Fixed bug in math rotations: passive and active rotations were not clearly distinguished and partly mixed up; yet, luckily, only resulted in wrong output of euler angles.
Now fixed with following convention: Rotation conversions do not switch implicitly from active to passive or vice versa EXCEPT when converting to or from any "Euler" type (Euler angles or Euler axis/angles). Those functions expect a passive rotation as input if converting to Euler type and return a passive rotation if converting from Euler type.
This commit is contained in:
parent
becacb675a
commit
622e2dcf15
|
@ -1504,6 +1504,8 @@ subroutine IO_error(error_ID,e,i,g,ext_msg)
|
|||
msg = 'Dimension in nearest neigbor search wrong'
|
||||
case (408_pInt)
|
||||
msg = 'Polar decomposition error'
|
||||
case (409_pInt)
|
||||
msg = 'math_check: R*v == q*v failed'
|
||||
case (450_pInt)
|
||||
msg = 'unknown symmetry type specified'
|
||||
case (460_pInt)
|
||||
|
|
272
code/math.f90
272
code/math.f90
|
@ -31,7 +31,7 @@ module math
|
|||
pInt
|
||||
|
||||
implicit none
|
||||
public ! because FFTW is included in math.f90
|
||||
private ! because FFTW is included in math.f90
|
||||
real(pReal), parameter, public :: PI = 3.14159265358979323846264338327950288419716939937510_pReal !< ratio of a circle's circumference to its diameter
|
||||
real(pReal), parameter, public :: INDEG = 180.0_pReal/PI !< conversion from radian into degree
|
||||
real(pReal), parameter, public :: INRAD = PI/180.0_pReal !< conversion from degree into radian
|
||||
|
@ -196,10 +196,13 @@ real(pReal), dimension(4,36), parameter, private :: &
|
|||
math_RtoQ, &
|
||||
math_EulerToR, &
|
||||
math_EulerToQ, &
|
||||
math_AxisAngleToR, &
|
||||
math_AxisAngleToQ, &
|
||||
math_EulerAxisAngleToR, &
|
||||
math_axisAngleToR, &
|
||||
math_EulerAxisAngleToQ, &
|
||||
math_axisAngleToQ, &
|
||||
math_qToRodrig, &
|
||||
math_qToEuler, &
|
||||
math_qToEulerAxisAngle, &
|
||||
math_qToAxisAngle, &
|
||||
math_qToR, &
|
||||
math_EulerMisorientation, &
|
||||
|
@ -261,7 +264,7 @@ subroutine math_init
|
|||
implicit none
|
||||
integer(pInt) :: i
|
||||
real(pReal), dimension(3,3) :: R,R2
|
||||
real(pReal), dimension(3) :: Eulers
|
||||
real(pReal), dimension(3) :: Eulers,v
|
||||
real(pReal), dimension(4) :: q,q2,axisangle,randTest
|
||||
! the following variables are system dependend and shound NOT be pInt
|
||||
integer :: randSize ! gfortran requires a variable length to compile
|
||||
|
@ -305,10 +308,11 @@ subroutine math_init
|
|||
|
||||
! --- check rotation dictionary ---
|
||||
|
||||
q = math_qRand() ! random quaternion
|
||||
|
||||
! +++ q -> a -> q +++
|
||||
q = math_qRand();
|
||||
axisangle = math_qToAxisAngle(q);
|
||||
q2 = math_AxisAngleToQ(axisangle(1:3),axisangle(4))
|
||||
axisangle = math_qToAxisAngle(q)
|
||||
q2 = math_axisAngleToQ(axisangle(1:3),axisangle(4))
|
||||
if ( any(abs( q-q2) > tol_math_check) .and. &
|
||||
any(abs(-q-q2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) 'maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||||
|
@ -316,8 +320,8 @@ subroutine math_init
|
|||
endif
|
||||
|
||||
! +++ q -> R -> q +++
|
||||
R = math_qToR(q);
|
||||
q2 = math_RToQ(R)
