* corrected compatibility for screws (always positive)
* detection of grain boundary in constitutive_nonlocal_microstructure with the help of transmissivity * enforce positive densities in constitutive_nonlocal_microstructure (needed because dotState does not create cutbacks for negative densities anymore) * reset single mobile densities below certain threshold to zero (also done in constitutive_nonlocal_microstructure) * constitutive_nonlocal_kinetics only gets local state variable as input, no need for the entire array here * dv_dtau is always positive * multiplication is only active when there is already some initial density of the respective type
This commit is contained in:
parent
366d52bd71
commit
62d06001ea
|
@ -827,8 +827,7 @@ real(pReal), dimension(3,3) :: sigma, & ! dislocation stre
|
|||
neighboring_F, & ! total deformation gradient of neighbor
|
||||
invFe, & ! inverse elastic deformation gradient
|
||||
invPositionDifference ! inverse of a 3x3 matrix containing finite differences of pairs of position vectors
|
||||
real(pReal), dimension(6) :: transmissivity, & ! transmissivity factor for each interface
|
||||
Tdislocation_v ! dislocation stress (resulting from the neighboring excess dislocation densities) as 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
real(pReal), dimension(6) :: Tdislocation_v ! dislocation stress (resulting from the neighboring excess dislocation densities) as 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
real(pReal), dimension(2,constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||
rhoExcess ! central excess density
|
||||
real(pReal), dimension(6,2,constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||
|
@ -839,6 +838,7 @@ real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstan
|
|||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el))),2) :: &
|
||||
rhoDip ! dipole dislocation density (edge, screw)
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||
transmissivity, & ! transmissivity
|
||||
rhoForest, & ! forest dislocation density
|
||||
tauThreshold, & ! threshold shear stress
|
||||
tau ! resolved shear stress
|
||||
|
@ -848,11 +848,19 @@ myStructure = constitutive_nonlocal_structure(myInstance)
|
|||
ns = constitutive_nonlocal_totalNslip(myInstance)
|
||||
|
||||
|
||||
!**********************************************************************
|
||||
!*** set fluxes to zero
|
||||
|
||||
constitutive_nonlocal_rhoDotFlux(:,:,g,ip,el) = 0.0_pReal
|
||||
|
||||
|
||||
!**********************************************************************
|
||||
!*** get basic states
|
||||
|
||||
forall (t = 1:8) rhoSgl(:,t) = state(g,ip,el)%p((t-1)*ns+1:t*ns)
|
||||
forall (c = 1:2) rhoDip(:,c) = state(g,ip,el)%p((c+7)*ns+1:(c+8)*ns)
|
||||
forall (t = 1:4) rhoSgl(:,t) = max(state(g,ip,el)%p((t-1)*ns+1:t*ns), 0.0_pReal) ! ensure positive single mobile densities
|
||||
forall (t = 5:8) rhoSgl(:,t) = state(g,ip,el)%p((t-1)*ns+1:t*ns)
|
||||
forall (c = 1:2) rhoDip(:,c) = max(state(g,ip,el)%p((c+7)*ns+1:(c+8)*ns), 0.0_pReal) ! ensure positive dipole densities
|
||||
where(rhoSgl(:,1:4) < min(0.1, 0.01*constitutive_nonlocal_aTolRho(myInstance))) rhoSgl(:,1:4) = 0.0_pReal ! delete non-significant single density
|
||||
|
||||
|
||||
!**********************************************************************
|
||||
|
@ -889,7 +897,6 @@ forall (s = 1:ns, c = 1:2) &
|
|||
rhoExcess(c,s) = state(g,ip,el)%p((2*c-2)*ns+s) + abs(state(g,ip,el)%p((2*c+2)*ns+s)) &
|
||||
- state(g,ip,el)%p((2*c-1)*ns+s) - abs(state(g,ip,el)%p((2*c+3)*ns+s))
|
||||
do n = 1,6
|
||||
|
||||
neighboring_el = mesh_ipNeighborhood(1,n,ip,el)
|
||||
neighboring_ip = mesh_ipNeighborhood(2,n,ip,el)
|
||||
if ( neighboring_ip == 0 .or. neighboring_el == 0 ) then ! at free surfaces ...
|
||||
|
@ -897,7 +904,7 @@ do n = 1,6
|
|||
neighboring_ip = ip
|
||||
neighboring_position(n,:) = 0.0_pReal
|
||||
neighboring_rhoExcess(n,:,:) = rhoExcess
|
||||
elseif (.not. phase_localConstitution(material_phase(1,neighboring_ip,neighboring_el))) then ! for neighbors with local constitution
|
||||
elseif (phase_localConstitution(material_phase(1,neighboring_ip,neighboring_el))) then ! for neighbors with local constitution
|
||||
neighboring_el = el ! ... use central values instead of neighboring values
|
||||
neighboring_ip = ip
|
||||
neighboring_position(n,:) = 0.0_pReal
|
||||
|
@ -914,8 +921,8 @@ do n = 1,6
|
|||
+ abs(state(g,neighboring_ip,neighboring_el)%p((2*c+2)*ns+s)) &
|
||||
- state(g,neighboring_ip,neighboring_el)%p((2*c-1)*ns+s) &
|
||||
- abs(state(g,neighboring_ip,neighboring_el)%p((2*c+3)*ns+s))
|
||||
if ( any( neighboring_rhoExcess(n,:,:)*rhoExcess < 0.0_pReal &
|
||||
.and. abs(neighboring_rhoExcess(n,:,:)) > 1.0_pReal ) ) then ! at grain boundary (=significant change of sign in any excess density) ...
|
||||
transmissivity = sum(constitutive_nonlocal_compatibility(2,:,:,n,ip,el)**2.0_pReal, 1)
|
||||
if ( any(transmissivity < 0.99_pReal) ) then ! at grain boundary (=significantly decreased transmissivity) ...
