end subroutine crystallite_results
@ -786,12 +788,12 @@ end subroutine crystallite_results
!> intermediate acceleration of the Newton-Raphson correction !> intermediate acceleration of the Newton-Raphson correction
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
logical function integrateStress(ipc,ip,el,timeFraction) logical function integrateStress(ipc,ip,el,timeFraction)
integer, intent(in):: el, & ! element index integer, intent(in):: el, & ! element index
ip, & ! integration point index ip, & ! integration point index
ipc ! grain index ipc ! grain index
real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep
real(pReal), dimension(3,3):: F, & ! deformation gradient at end of timestep real(pReal), dimension(3,3):: F, & ! deformation gradient at end of timestep
Fp_new, & ! plastic deformation gradient at end of timestep Fp_new, & ! plastic deformation gradient at end of timestep
Fe_new, & ! elastic deformation gradient at end of timestep Fe_new, & ! elastic deformation gradient at end of timestep
@ -848,7 +850,7 @@ logical function integrateStress(ipc,ip,el,timeFraction)
logical :: error logical :: error
external :: & external :: &
dgesv dgesv
integrateStress = .false. integrateStress = .false.
if (present(timeFraction)) then if (present(timeFraction)) then
@ -862,7 +864,7 @@ logical function integrateStress(ipc,ip,el,timeFraction)
Lpguess = crystallite_Lp(1:3,1:3,ipc,ip,el) ! take as first guess Lpguess = crystallite_Lp(1:3,1:3,ipc,ip,el) ! take as first guess
Liguess = crystallite_Li(1:3,1:3,ipc,ip,el) ! take as first guess Liguess = crystallite_Li(1:3,1:3,ipc,ip,el) ! take as first guess
call math_invert33(invFp_current,devNull,error,crystallite_subFp0(1:3,1:3,ipc,ip,el)) call math_invert33(invFp_current,devNull,error,crystallite_subFp0(1:3,1:3,ipc,ip,el))
if (error) return ! error if (error) return ! error
call math_invert33(invFi_current,devNull,error,crystallite_subFi0(1:3,1:3,ipc,ip,el)) call math_invert33(invFi_current,devNull,error,crystallite_subFi0(1:3,1:3,ipc,ip,el))
@ -883,22 +885,22 @@ logical function integrateStress(ipc,ip,el,timeFraction)
invFi_new = matmul(invFi_current,math_I3 - dt*Liguess) invFi_new = matmul(invFi_current,math_I3 - dt*Liguess)
Fi_new = math_inv33(invFi_new) Fi_new = math_inv33(invFi_new)
detInvFi = math_det33(invFi_new) detInvFi = math_det33(invFi_new)
jacoCounterLp = 0 jacoCounterLp = 0
steplengthLp = 1.0_pReal steplengthLp = 1.0_pReal
residuumLp_old = 0.0_pReal residuumLp_old = 0.0_pReal
Lpguess_old = Lpguess Lpguess_old = Lpguess
NiterationStressLp = 0 NiterationStressLp = 0
LpLoop: do LpLoop: do
NiterationStressLp = NiterationStressLp + 1 NiterationStressLp = NiterationStressLp + 1
if (NiterationStressLp>num%nStress) return ! error if (NiterationStressLp>num%nStress) return ! error
B = math_I3 - dt*Lpguess B = math_I3 - dt*Lpguess
Fe = matmul(matmul(A,B), invFi_new) Fe = matmul(matmul(A,B), invFi_new)
call constitutive_SandItsTangents(S, dS_dFe, dS_dFi, & call constitutive_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi_new, ipc, ip, el) Fe, Fi_new, ipc, ip, el)
call constitutive_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, & call constitutive_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, &
S, Fi_new, ipc, ip, el) S, Fi_new, ipc, ip, el)
@ -906,7 +908,7 @@ logical function integrateStress(ipc,ip,el,timeFraction)
aTolLp = max(num%rTol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error aTolLp = max(num%rTol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%aTol_crystalliteStress) ! minimum lower cutoff num%aTol_crystalliteStress) ! minimum lower cutoff
residuumLp = Lpguess - Lp_constitutive residuumLp = Lpguess - Lp_constitutive
if (any(IEEE_is_NaN(residuumLp))) then if (any(IEEE_is_NaN(residuumLp))) then
return ! error return ! error
elseif (norm2(residuumLp) < aTolLp) then ! converged if below absolute tolerance elseif (norm2(residuumLp) < aTolLp) then ! converged if below absolute tolerance
@ -964,11 +966,11 @@ logical function integrateStress(ipc,ip,el,timeFraction)
+ deltaLi * steplengthLi + deltaLi * steplengthLi
cycle LiLoop cycle LiLoop
endif endif
