the single case is included in test file

This commit is contained in:
Samad Vakili 2020-06-09 14:17:31 +02:00
parent 865a505186
commit 627e62439b
1 changed files with 136 additions and 28 deletions

152
python/tests/test_mechanics.py Normal file → Executable file
View File

@ -3,13 +3,110 @@ import numpy as np
from damask import mechanics from damask import mechanics
def Cauchy(P,F):
sigma = 1.0/np.linalg.det(F) * np.dot(P,F.T)
return mechanics.symmetric(sigma)
def deviatoric_part(T): def deviatoric_part(T):
return T - np.eye(3)*spherical_part(T) return T - np.eye(3)*spherical_part(T)
def eigenvalues(T_sym):
return np.linalg.eigvalsh(symmetric(T_sym))
def eigenvectors(T_sym,RHS=False):
(u,v) = np.linalg.eigh(symmetric(T_sym))
if RHS:
if np.linalg.det(v) < 0.0: v[:,2] *= -1.0
return v
def left_stretch(T):
return polar_decomposition(T,'V')[0]
def maximum_shear(T_sym):
w = eigenvalues(T_sym)
return (w[0] - w[2])*0.5
def Mises_strain(epsilon):
return Mises(epsilon,2.0/3.0)
def Mises_stress(sigma):
return Mises(sigma,3.0/2.0)
def PK2(P,F):
S = np.dot(_np.linalg.inv(F),P)
return symmetric(S)
def right_stretch(T):
return polar_decomposition(T,'U')[0]
def rotational_part(T):
return polar_decomposition(T,'R')[0]
def spherical_part(T,tensor=False): def spherical_part(T,tensor=False):
sph = np.trace(T)/3.0 sph = np.trace(T)/3.0
return sph if not tensor else np.eye(3)*sph return sph if not tensor else np.eye(3)*sph
def strain_tensor(F,t,m):
F_ = F.reshape(1,3,3)
if t == 'V':
B = np.matmul(F_,transpose(F_))
w,n = np.linalg.eigh(B)
elif t == 'U':
C = np.matmul(transpose(F_),F_)
w,n = np.linalg.eigh(C)
if m > 0.0:
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,_np.einsum('ij,ikj->ijk',w**m,n))
- np.einsum('ijk->ijk',np.eye(3)))
elif m < 0.0:
eps = 1.0/(2.0*abs(m)) * (- np.matmul(n,_np.einsum('ij,ikj->ijk',w**m,n))
+ np.einsum('ijk->ijk',np.eye(3)))
else:
eps = np.matmul(n,np.einsum('ij,ikj->ijk',0.5*np.log(w),n))
return eps.reshape(3,3)
def symmetric(T):
return (T+transpose(T))*0.5
def transpose(T):
return T.T
def polar_decomposition(T,requested):
u, s, vh = np.linalg.svd(T)
R = np.dot(u,vh)
output = []
if 'R' in requested:
output.append(R)
if 'V' in requested:
output.append(np.dot(T,R.T))
if 'U' in requested:
output.append(np.dot(R.T,T))
return tuple(output)
def Mises(T_sym,s):
d = deviatoric_part(T_sym)
return np.sqrt(s*(np.sum(d**2.0)))
class TestMechanics: class TestMechanics:
n = 1000 n = 1000
@ -20,42 +117,53 @@ class TestMechanics:
(mechanics.spherical_part, spherical_part) (mechanics.spherical_part, spherical_part)
]) ])
def test_vectorize_1_arg_(self,vectorized,single): def test_vectorize_1_arg_(self,vectorized,single):
print("done")
test_data_flat = np.random.rand(self.n,3,3) test_data_flat = np.random.rand(self.n,3,3)
test_data = np.reshape(test_data_flat,(self.n//10,10,3,3)) test_data = np.reshape(test_data_flat,(self.n//10,10,3,3))
for i,v in enumerate(np.reshape(vectorized(test_data),vectorized(test_data_flat).shape)): for i,v in enumerate(np.reshape(vectorized(test_data),vectorized(test_data_flat).shape)):
assert np.allclose(single(test_data_flat[i]),v) assert np.allclose(single(test_data_flat[i]),v)
@pytest.mark.parametrize('function',[mechanics.deviatoric_part, @pytest.mark.parametrize('vectorized,single',[
mechanics.eigenvalues, (mechanics.deviatoric_part, deviatoric_part),
mechanics.eigenvectors, (mechanics.eigenvalues , eigenvalues ),
mechanics.left_stretch, (mechanics.eigenvectors , eigenvectors ),
mechanics.maximum_shear, (mechanics.left_stretch , left_stretch ),
mechanics.Mises_strain, (mechanics.maximum_shear , maximum_shear ),
mechanics.Mises_stress, (mechanics.Mises_strain , Mises_strain ),
mechanics.right_stretch, (mechanics.Mises_stress , Mises_stress ),
mechanics.rotational_part, (mechanics.right_stretch , right_stretch ),
mechanics.spherical_part, (mechanics.rotational_part, rotational_part),
mechanics.symmetric, (mechanics.spherical_part , spherical_part ),
mechanics.transpose, (mechanics.symmetric , symmetric ),
(mechanics.transpose , transpose ),
]) ])
def test_vectorize_1_arg(self,function): def test_vectorize_1_arg(self,vectorized,single):
epsilon = np.random.rand(self.n,3,3) epsilon = np.random.rand(self.n,3,3)
assert np.allclose(function(epsilon)[self.c],function(epsilon[self.c])) epsilon_vec = np.reshape(epsilon,(self.n//10,10,3,3))
for i,v in enumerate(np.reshape(vectorized(epsilon_vec),vectorized(epsilon).shape)):
assert np.allclose(single(epsilon[i]),v)
@pytest.mark.parametrize('function',[mechanics.Cauchy, @pytest.mark.parametrize('vectorized,single',[
mechanics.PK2, (mechanics.Cauchy,Cauchy),
(mechanics.PK2 ,PK2 )
]) ])
def test_vectorize_2_arg(self,function): def test_vectorize_2_arg(self,vectorized,single):
P = np.random.rand(self.n,3,3) P = np.random.rand(self.n,3,3)
F = np.random.rand(self.n,3,3) F = np.random.rand(self.n,3,3)
assert np.allclose(function(P,F)[self.c],function(P[self.c],F[self.c])) P_vec = np.random.rand(self.n//10,10,3,3)
F_vec = np.random.rand(self.n//10,10,3,3)
for i,v in enumerate(np.reshape(vectorized(P_vec,F_vec),vectorized(P,F).shape)):
assert np.allclose(single(P[i],F[i]),v)
def test_vectorize_strain_tensor(self):
@pytest.mark.parametrize('vectorized,single',[(mechanics.strain_tensor,strain_tensor)])
def test_vectorize_strain_tensor(self,vectroized,single):
F = np.random.rand(self.n,3,3) F = np.random.rand(self.n,3,3)
F_vec = np.random.rand(self.n//10,10,3,3)
t = ['V','U'][np.random.randint(0,2)] t = ['V','U'][np.random.randint(0,2)]
m = np.random.random()*10. -5.0 m = np.random.random()*10.0 -5.0
assert np.allclose(mechanics.strain_tensor(F,t,m)[self.c], for i,v in enumerate(np.reshape(vectorized(F_vec,t,m),vectorized(F,t,m).shape)):
mechanics.strain_tensor(F[self.c],t,m)) assert np.allcloase(single(F[i],t,m),v)
@pytest.mark.parametrize('function',[mechanics.Cauchy, @pytest.mark.parametrize('function',[mechanics.Cauchy,
mechanics.PK2, mechanics.PK2,