|
||||
neighboring_el = el ! ... use central values instead of neighboring values
|
||||
neighboring_ip = ip
|
||||
neighboring_position(n,:) = 0.0_pReal
|
||||
|
@ -927,7 +934,6 @@ do n = 1,6
|
|||
mesh_ipCenterOfGravity(:,neighboring_ip,neighboring_el) - mesh_ipCenterOfGravity(:,ip,el) )
|
||||
endif
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
invPositionDifference = math_inv3x3(neighboring_position((/1,3,5/),:) - neighboring_position((/2,4,6/),:))
|
||||
|
@ -980,18 +986,14 @@ do s = 1,ns
|
|||
enddo
|
||||
|
||||
!**********************************************************************
|
||||
!*** set dependent states
|
||||
!*** set states
|
||||
|
||||
state(g,ip,el)%p(1:8*ns) = reshape(rhoSgl,(/8*ns/)) ! ensure positive single mobile densities
|
||||
state(g,ip,el)%p(8*ns+1:10*ns) = reshape(rhoDip,(/2*ns/)) ! ensure positive dipole densities
|
||||
state(g,ip,el)%p(10*ns+1:11*ns) = rhoForest
|
||||
state(g,ip,el)%p(11*ns+1:12*ns) = tauThreshold
|
||||
state(g,ip,el)%p(12*ns+1:12*ns+6) = Tdislocation_v
|
||||
|
||||
|
||||
!**********************************************************************
|
||||
!*** calculate the dislocation velocity
|
||||
|
||||
call constitutive_nonlocal_kinetics(Tstar_v, Temperature, state, g, ip, el)
|
||||
|
||||
endsubroutine
|
||||
|
||||
|
||||
|
@ -1024,8 +1026,7 @@ integer(pInt), intent(in) :: g, & ! curren
|
|||
ip, & ! current integration point
|
||||
el ! current element number
|
||||
real(pReal), intent(in) :: Temperature ! temperature
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
||||
state ! microstructural state
|
||||
type(p_vec), intent(in) :: state ! microstructural state
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
|
||||
!*** output variables
|
||||
|
@ -1050,9 +1051,9 @@ myInstance = phase_constitutionInstance(material_phase(g,ip,el))
|
|||
myStructure = constitutive_nonlocal_structure(myInstance)
|
||||
ns = constitutive_nonlocal_totalNslip(myInstance)
|
||||
|
||||
rhoForest = state(g,ip,el)%p(10*ns+1:11*ns)
|
||||
tauThreshold = state(g,ip,el)%p(11*ns+1:12*ns)
|
||||
Tdislocation_v = state(g,ip,el)%p(12*ns+1:12*ns+6)
|
||||
rhoForest = state%p(10*ns+1:11*ns)
|
||||
tauThreshold = state%p(11*ns+1:12*ns)
|
||||
Tdislocation_v = state%p(12*ns+1:12*ns+6)
|
||||
|
||||
tau = 0.0_pReal
|
||||
constitutive_nonlocal_v(:,:,g,ip,el) = 0.0_pReal
|
||||
|
@ -1066,29 +1067,30 @@ if ( Temperature > 0.0_pReal ) then
|
|||
|
||||
if ( abs(tau(s)) > 0.0_pReal ) then
|
||||
boltzmannProbability = dexp( -constitutive_nonlocal_Q0(myInstance) * dsqrt(rhoForest(s)) / ( abs(tau(s)) * kB * Temperature) )
|
||||
constitutive_nonlocal_v(s,:,g,ip,el) = constitutive_nonlocal_v0PerSlipSystem(s,myInstance) &
|
||||
/ ( constitutive_nonlocal_burgersPerSlipSystem(s,myInstance) * dsqrt(rhoForest(s)) ) &
|
||||
* boltzmannProbability * sign(1.0_pReal,tau(s))
|
||||
constitutive_nonlocal_v(s,:,g,ip,el) = sign(constitutive_nonlocal_v0PerSlipSystem(s,myInstance), tau(s)) &
|
||||
/ ( boltzmannProbability + constitutive_nonlocal_burgersPerSlipSystem(s,myInstance) * dsqrt(rhoForest(s)) ) &
|
||||
* boltzmannProbability
|
||||
|
||||
|
||||
if (present(dv_dtau)) &
|
||||
dv_dtau(s) = constitutive_nonlocal_Q0(myInstance) * constitutive_nonlocal_v0PerSlipSystem(s,myInstance) &
|
||||
/ ( constitutive_nonlocal_burgersPerSlipSystem(s,myInstance) * tau(s)**2.0_pReal * kB * Temperature ) &
|
||||
* boltzmannProbability
|
||||
dv_dtau(s) = abs(constitutive_nonlocal_v(s,1,g,ip,el)) * constitutive_nonlocal_Q0(myInstance) &
|
||||
* constitutive_nonlocal_burgersPerSlipSystem(s,myInstance) * rhoForest(s) / ( tau(s)**2.0_pReal * kB * Temperature ) &
|
||||
/ ( boltzmannProbability + constitutive_nonlocal_burgersPerSlipSystem(s,myInstance) * dsqrt(rhoForest(s)) )
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
|
||||
if (verboseDebugger .and. selectiveDebugger) then
|
||||
!$OMP CRITICAL (write2out)
|
||||
write(6,*) '::: kinetics',g,ip,el
|
||||
write(6,*)
|
||||
!if (verboseDebugger .and. selectiveDebugger) then
|
||||
! !$OMP CRITICAL (write2out)
|
||||
! write(6,*) '::: kinetics',g,ip,el
|
||||
! write(6,*)
|
||||
! write(6,'(a,/,3(3(f12.3,x)/))') 'Tdislocation / MPa', math_Mandel6to33(Tdislocation_v/1e6)
|
||||
! write(6,'(a,/,3(3(f12.3,x)/))') 'Tstar / MPa', math_Mandel6to33(Tstar_v/1e6)