!* calculate Jacobian for correction term !* calculate Jacobian for correction term
if (mod(jacoCounterLi, num%iJacoLpresiduum) == 0) then if (mod(jacoCounterLi, num%iJacoLpresiduum) == 0) then
jacoCounterLi = jacoCounterLi + 1 jacoCounterLi = jacoCounterLi + 1
temp_33 = matmul(matmul(A,B),invFi_current) temp_33 = matmul(matmul(A,B),invFi_current)
do o=1,3; do p=1,3 do o=1,3; do p=1,3
dFe_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j) dFe_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
@ -986,11 +988,11 @@ logical function integrateStress(ipc,ip,el,timeFraction)
if (ierr /= 0) return ! error if (ierr /= 0) return ! error
deltaLi = - math_9to33(temp_9) deltaLi = - math_9to33(temp_9)
endif endif
Liguess = Liguess & Liguess = Liguess &
+ deltaLi * steplengthLi + deltaLi * steplengthLi
enddo LiLoop enddo LiLoop
invFp_new = matmul(invFp_current,B) invFp_new = matmul(invFp_current,B)
call math_invert33(Fp_new,devNull,error,invFp_new) call math_invert33(Fp_new,devNull,error,invFp_new)
if (error) return ! error if (error) return ! error
@ -1051,7 +1053,7 @@ subroutine integrateStateFPI
#endif #endif
! store previousDotState and previousDotState2 ! store previousDotState and previousDotState2
!$OMP PARALLEL DO PRIVATE(p,c) !$OMP PARALLEL DO PRIVATE(p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2) do i = FEsolving_execIP(1),FEsolving_execIP(2)
@ -1078,7 +1080,7 @@ subroutine integrateStateFPI
call update_dependentState call update_dependentState
call update_stress(1.0_pReal) call update_stress(1.0_pReal)
call update_dotState(1.0_pReal) call update_dotState(1.0_pReal)
!$OMP PARALLEL !$OMP PARALLEL
!$OMP DO PRIVATE(sizeDotState,residuum_plastic,residuum_source,zeta,p,c) !$OMP DO PRIVATE(sizeDotState,residuum_plastic,residuum_source,zeta,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
@ -1091,7 +1093,7 @@ subroutine integrateStateFPI
zeta = damper(plasticState(p)%dotState (:,c), & zeta = damper(plasticState(p)%dotState (:,c), &
plasticState(p)%previousDotState (:,c), & plasticState(p)%previousDotState (:,c), &
plasticState(p)%previousDotState2(:,c)) plasticState(p)%previousDotState2(:,c))
residuum_plastic(1:SizeDotState) = plasticState(p)%state (1:sizeDotState,c) & residuum_plastic(1:SizeDotState) = plasticState(p)%state (1:sizeDotState,c) &
- plasticState(p)%subState0(1:sizeDotState,c) & - plasticState(p)%subState0(1:sizeDotState,c) &
- ( plasticState(p)%dotState (:,c) * zeta & - ( plasticState(p)%dotState (:,c) * zeta &
@ -1099,18 +1101,18 @@ subroutine integrateStateFPI
) * crystallite_subdt(g,i,e) ) * crystallite_subdt(g,i,e)
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%state(1:sizeDotState,c) & plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%state(1:sizeDotState,c) &
- residuum_plastic(1:sizeDotState) - residuum_plastic(1:sizeDotState)
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * zeta & plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * zeta &
+ plasticState(p)%previousDotState(:,c) * (1.0_pReal - zeta) + plasticState(p)%previousDotState(:,c) * (1.0_pReal - zeta)
crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState), & crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState), &
plasticState(p)%state(1:sizeDotState,c), & plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%aTolState(1:sizeDotState)) plasticState(p)%aTolState(1:sizeDotState))
do s = 1, phase_Nsources(p) do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState sizeDotState = sourceState(p)%p(s)%sizeDotState
zeta = damper(sourceState(p)%p(s)%dotState (:,c), & zeta = damper(sourceState(p)%p(s)%dotState (:,c), &
sourceState(p)%p(s)%previousDotState (:,c), & sourceState(p)%p(s)%previousDotState (:,c), &
sourceState(p)%p(s)%previousDotState2(:,c)) sourceState(p)%p(s)%previousDotState2(:,c))
@ -1181,12 +1183,12 @@ subroutine integrateStateFPI
!> @brief calculate the damping for correction of state and dot state !> @brief calculate the damping for correction of state and dot state
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
real(pReal) pure function damper(current,previous,previous2) real(pReal) pure function damper(current,previous,previous2)