|
||||
R = math_qToR(q)
|
||||
q2 = math_RtoQ(R)
|
||||
if ( any(abs( q-q2) > tol_math_check) .and. &
|
||||
any(abs(-q-q2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) 'maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||||
|
@ -325,7 +329,7 @@ subroutine math_init
|
|||
endif
|
||||
|
||||
! +++ q -> euler -> q +++
|
||||
Eulers = math_qToEuler(q);
|
||||
Eulers = math_qToEuler(q)
|
||||
q2 = math_EulerToQ(Eulers)
|
||||
if ( any(abs( q-q2) > tol_math_check) .and. &
|
||||
any(abs(-q-q2) > tol_math_check) ) then
|
||||
|
@ -334,13 +338,23 @@ subroutine math_init
|
|||
endif
|
||||
|
||||
! +++ R -> euler -> R +++
|
||||
Eulers = math_RToEuler(R);
|
||||
Eulers = math_RtoEuler(R)
|
||||
R2 = math_EulerToR(Eulers)
|
||||
if ( any(abs( R-R2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) 'maximum deviation ',maxval(abs( R-R2))
|
||||
call IO_error(404_pInt,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ check rotation sense of q and R +++
|
||||
|
||||
q = math_qRand() ! random quaternion
|
||||
call halton(3_pInt,v) ! random vector
|
||||
R = math_qToR(q)
|
||||
if (any(abs(math_mul33x3(R,v) - math_qRot(q,v)) > tol_math_check)) then
|
||||
write(6,'(a,4(f8.3,x))') 'q',q
|
||||
call IO_error(409_pInt)
|
||||
endif
|
||||
|
||||
end subroutine math_init
|
||||
|
||||
|
||||
|
@ -1365,8 +1379,14 @@ pure function math_qRot(Q,v)
|
|||
math_qRot = 2.0_pReal * math_qRot + v
|
||||
|
||||
end function math_qRot
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Euler angles (in radians) from rotation matrix
|
||||
!> @details rotation matrix is meant to represent a PASSIVE rotation,
|
||||
!> composed of INTRINSIC rotations around the axes of the
|
||||
!> rotating reference frame
|
||||
!> (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_RtoEuler(R)
|
||||
|
||||
|
@ -1418,9 +1438,8 @@ end function math_RtoEuler
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief quaternion (w+ix+jy+kz) from orientation matrix
|
||||
!> @details math adopted from
|
||||
!> @details http://code.google.com/p/mtex/source/browse/trunk/geometry/geometry_tools/mat2quat.m
|
||||
!> @brief converts a rotation matrix into a quaternion (w+ix+jy+kz)
|
||||
!> @details math adopted from http://arxiv.org/pdf/math/0701759v1.pdf
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_RtoQ(R)
|
||||
|
||||
|
@ -1431,42 +1450,42 @@ pure function math_RtoQ(R)
|
|||
real(pReal) :: max_absQ
|
||||
integer, dimension(1) :: largest !no pInt, maxloc returns integer default
|
||||
|
||||
math_RtoQ = 0.0_pReal
|
||||
|
||||
absQ(1) = 1.0_pReal + R(1,1) + R(2,2) + R(3,3)
|
||||
absQ(2) = 1.0_pReal + R(1,1) - R(2,2) - R(3,3)
|
||||
absQ(3) = 1.0_pReal - R(1,1) + R(2,2) - R(3,3)
|
||||
absQ(4) = 1.0_pReal - R(1,1) - R(2,2) + R(3,3)
|
||||
math_RtoQ = 0.0_pReal
|
||||
|
||||
largest = maxloc(absQ)
|
||||
|
||||
max_absQ=0.5_pReal * sqrt(absQ(largest(1)))
|
||||
|
||||
select case(largest(1))
|
||||
case (1_pInt)
|
||||
case (1)
|
||||
!1----------------------------------
|
||||
math_RtoQ(2) = R(2,3)-R(3,2)
|
||||
math_RtoQ(3) = R(3,1)-R(1,3)
|
||||
math_RtoQ(4) = R(1,2)-R(2,1)
|
||||
math_RtoQ(2) = R(3,2) - R(2,3)
|
||||
math_RtoQ(3) = R(1,3) - R(3,1)