|
||||
write(6,'(a,/,12(f12.5,x),/)') 'tau / MPa', tau/1e6_pReal
|
||||
write(6,'(a,/,12(f12.5,x),/)') 'tauThreshold / MPa', tauThreshold/1e6_pReal
|
||||
write(6,'(a,/,4(12(f12.5,x),/))') 'v / 1e-3m/s', constitutive_nonlocal_v(:,:,g,ip,el)*1e3
|
||||
!$OMPEND CRITICAL (write2out)
|
||||
endif
|
||||
! write(6,'(a,/,12(f12.5,x),/)') 'tau / MPa', tau/1e6_pReal
|
||||
! write(6,'(a,/,12(e12.5,x),/)') 'rhoForest / 1/m**2', rhoForest
|
||||
! write(6,'(a,/,4(12(f12.5,x),/))') 'v / 1e-3m/s', constitutive_nonlocal_v(:,:,g,ip,el)*1e3
|
||||
! !$OMPEND CRITICAL (write2out)
|
||||
!endif
|
||||
|
||||
endsubroutine
|
||||
|
||||
|
@ -1175,7 +1177,7 @@ forall (s = 1:ns, t = 5:8, rhoSgl(s,t) * constitutive_nonlocal_v(s,t-4,g,ip,el)
|
|||
rhoForest = state(g,ip,el)%p(10*ns+1:11*ns)
|
||||
tauThreshold = state(g,ip,el)%p(11*ns+1:12*ns)
|
||||
|
||||
call constitutive_nonlocal_kinetics(Tstar_v, Temperature, state, g, ip, el, dv_dtau) ! update dislocation velocity
|
||||
call constitutive_nonlocal_kinetics(Tstar_v, Temperature, state(g,ip,el), g, ip, el, dv_dtau) ! update dislocation velocity
|
||||
|
||||
!*** Calculation of gdot and its tangent
|
||||
|
||||
|
@ -1203,9 +1205,9 @@ dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
|
|||
! !$OMP CRITICAL (write2out)
|
||||
! write(6,*) '::: LpandItsTangent',g,ip,el
|
||||
! write(6,*)
|
||||
! ! write(6,'(a,/,12(f12.5,x),/)') 'v', constitutive_nonlocal_v(:,t,g,ip,el)
|
||||
! write(6,'(a,/,12(f12.5,x),/)') 'gdot /1e-3',gdot*1e3_pReal
|
||||
! write(6,'(a,/,12(f12.5,x),/)') 'gdot total /1e-3',gdotTotal*1e3_pReal
|
||||
! write(6,'(a,/,12(f12.5,x),/)') 'v / 1e-3m/s', constitutive_nonlocal_v(:,:,g,ip,el)*1e3
|
||||
! write(6,'(a,/,12(f12.5,x),/)') 'gdot / 1e-3',gdot*1e3_pReal
|
||||
! write(6,'(a,/,12(f12.5,x),/)') 'gdot total / 1e-3',gdotTotal*1e3_pReal
|
||||
! write(6,'(a,/,3(3(f12.7,x)/))') 'Lp',Lp
|
||||
! ! call flush(6)
|
||||
! !$OMPEND CRITICAL (write2out)
|
||||
|
@ -1261,7 +1263,10 @@ use lattice, only: lattice_Sslip, &
|
|||
lattice_st, &
|
||||
lattice_maxNslipFamily, &
|
||||
lattice_NslipSystem
|
||||
use FEsolving, only:theInc
|
||||
use FEsolving, only:theInc, &
|
||||
FEsolving_execElem, &
|
||||
FEsolving_execIP
|
||||
|
||||
implicit none
|
||||
|
||||
!*** input variables
|
||||
|
@ -1293,18 +1298,16 @@ type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), in
|
|||
integer(pInt) myInstance, & ! current instance of this constitution
|
||||
myStructure, & ! current lattice structure
|
||||
ns, & ! short notation for the total number of active slip systems
|
||||
neighboring_n, & ! neighbor index of myself when seen from my neighbor
|
||||
neighboring_el, & ! element number of my neighbor
|
||||
neighboring_ip, & ! integration point of my neighbor
|
||||
c, & ! character of dislocation
|
||||
n, & ! index of my current neighbor
|
||||
neighboring_el, & ! element number of my neighbor
|
||||
neighboring_ip, & ! integration point of my neighbor
|
||||
opposite_n, & ! index of my opposite neighbor
|
||||
opposite_ip, & ! ip of my opposite neighbor
|
||||
opposite_el, & ! element index of my opposite neighbor
|
||||
t, & ! type of dislocation
|
||||
topp, & ! type of dislocation with opposite sign to t
|
||||
s, & ! index of my current slip system
|
||||
s2, &
|
||||
sLattice, & ! index of my current slip system according to lattice order
|
||||
i
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el))),10) :: &
|
||||
|
@ -1312,6 +1315,7 @@ real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstan
|
|||
rhoDotRemobilization, & ! density evolution by remobilization
|
||||
rhoDotMultiplication, & ! density evolution by multiplication
|
||||
rhoDotFlux, & ! density evolution by flux
|
||||
neighboring_rhoDotFlux, & ! density evolution by flux at neighbor
|
||||
rhoDotSingle2DipoleGlide, & ! density evolution by dipole formation (by glide)
|
||||
rhoDotAthermalAnnihilation, & ! density evolution by athermal annihilation
|
||||
rhoDotThermalAnnihilation, & ! density evolution by thermal annihilation
|
||||
|
@ -1322,7 +1326,6 @@ real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstan
|
|||
previousRhoSgl ! previous single dislocation densities (positive/negative screw and edge without dipoles)
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el))),4) :: &