real(pReal), dimension(:), intent(in) ::& real(pReal), dimension(:), intent(in) ::&
current, previous, previous2 current, previous, previous2
real(pReal) :: dot_prod12, dot_prod22 real(pReal) :: dot_prod12, dot_prod22
dot_prod12 = dot_product(current - previous, previous - previous2) dot_prod12 = dot_product(current - previous, previous - previous2)
dot_prod22 = dot_product(previous - previous2, previous - previous2) dot_prod22 = dot_product(previous - previous2, previous - previous2)
if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then
@ -1194,7 +1196,7 @@ subroutine integrateStateFPI
else else
damper = 1.0_pReal damper = 1.0_pReal
endif endif
end function damper end function damper
end subroutine integrateStateFPI end subroutine integrateStateFPI
@ -1229,7 +1231,7 @@ subroutine integrateStateAdaptiveEuler
c, & c, &
s, & s, &
sizeDotState sizeDotState
! ToDo: MD: once all constitutives use allocate state, attach residuum arrays to the state in case of adaptive Euler ! ToDo: MD: once all constitutives use allocate state, attach residuum arrays to the state in case of adaptive Euler
real(pReal), dimension(constitutive_plasticity_maxSizeDotState, & real(pReal), dimension(constitutive_plasticity_maxSizeDotState, &
homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: & homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
@ -1250,14 +1252,14 @@ subroutine integrateStateAdaptiveEuler
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
residuum_plastic(1:sizeDotState,g,i,e) = plasticState(p)%dotstate(1:sizeDotState,c) & residuum_plastic(1:sizeDotState,g,i,e) = plasticState(p)%dotstate(1:sizeDotState,c) &
* (- 0.5_pReal * crystallite_subdt(g,i,e)) * (- 0.5_pReal * crystallite_subdt(g,i,e))
plasticState(p)%state(1:sizeDotState,c) = & plasticState(p)%state(1:sizeDotState,c) = &
plasticState(p)%state(1:sizeDotState,c) + plasticState(p)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e) !ToDo: state, partitioned state? plasticState(p)%state(1:sizeDotState,c) + plasticState(p)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e) !ToDo: state, partitioned state?
do s = 1, phase_Nsources(p) do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState sizeDotState = sourceState(p)%p(s)%sizeDotState
residuum_source(1:sizeDotState,s,g,i,e) = sourceState(p)%p(s)%dotstate(1:sizeDotState,c) & residuum_source(1:sizeDotState,s,g,i,e) = sourceState(p)%p(s)%dotstate(1:sizeDotState,c) &
* (- 0.5_pReal * crystallite_subdt(g,i,e)) * (- 0.5_pReal * crystallite_subdt(g,i,e))
sourceState(p)%p(s)%state(1:sizeDotState,c) = & sourceState(p)%p(s)%state(1:sizeDotState,c) = &
@ -1279,17 +1281,17 @@ subroutine integrateStateAdaptiveEuler
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
residuum_plastic(1:sizeDotState,g,i,e) = residuum_plastic(1:sizeDotState,g,i,e) & residuum_plastic(1:sizeDotState,g,i,e) = residuum_plastic(1:sizeDotState,g,i,e) &
+ 0.5_pReal * plasticState(p)%dotState(:,c) * crystallite_subdt(g,i,e) + 0.5_pReal * plasticState(p)%dotState(:,c) * crystallite_subdt(g,i,e)
crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), & crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), &
plasticState(p)%state(1:sizeDotState,c), & plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%aTolState(1:sizeDotState)) plasticState(p)%aTolState(1:sizeDotState))
do s = 1, phase_Nsources(p) do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState sizeDotState = sourceState(p)%p(s)%sizeDotState
residuum_source(1:sizeDotState,s,g,i,e) = & residuum_source(1:sizeDotState,s,g,i,e) = &
residuum_source(1:sizeDotState,s,g,i,e) + 0.5_pReal * sourceState(p)%p(s)%dotState(:,c) * crystallite_subdt(g,i,e) residuum_source(1:sizeDotState,s,g,i,e) + 0.5_pReal * sourceState(p)%p(s)%dotState(:,c) * crystallite_subdt(g,i,e)
@ -1298,13 +1300,13 @@ subroutine integrateStateAdaptiveEuler
sourceState(p)%p(s)%state(1:sizeDotState,c), & sourceState(p)%p(s)%state(1:sizeDotState,c), &
sourceState(p)%p(s)%aTolState(1:sizeDotState)) sourceState(p)%p(s)%aTolState(1:sizeDotState))
enddo enddo
endif endif
enddo; enddo; enddo enddo; enddo; enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck
end subroutine integrateStateAdaptiveEuler end subroutine integrateStateAdaptiveEuler
@ -1469,23 +1471,23 @@ subroutine integrateStateRKCK45
do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e) p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%RKCK45dotState(6,:,cc) = plasticState (p)%dotState(:,cc) plasticState(p)%RKCK45dotState(6,:,cc) = plasticState (p)%dotState(:,cc)
residuum_plastic(1:sizeDotState,g,i,e) = & residuum_plastic(1:sizeDotState,g,i,e) = &
matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) & ! why transpose? Better to transpose constant DB matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) & ! why transpose? Better to transpose constant DB
* crystallite_subdt(g,i,e) * crystallite_subdt(g,i,e)
plasticState(p)%dotState(:,cc) = & plasticState(p)%dotState(:,cc) = &
matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)), B) ! why transpose? Better to transpose constant B matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)), B) ! why transpose? Better to transpose constant B
do s = 1, phase_Nsources(p) do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState sizeDotState = sourceState(p)%p(s)%sizeDotState
sourceState(p)%p(s)%RKCK45dotState(6,:,cc) = sourceState(p)%p(s)%dotState(:,cc) sourceState(p)%p(s)%RKCK45dotState(6,:,cc) = sourceState(p)%p(s)%dotState(:,cc)
residuum_source(1:sizeDotState,s,g,i,e) = & residuum_source(1:sizeDotState,s,g,i,e) = &
matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) & matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) &
* crystallite_subdt(g,i,e) * crystallite_subdt(g,i,e)
@ -1493,13 +1495,13 @@ subroutine integrateStateRKCK45
sourceState(p)%p(s)%dotState(:,cc) = & sourceState(p)%p(s)%dotState(:,cc) = &
matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),B) matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),B)
enddo enddo
endif endif
enddo; enddo; enddo enddo; enddo; enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
call update_state(1.0_pReal) call update_state(1.0_pReal)
! --- relative residui and state convergence --- ! --- relative residui and state convergence ---
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,cc) !$OMP PARALLEL DO PRIVATE(sizeDotState,p,cc)
@ -1508,16 +1510,16 @@ subroutine integrateStateRKCK45
do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e) p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
crystallite_todo(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), & crystallite_todo(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), &
plasticState(p)%state(1:sizeDotState,cc), & plasticState(p)%state(1:sizeDotState,cc), &
plasticState(p)%aTolState(1:sizeDotState)) plasticState(p)%aTolState(1:sizeDotState))
do s = 1, phase_Nsources(p) do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState sizeDotState = sourceState(p)%p(s)%sizeDotState
crystallite_todo(g,i,e) = & crystallite_todo(g,i,e) = &
crystallite_todo(g,i,e) .and. converged(residuum_source(1:sizeDotState,s,g,i,e), & crystallite_todo(g,i,e) .and. converged(residuum_source(1:sizeDotState,s,g,i,e), &
sourceState(p)%p(s)%state(1:sizeDotState,cc), & sourceState(p)%p(s)%state(1:sizeDotState,cc), &
@ -1532,7 +1534,7 @@ subroutine integrateStateRKCK45
call update_stress(1.0_pReal) call update_stress(1.0_pReal)
call setConvergenceFlag call setConvergenceFlag
if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck
end subroutine integrateStateRKCK45 end subroutine integrateStateRKCK45
@ -1541,7 +1543,7 @@ end subroutine integrateStateRKCK45
!> @detail one non-converged nonlocal sets all other nonlocals to non-converged to trigger cut back !> @detail one non-converged nonlocal sets all other nonlocals to non-converged to trigger cut back
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine nonlocalConvergenceCheck subroutine nonlocalConvergenceCheck
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)... if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)...
where( .not. crystallite_localPlasticity) crystallite_converged = .false. where( .not. crystallite_localPlasticity) crystallite_converged = .false.