|
||||
fluxdensity, & ! flux density at central material point
|
||||
neighboring_fluxdensity, &! flux density at neighbroing material point
|
||||
gdot ! shear rates
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||
rhoForest, & ! forest dislocation density
|
||||
|
@ -1339,22 +1342,20 @@ real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstan
|
|||
previousDUpper, & ! previous maximum stable dipole distance for edges and screws
|
||||
dUpperDot ! rate of change of the maximum stable dipole distance for edges and screws
|
||||
real(pReal), dimension(3,constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el))),4) :: &
|
||||
m, & ! direction of dislocation motion
|
||||
neighboring_m ! direction of dislocation motion for my neighbor in central MP's lattice configuration
|
||||
m ! direction of dislocation motion
|
||||
real(pReal), dimension(3,3) :: F, & ! total deformation gradient
|
||||
neighboring_F, & ! total deformation gradient of my neighbor
|
||||
Favg ! average total deformation gradient of me and my neighbor
|
||||
real(pReal), dimension(6) :: Tdislocation_v, & ! current dislocation stress (resulting from the neighboring excess dislocation densities) as 2nd Piola-Kirchhoff stress
|
||||
previousTdislocation_v ! previous dislocation stress (resulting from the neighboring excess dislocation densities) as 2nd Piola-Kirchhoff stress
|
||||
real(pReal), dimension(4) :: absoluteMisorientation ! absolute misorientation (without symmetry) between me and my neighbor
|
||||
real(pReal), dimension(3) :: surfaceNormal, & ! surface normal in lattice configuration
|
||||
surfaceNormal_currentconf ! surface normal in current configuration
|
||||
real(pReal) area, & ! area of the current interface
|
||||
detFe, & ! determinant of elastic defornmation gradient
|
||||
transmissivity, & ! transmissivity of dislocation flux for different slip systems in neighboring material points
|
||||
compatibility, & ! compatibility of different slip systems in neighboring material points for a specific character of dislocations
|
||||
transmissivity, & ! overall transmissivity of dislocation flux to neighboring material point
|
||||
lineLength, & ! dislocation line length leaving the current interface
|
||||
D ! self diffusion
|
||||
D, & ! self diffusion
|
||||
correction
|
||||
logical, dimension(3) :: periodicSurfaceFlux ! flag indicating periodic fluxes at surfaces when surface normal points mainly in x, y and z direction respectively (in reference configuration)
|
||||
|
||||
if (verboseDebugger .and. selectiveDebugger) then
|
||||
|
@ -1403,27 +1404,27 @@ if (timestep <= 0.0_pReal) then
|
|||
return
|
||||
endif
|
||||
|
||||
!if (any(constitutive_nonlocal_v(:,:,g,ip,el)*timestep > mesh_ipVolume(ip,el)**(1.0_pReal/3.0_pReal))) then ! if timestep is too large,...
|
||||
! dotState(1,ip,el)%p(1:10*ns) = NaN ! ...assign NaN and enforce a cutback
|
||||
! if (verboseDebugger) then
|
||||
! !$OMP CRITICAL (write2out)
|
||||
! write(6,*) 'exceeded maximum allowed dislocation velocity at ',g,ip,el
|
||||
! write(6,*)
|
||||
! !$OMPEND CRITICAL (write2out)
|
||||
! endif
|
||||
! return
|
||||
!endif
|
||||
|
||||
|
||||
!****************************************************************************
|
||||
!*** Calculate shear rate
|
||||
|
||||
call constitutive_nonlocal_kinetics(Tstar_v, Temperature, state(g,ip,el), g, ip, el) ! get velocities
|
||||
|
||||
forall (t = 1:4) &
|
||||
gdot(:,t) = rhoSgl(:,t) * constitutive_nonlocal_burgersPerSlipSystem(:,myInstance) * constitutive_nonlocal_v(:,t,g,ip,el)
|
||||
forall (s = 1:ns, t = 1:4, rhoSgl(s,t+4) * constitutive_nonlocal_v(s,t,g,ip,el) < 0.0_pReal) & ! contribution of used rho for changing sign of v
|
||||
gdot(s,t) = gdot(s,t) + abs(rhoSgl(s,t+4)) * constitutive_nonlocal_burgersPerSlipSystem(s,myInstance) &
|
||||
* constitutive_nonlocal_v(s,t,g,ip,el)
|
||||
|
||||
if (verboseDebugger .and. selectiveDebugger) then
|
||||
!$OMP CRITICAL (write2out)
|
||||
write(6,'(a,/,10(12(e12.5,x),/))') 'rho / 1/m^2', rhoSgl, rhoDip
|
||||
write(6,'(a,/,4(12(e12.5,x),/))') 'v / m/s', constitutive_nonlocal_v(:,:,g,ip,el)
|
||||
write(6,'(a,/,4(12(e12.5,x),/))') 'gdot / 1/s',gdot
|
||||
!$OMPEND CRITICAL (write2out)
|
||||
endif
|
||||
|
||||
|
||||
!****************************************************************************
|
||||
!*** calculate limits for stable dipole height and its rate of change
|
||||
|
||||
|
@ -1470,13 +1471,15 @@ endif
|
|||
!****************************************************************************
|
||||
!*** calculate dislocation multiplication
|
||||
|
||||
rhoDotMultiplication(:,1:2) = spread(0.5_pReal * sum(abs(gdot(:,3:4)),2) * sqrt(rhoForest) &
|
||||
rhoDotMultiplication = 0.0_pReal
|
||||
where (rhoSgl(:,3:4) > 0.0_pReal) &
|
||||
rhoDotMultiplication(:,1:2) = spread(0.5_pReal * sum(abs(gdot(:,3:4)),2) * sqrt(rhoForest) &
|
||||
/ constitutive_nonlocal_lambda0PerSlipSystem(:,myInstance) &
|
||||
/ constitutive_nonlocal_burgersPerSlipSystem(:,myInstance), 2, 2)
|
||||
rhoDotMultiplication(:,3:4) = spread(0.5_pReal * sum(abs(gdot(:,1:2)),2) * sqrt(rhoForest) &
|
||||
where (rhoSgl(:,1:2) > 0.0_pReal) &
|
||||
rhoDotMultiplication(:,3:4) = spread(0.5_pReal * sum(abs(gdot(:,1:2)),2) * sqrt(rhoForest) &
|
||||
/ constitutive_nonlocal_lambda0PerSlipSystem(:,myInstance) &
|
||||
/ constitutive_nonlocal_burgersPerSlipSystem(:,myInstance), 2, 2)
|
||||
rhoDotMultiplication(:,5:10) = 0.0_pReal ! used dislocation densities and dipoles don't multiplicate
|
||||
|
||||
|
||||
!****************************************************************************
|
||||
|
@ -1497,22 +1500,14 @@ fluxdensity = rhoSgl(:,1:4) * constitutive_nonlocal_v(:,:,g,ip,el)
|
|||
|
||||
!if (selectiveDebugger) write(6,*) '--> dislocation flux <---'
|
||||
do n = 1,FE_NipNeighbors(mesh_element(2,el)) ! loop through my neighbors
|
||||
opposite_n = n - 1_pInt + 2_pInt*mod(n,2_pInt)
|
||||
|
||||
neighboring_el = mesh_ipNeighborhood(1,n,ip,el)
|
||||
neighboring_ip = mesh_ipNeighborhood(2,n,ip,el)
|
||||
|
||||
opposite_n = n + mod(n,2) - mod(n+1,2)
|
||||
opposite_el = mesh_ipNeighborhood(1,opposite_n,ip,el)
|
||||
opposite_ip = mesh_ipNeighborhood(2,opposite_n,ip,el)
|
||||
|
||||
if ( neighboring_el > 0_pInt .and. neighboring_ip > 0_pInt ) then ! if neighbor exists ...
|
||||
do neighboring_n = 1,FE_NipNeighbors(mesh_element(2,neighboring_el)) ! find neighboring index that points from my neighbor to myself
|
||||
if ( el == mesh_ipNeighborhood(1,neighboring_n,neighboring_ip,neighboring_el) & ! special case if no neighbor at all...
|
||||
.and. ip == mesh_ipNeighborhood(2,neighboring_n,neighboring_ip,neighboring_el) ) &
|
||||
exit ! ...exit without any flux calculation
|
||||
enddo
|
||||
endif
|
||||
|
||||
if ( neighboring_el > 0_pInt .and. neighboring_ip > 0_pInt ) then ! if neighbor exists, average deformation gradient
|
||||
neighboring_F = math_mul33x33(Fe(:,:,g,neighboring_ip,neighboring_el), Fp(:,:,g,neighboring_ip,neighboring_el))
|
||||
Favg = 0.5_pReal * (F + neighboring_F)
|
||||
|
@ -1525,82 +1520,65 @@ do n = 1,FE_NipNeighbors(mesh_element(2,el))
|
|||
area = mesh_ipArea(n,ip,el) * math_norm3(surfaceNormal)
|
||||
surfaceNormal = surfaceNormal / math_norm3(surfaceNormal) ! normalize the surface normal to unit length
|
||||
|
||||
if ( neighboring_el > 0 .and. neighboring_ip > 0 ) then ! if neighbor exists...
|
||||
if ( .not. phase_localConstitution(material_phase(1,neighboring_ip,neighboring_el))) then ! ... and is of nonlocal constitution...
|
||||
forall (t = 1:4) & ! ... then calculate neighboring flux density
|
||||
neighboring_fluxdensity(:,t) = state(g,neighboring_ip,neighboring_el)%p((t-1)*ns+1:t*ns) &
|
||||
* constitutive_nonlocal_v(:,t,g,neighboring_ip,neighboring_el)
|
||||
absoluteMisorientation = math_QuaternionDisorientation( orientation(:,1,ip,el), &
|
||||
orientation(:,1,neighboring_ip,neighboring_el), 0_pInt)
|
||||
else ! ... and is of local constitution...
|
||||
neighboring_fluxdensity = fluxdensity ! ... then copy flux density to neighbor to ensure zero gradient in fluxdensity
|
||||
absoluteMisorientation = (/1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/)
|
||||
endif
|
||||
else ! if no neighbor existent...
|
||||
if ( all(periodicSurfaceFlux(maxloc(abs(mesh_ipAreaNormal(:,n,ip,el))))) ) then ! ... and we want periodic fluxes at surface...
|
||||
forall (t = 1:4) & ! ... then mirror fluxes
|
||||
neighboring_fluxdensity(:,t) = fluxdensity(:,t-1+2*mod(t,2))
|
||||
else ! ... and we have a free surface...