@ -1559,7 +1561,7 @@ subroutine setConvergenceFlag
e, & !< element index in element loop e, & !< element index in element loop
i, & !< integration point index in ip loop i, & !< integration point index in ip loop
g !< grain index in grain loop g !< grain index in grain loop
!OMP DO PARALLEL PRIVATE !OMP DO PARALLEL PRIVATE
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2) do i = FEsolving_execIP(1),FEsolving_execIP(2)
@ -1575,7 +1577,7 @@ end subroutine setConvergenceFlag
!> @brief determines whether a point is converged !> @brief determines whether a point is converged
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
logical pure function converged(residuum,state,aTol) logical pure function converged(residuum,state,aTol)
real(pReal), intent(in), dimension(:) ::& real(pReal), intent(in), dimension(:) ::&
residuum, state, aTol residuum, state, aTol
real(pReal) :: & real(pReal) :: &
@ -1695,11 +1697,11 @@ subroutine update_dotState(timeFraction)
g, & !< grain index in grain loop g, & !< grain index in grain loop
p, & p, &
c, & c, &
s s
logical :: & logical :: &
NaN, & NaN, &
nonlocalStop nonlocalStop
nonlocalStop = .false. nonlocalStop = .false.
!$OMP PARALLEL DO PRIVATE (p,c,NaN) !$OMP PARALLEL DO PRIVATE (p,c,NaN)
@ -1726,7 +1728,7 @@ subroutine update_dotState(timeFraction)
enddo; enddo; enddo enddo; enddo; enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
if (nonlocalStop) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity if (nonlocalStop) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity
end subroutine update_DotState end subroutine update_DotState
@ -1741,11 +1743,11 @@ subroutine update_deltaState
mySize, & mySize, &
myOffset, & myOffset, &
c, & c, &
s s
logical :: & logical :: &
NaN, & NaN, &
nonlocalStop nonlocalStop
nonlocalStop = .false. nonlocalStop = .false.
!$OMP PARALLEL DO PRIVATE(p,c,myOffset,mySize,NaN) !$OMP PARALLEL DO PRIVATE(p,c,myOffset,mySize,NaN)
@ -1762,23 +1764,23 @@ subroutine update_deltaState
myOffset = plasticState(p)%offsetDeltaState myOffset = plasticState(p)%offsetDeltaState
mySize = plasticState(p)%sizeDeltaState mySize = plasticState(p)%sizeDeltaState
NaN = any(IEEE_is_NaN(plasticState(p)%deltaState(1:mySize,c))) NaN = any(IEEE_is_NaN(plasticState(p)%deltaState(1:mySize,c)))
if (.not. NaN) then if (.not. NaN) then
plasticState(p)%state(myOffset + 1: myOffset + mySize,c) = & plasticState(p)%state(myOffset + 1: myOffset + mySize,c) = &
plasticState(p)%state(myOffset + 1: myOffset + mySize,c) + plasticState(p)%deltaState(1:mySize,c) plasticState(p)%state(myOffset + 1: myOffset + mySize,c) + plasticState(p)%deltaState(1:mySize,c)
do s = 1, phase_Nsources(p) do s = 1, phase_Nsources(p)
myOffset = sourceState(p)%p(s)%offsetDeltaState myOffset = sourceState(p)%p(s)%offsetDeltaState
mySize = sourceState(p)%p(s)%sizeDeltaState mySize = sourceState(p)%p(s)%sizeDeltaState
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(s)%deltaState(1:mySize,c))) NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(s)%deltaState(1:mySize,c)))
if (.not. NaN) then if (.not. NaN) then
sourceState(p)%p(s)%state(myOffset + 1:myOffset + mySize,c) = & sourceState(p)%p(s)%state(myOffset + 1:myOffset + mySize,c) = &
sourceState(p)%p(s)%state(myOffset + 1:myOffset + mySize,c) + sourceState(p)%p(s)%deltaState(1:mySize,c) sourceState(p)%p(s)%state(myOffset + 1:myOffset + mySize,c) + sourceState(p)%p(s)%deltaState(1:mySize,c)
endif endif
enddo enddo
endif endif
crystallite_todo(g,i,e) = .not. NaN crystallite_todo(g,i,e) = .not. NaN
if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken
crystallite_converged(g,i,e) = .false. crystallite_converged(g,i,e) = .false.
@ -1788,7 +1790,7 @@ subroutine update_deltaState
enddo; enddo; enddo enddo; enddo; enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
if (nonlocalStop) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity if (nonlocalStop) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity
end subroutine update_deltaState end subroutine update_deltaState