|
||||
neighboring_fluxdensity = 0.0_pReal ! ... assume zero density
|
||||
endif
|
||||
absoluteMisorientation = (/1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/)
|
||||
endif
|
||||
|
||||
do t = 1,4
|
||||
do s = 1,ns
|
||||
neighboring_m(:,s,t) = math_qRot(absoluteMisorientation, m(:,s,t)) ! calculate neighboring dislocation movement directions in my lattice frame (we simply assume same crystal structure for both me and my neighbor)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! if (selectiveDebugger) then
|
||||
! write(6,'(a,x,i1)') 'neighbor',n
|
||||
! write(6,'(a,x,i2)') 'neighboring_ip',neighboring_ip
|
||||
! write(6,'(a,x,i1)') 'neighboring_n',neighboring_n
|
||||
! write(6,'(a,12(x,f5.3))') 'compatibility of neighbor with me', &
|
||||
! constitutive_nonlocal_compatibility(:,:,:,neighboring_n,neighboring_ip,neighboring_el)
|
||||
! endif
|
||||
neighboring_rhoDotFlux = 0.0_pReal
|
||||
! if (selectiveDebugger) write(6,'(a,x,i2)') 'neighbor',n
|
||||
do s = 1,ns
|
||||
! if (selectiveDebugger) write(6,'(a,x,i2)') ' system',s
|
||||
do t = 1,4
|
||||
! if (selectiveDebugger) write(6,'(a,x,i1)') ' type',t
|
||||
if ( fluxdensity(s,t) * math_mul3x3(m(:,s,t),surfaceNormal) > 0.0_pReal ) then ! outgoing flux
|
||||
transmissivity = sum(abs(constitutive_nonlocal_compatibility(1,:,s,n,ip,el))) ! ..overall transmissivity between my system s and all neighboring systems s2 for this dislocation character
|
||||
lineLength = fluxdensity(s,t) * math_mul3x3(m(:,s,t),surfaceNormal) * area ! ..line length that wants to leave thrugh this interface
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) ! ..subtract positive dislocation flux that leaves the material point
|
||||
rhoDotFlux(s,t+4) = rhoDotFlux(s,t+4) + lineLength / mesh_ipVolume(ip,el) * (1.0_pReal - transmissivity) &
|
||||
* sign(1.0_pReal, fluxdensity(s,t)) ! ..dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
|
||||
! if (selectiveDebugger) write(6,'(a,x,e12.5,x,a,x,f10.5)') ' outgoing flux:', lineLength / mesh_ipVolume(ip,el),&
|
||||
! ' transmissivity:',transmissivity
|
||||
else ! perhaps we get something from our neighbor?
|
||||
! if (selectiveDebugger) write(6,'(a,x,i2)') ' type',t
|
||||
c = (t + 1) / 2
|
||||
topp = t + mod(t,2) - mod(t+1,2)
|
||||
! if (selectiveDebugger) write(6,'(a,12(x,f5.3))') ' compatibility', &
|
||||
! constitutive_nonlocal_compatibility(c,s,:,neighboring_n,neighboring_ip,neighboring_el)
|
||||
do s2 = 1,ns ! assuming same crystal structure at neighbor
|
||||
compatibility = constitutive_nonlocal_compatibility(c,s,s2,neighboring_n,neighboring_ip,neighboring_el) ! ..compatibility of system s2 of my neighbor to system s in my material point
|
||||
transmissivity = abs(constitutive_nonlocal_compatibility(1,s,s2,neighboring_n,neighboring_ip,neighboring_el))
|
||||
if ( compatibility > 0.0_pReal ) then ! ..dislocation signs have same sense on neighboring system
|
||||
if (neighboring_fluxdensity(s2,t) * math_mul3x3(neighboring_m(:,s2,t),surfaceNormal) < 0.0_pReal) then ! ....incoming flux
|
||||
lineLength = neighboring_fluxdensity(s2,t) * math_mul3x3(neighboring_m(:,s2,t), surfaceNormal) * area ! ......line length that enters through this interface
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) * transmissivity * abs(compatibility) ! ......subtract negative dislocation flux that enters the material point
|
||||
endif
|
||||
elseif ( compatibility < 0.0_pReal ) then ! ..dislocation signs have opposite sense on neighboring system, so consider opposite dislocation type
|
||||
if (neighboring_fluxdensity(s2,topp) * math_mul3x3(neighboring_m(:,s2,topp),surfaceNormal) < 0.0_pReal) then ! ....incoming flux
|
||||
lineLength = neighboring_fluxdensity(s2,topp) * math_mul3x3(neighboring_m(:,s2,topp), surfaceNormal) * area ! ......line length that enters through this interface
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) * transmissivity * abs(compatibility) ! ......subtract negative dislocation flux that enters the material point
|
||||
endif
|
||||
endif
|
||||
! if (selectiveDebugger) write(6,'(a,x,e12.5,x,a,x,f10.5)') ' incoming flux:', &
|
||||
! - lineLength / mesh_ipVolume(ip,el) * transmissivity * abs(compatibility), &
|
||||
! ' compatibility:',compatibility
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
if ( abs(math_mul3x3(m(:,s,t),surfaceNormal)) > 0.01_pReal &
|
||||
.and. fluxdensity(s,t) * math_mul3x3(m(:,s,t),surfaceNormal) > 0.0_pReal ) then ! outgoing flux
|
||||
|
||||
constitutive_nonlocal_rhoDotFlux(:,:,g,ip,el) = rhoDotFlux
|
||||
lineLength = fluxdensity(s,t) * math_mul3x3(m(:,s,t),surfaceNormal) * area ! line length that wants to leave thrugh this interface
|
||||
|
||||
if ( (opposite_el > 0 .and. opposite_ip > 0) &
|
||||
.or. .not. all(periodicSurfaceFlux(maxloc(abs(mesh_ipAreaNormal(:,opposite_n,ip,el))))) ) then
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) ! subtract dislocation flux from cuurent mobile type
|
||||
! if (selectiveDebugger) write(6,'(a,x,e12.5)') ' outgoing flux:', lineLength / mesh_ipVolume(ip,el)
|
||||
endif
|
||||
rhoDotFlux(s,t+4) = rhoDotFlux(s,t+4) + lineLength / mesh_ipVolume(ip,el) &
|
||||
* (1.0_pReal - sum(constitutive_nonlocal_compatibility(c,:,s,n,ip,el)**2.0_pReal)) &
|
||||
* sign(1.0_pReal, fluxdensity(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
|
||||
|
||||
if (neighboring_el > 0 .and. neighboring_ip > 0) then ! neighbor present
|
||||
where (constitutive_nonlocal_compatibility(c,:,s,n,ip,el) > 0.0_pReal) & ! ..positive compatibility
|
||||
neighboring_rhoDotFlux(:,t) = neighboring_rhoDotFlux(:,t) & ! ....transferring to equally signed dislocation type at neighbor
|
||||
+ lineLength / mesh_ipVolume(neighboring_ip,neighboring_el) &
|
||||
* constitutive_nonlocal_compatibility(c,:,s,n,ip,el) ** 2.0_pReal
|
||||
where (constitutive_nonlocal_compatibility(c,:,s,n,ip,el) < 0.0_pReal) & ! ..negative compatibility
|
||||
neighboring_rhoDotFlux(:,topp) = neighboring_rhoDotFlux(:,topp) & ! ....transferring to opposite signed dislocation type at neighbor
|
||||
+ lineLength / mesh_ipVolume(neighboring_ip,neighboring_el) &
|
||||
* constitutive_nonlocal_compatibility(c,:,s,n,ip,el) ** 2.0_pReal
|
||||
! if (selectiveDebugger) write(6,'(a,x,e12.5)') ' entering flux at neighbor:', lineLength / mesh_ipVolume(ip,el) &
|
||||
! * sum(constitutive_nonlocal_compatibility(c,:,s,n,ip,el) ** 2.0_pReal)
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
enddo ! dislocation type loop
|
||||
enddo ! slip system loop
|
||||
|
||||
if (any(abs(neighboring_rhoDotFlux) > 10.0_pReal)) then ! only significant density change in neighbr is considered
|
||||
!$OMP CRITICAL (fluxes)
|
||||
constitutive_nonlocal_rhoDotFlux(:,:,g,neighboring_ip,neighboring_el) = &
|
||||
constitutive_nonlocal_rhoDotFlux(:,:,g,neighboring_ip,neighboring_el) + neighboring_rhoDotFlux
|
||||
dotState(g,neighboring_ip,neighboring_el)%p(1:10*ns) = &
|
||||
dotState(g,neighboring_ip,neighboring_el)%p(1:10*ns) + reshape(neighboring_rhoDotFlux,(/10*ns/))
|
||||
!$OMPEND CRITICAL (fluxes)
|
||||
else
|
||||
neighboring_rhoDotFlux = 0.0_pReal
|
||||
endif
|
||||
|
||||
enddo ! neighbor loop
|
||||
|
||||
if (any(abs(rhoDotFlux) > 0.0_pReal)) then
|
||||
!$OMP CRITICAL (fluxes)
|
||||
constitutive_nonlocal_rhoDotFlux(:,:,g,ip,el) = constitutive_nonlocal_rhoDotFlux(:,:,g,ip,el) + rhoDotFlux
|
||||
!$OMPEND CRITICAL (fluxes)
|
||||
endif
|
||||
|
||||
|
||||
!****************************************************************************
|
||||
|
@ -1693,61 +1671,35 @@ forall (c = 1:2) &
|
|||
rhoDot = 0.0_pReal
|
||||
forall (t = 1:10) &
|
||||
rhoDot(:,t) = rhoDotFlux(:,t) &
|
||||
+ rhoDotMultiplication(:,t) &
|
||||
+ rhoDotRemobilization(:,t) &
|
||||
+ rhoDotSingle2DipoleGlide(:,t) &
|
||||
+ rhoDotAthermalAnnihilation(:,t) &
|
||||
+ rhoDotRemobilization(:,t) &
|
||||
+ rhoDotMultiplication(:,t) &
|
||||
+ rhoDotThermalAnnihilation(:,t)
|
||||
! + rhoDotDipole2SingleStressChange(:,t)
|
||||
! + rhoDotSingle2DipoleStressChange(:,t)
|
||||
|
||||
dotState(g,ip,el)%p(1:10*ns) = reshape(rhoDot,(/10*ns/))
|
||||
|
||||
do i = 1,10*ns
|
||||
if (i > 4*ns .and. i <= 8*ns) & ! skip immobile densities
|
||||
continue
|
||||
if (previousState(g,ip,el)%p(i) + dotState(g,ip,el)%p(i)*timestep < 0.0_pReal) then ! if single mobile densities become negative...
|
||||
if (previousState(g,ip,el)%p(i) < aTolState(g,ip,el)%p(i)) then ! ... and density is already below absolute tolerance...
|
||||
dotState(g,ip,el)%p(i) = - previousState(g,ip,el)%p(i) / timestep ! ... set dotState to zero
|
||||
else ! ... otherwise...
|
||||
if (verboseDebugger) then
|
||||
!$OMP CRITICAL (write2out)
|
||||
write(6,*) 'negative dislocation density: enforced cutback at ',g,ip,el,i
|
||||
write(6,'(a,/,8(12(e12.5,x),/))') 'dislocation remobilization', rhoDotRemobilization(:,1:8) * timestep
|
||||
write(6,'(a,/,4(12(e12.5,x),/))') 'dislocation multiplication', rhoDotMultiplication(:,1:4) * timestep
|
||||
write(6,'(a,/,8(12(e12.5,x),/))') 'dislocation flux', rhoDotFlux(:,1:8) * timestep
|
||||
write(6,'(a,/,10(12(e12.5,x),/))') 'dipole formation by glide', rhoDotSingle2DipoleGlide * timestep
|
||||
write(6,'(a,/,2(12(e12.5,x),/))') 'athermal dipole annihilation', rhoDotAthermalAnnihilation(:,1:2) * timestep
|
||||
write(6,'(a,/,2(12(e12.5,x),/))') 'thermally activated dipole annihilation', rhoDotThermalAnnihilation(:,9:10) * timestep
|
||||
! write(6,'(a,/,10(12(e12.5,x),/))') 'dipole dissociation by stress increase', rhoDotDipole2SingleStressChange * timestep
|
||||
! write(6,'(a,/,10(12(e12.5,x),/))') 'dipole formation by stress decrease', rhoDotSingle2DipoleStressChange * timestep
|
||||
write(6,'(a,/,10(12(e12.5,x),/))') 'total density change', rhoDot * timestep
|
||||
write(6,'(a,/,10(12(f12.7,x),/))') 'relative density change', rhoDot(:,1:8) * timestep / (abs(rhoSgl)+1.0_pReal), &
|
||||
rhoDot(:,9:10) * timestep / (rhoDip+1.0_pReal)
|
||||
write(6,*)
|
||||
!$OMPEND CRITICAL (write2out)
|
||||
endif
|
||||
dotState(g,ip,el)%p(i) = NaN ! ... assign NaN and enforce a cutback
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
if (verboseDebugger .and. selectiveDebugger) then
|
||||
!$OMP CRITICAL (write2out)
|
||||
write(6,'(a,/,8(12(e12.5,x),/))') 'dislocation remobilization', rhoDotRemobilization(:,1:8) * timestep
|
||||
write(6,'(a,/,4(12(e12.5,x),/))') 'dislocation multiplication', rhoDotMultiplication(:,1:4) * timestep
|
||||
write(6,'(a,/,8(12(e12.5,x),/))') 'dislocation flux', rhoDotFlux(:,1:8) * timestep
|
||||
write(6,'(a,/,8(12(e12.5,x),/))') 'dislocation flux (outgoing)', rhoDotFlux(:,1:8) * timestep
|
||||
write(6,'(a,/,10(12(e12.5,x),/))') 'dipole formation by glide', rhoDotSingle2DipoleGlide * timestep
|
||||
write(6,'(a,/,2(12(e12.5,x),/))') 'athermal dipole annihilation', rhoDotAthermalAnnihilation(:,1:2) * timestep
|
||||
write(6,'(a,/,2(12(e12.5,x),/))') 'thermally activated dipole annihilation', rhoDotThermalAnnihilation(:,9:10) * timestep
|
||||
! write(6,'(a,/,10(12(e12.5,x),/))') 'dipole dissociation by stress increase', rhoDotDipole2SingleStressChange * timestep
|
||||
! write(6,'(a,/,10(12(e12.5,x),/))') 'dipole formation by stress decrease', rhoDotSingle2DipoleStressChange * timestep
|
||||
write(6,'(a,/,10(12(e12.5,x),/))') 'total density change', rhoDot * timestep
|
||||
write(6,'(a,/,10(12(f12.7,x),/))') 'relative density change', rhoDot(:,1:8) * timestep / (abs(rhoSgl)+1.0_pReal), &
|
||||
rhoDot(:,9:10) * timestep / (rhoDip+1.0_pReal)
|
||||
write(6,'(a,/,10(12(f12.7,x),/))') 'relative density change', rhoDot(:,1:8) * timestep / (abs(rhoSgl)+1.0e-10), &
|
||||
rhoDot(:,9:10) * timestep / (rhoDip+1.0e-10)
|
||||
write(6,*)
|
||||
!$OMPEND CRITICAL (write2out)
|
||||
endif
|
||||
|
||||
!$OMP CRITICAL (copy2dotState)
|
||||
dotState(g,ip,el)%p(1:10*ns) = dotState(g,ip,el)%p(1:10*ns) + reshape(rhoDot,(/10*ns/))
|
||||
!$OMPEND CRITICAL (copy2dotState)
|
||||
|
||||
endsubroutine
|
||||
|
||||
|
||||
|
@ -1859,15 +1811,15 @@ do n = 1,FE_NipNeighbors(mesh_element(2,e))
|
|||
math_mul3x3(myNormals(:,s1), math_qRot(absoluteMisorientation, neighboringNormals(:,s2))) &
|
||||
* abs(math_mul3x3(mySlipDirections(:,s1), math_qRot(absoluteMisorientation, neighboringSlipDirections(:,s2))))
|
||||
constitutive_nonlocal_compatibility(2,s2,s1,n,i,e) = &
|
||||
math_mul3x3(myNormals(:,s1), math_qRot(absoluteMisorientation, neighboringNormals(:,s2))) &
|
||||
* math_mul3x3(mySlipDirections(:,s1), math_qRot(absoluteMisorientation, neighboringSlipDirections(:,s2)))
|
||||
abs(math_mul3x3(myNormals(:,s1), math_qRot(absoluteMisorientation, neighboringNormals(:,s2)))) &
|
||||
* abs(math_mul3x3(mySlipDirections(:,s1), math_qRot(absoluteMisorientation, neighboringSlipDirections(:,s2))))
|
||||
enddo
|
||||
compatibilitySum = 0.0_pReal
|
||||
compatibilityMask = .true.
|
||||
do while ( (1.0_pReal - compatibilitySum > 0.0_pReal) .and. any(compatibilityMask) ) ! only those largest values that sum up to 1 are considered (round off of the smallest considered values to ensure sum to be exactly 1)
|
||||
compatibilityMax = maxval(abs(constitutive_nonlocal_compatibility(1,:,s1,n,i,e)), compatibilityMask)
|
||||
compatibilityMaxCount = dble(count(abs(constitutive_nonlocal_compatibility(1,:,s1,n,i,e)) == compatibilityMax))
|
||||
where (abs(constitutive_nonlocal_compatibility(1,:,s1,n,i,e)) >= compatibilityMax) compatibilityMask = .false.
|
||||
compatibilityMax = maxval(constitutive_nonlocal_compatibility(2,:,s1,n,i,e), compatibilityMask) ! screws always positive
|
||||
compatibilityMaxCount = dble(count(constitutive_nonlocal_compatibility(2,:,s1,n,i,e) == compatibilityMax))
|
||||
where (constitutive_nonlocal_compatibility(2,:,s1,n,i,e) >= compatibilityMax) compatibilityMask = .false.
|
||||
if (compatibilitySum + compatibilityMax * compatibilityMaxCount > 1.0_pReal) & ! if compatibility sum exceeds 1...
|
||||
where (abs(constitutive_nonlocal_compatibility(:,:,s1,n,i,e)) == compatibilityMax) & ! ... equally distribute what is left
|
||||
constitutive_nonlocal_compatibility(:,:,s1,n,i,e) = sign((1.0_pReal - compatibilitySum) / compatibilityMaxCount, &
|
||||
|
|
Loading…
Reference in New Issue