|
||||
math_RtoQ(4) = R(2,1) - R(1,2)
|
||||
|
||||
case (2_pInt)
|
||||
math_RtoQ(1) = R(2,3)-R(3,2)
|
||||
case (2)
|
||||
math_RtoQ(1) = R(3,2) - R(2,3)
|
||||
!2----------------------------------
|
||||
math_RtoQ(3) = R(1,2)+R(2,1)
|
||||
math_RtoQ(4) = R(3,1)+R(1,3)
|
||||
math_RtoQ(3) = R(2,1) + R(1,2)
|
||||
math_RtoQ(4) = R(1,3) + R(3,1)
|
||||
|
||||
case (3_pInt)
|
||||
math_RtoQ(1) = R(3,1)-R(1,3)
|
||||
math_RtoQ(2) = R(1,2)+R(2,1)
|
||||
case (3)
|
||||
math_RtoQ(1) = R(1,3) - R(3,1)
|
||||
math_RtoQ(2) = R(2,1) + R(1,2)
|
||||
!3----------------------------------
|
||||
math_RtoQ(4) = R(2,3)+R(3,2)
|
||||
math_RtoQ(4) = R(3,2) + R(2,3)
|
||||
|
||||
case (4_pInt)
|
||||
math_RtoQ (1) = R(1,2)-R(2,1)
|
||||
math_RtoQ (2) = R(3,1)+R(1,3)
|
||||
math_RtoQ (3) = R(3,2)+R(2,3)
|
||||
case (4)
|
||||
math_RtoQ(1) = R(2,1) - R(1,2)
|
||||
math_RtoQ(2) = R(1,3) + R(3,1)
|
||||
math_RtoQ(3) = R(2,3) + R(3,2)
|
||||
!4----------------------------------
|
||||
end select
|
||||
|
||||
max_absQ = 0.5_pReal * sqrt(absQ(largest(1)))
|
||||
math_RtoQ = math_RtoQ * 0.25_pReal / max_absQ
|
||||
math_RtoQ(largest(1)) = max_absQ
|
||||
|
||||
|
@ -1475,6 +1494,10 @@ end function math_RtoQ
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief rotation matrix from Euler angles (in radians)
|
||||
!> @details rotation matrix is meant to represent a PASSIVE rotation,
|
||||
!> @details composed of INTRINSIC rotations around the axes of the
|
||||
!> @details rotating reference frame
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_EulerToR(Euler)
|
||||
|
||||
|
@ -1492,20 +1515,26 @@ pure function math_EulerToR(Euler)
|
|||
S2 = sin(Euler(3))
|
||||
|
||||
math_EulerToR(1,1)=C1*C2-S1*S2*C
|
||||
math_EulerToR(1,2)=S1*C2+C1*S2*C
|
||||
math_EulerToR(1,3)=S2*S
|
||||
math_EulerToR(2,1)=-C1*S2-S1*C2*C
|
||||
math_EulerToR(1,2)=-C1*S2-S1*C2*C
|
||||
math_EulerToR(1,3)=S1*S
|
||||
math_EulerToR(2,1)=S1*C2+C1*S2*C
|
||||
math_EulerToR(2,2)=-S1*S2+C1*C2*C
|
||||
math_EulerToR(2,3)=C2*S
|
||||
math_EulerToR(3,1)=S1*S
|
||||
math_EulerToR(3,2)=-C1*S
|
||||
math_EulerToR(2,3)=-C1*S
|
||||
math_EulerToR(3,1)=S2*S
|
||||
math_EulerToR(3,2)=C2*S
|
||||
math_EulerToR(3,3)=C
|
||||
|
||||
math_EulerToR = transpose(math_EulerToR) ! convert to passive rotation
|
||||
|
||||
end function math_EulerToR
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief quaternion (w+ix+jy+kz) from 3-1-3 Euler angles (in radians)
|
||||
!> @details quaternion is meant to represent a PASSIVE rotation,
|
||||
!> @details composed of INTRINSIC rotations around the axes of the
|
||||
!> @details rotating reference frame
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_EulerToQ(eulerangles)
|
||||
|
||||
|
@ -1525,17 +1554,21 @@ pure function math_EulerToQ(eulerangles)
|
|||
math_EulerToQ(2) = cos(halfangles(1)-halfangles(3)) * s
|
||||
math_EulerToQ(3) = sin(halfangles(1)-halfangles(3)) * s
|
||||
math_EulerToQ(4) = sin(halfangles(1)+halfangles(3)) * c
|
||||
math_EulerToQ = math_qConj(math_EulerToQ) ! convert to passive rotation
|
||||
|
||||
end function math_EulerToQ
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief rotation matrix from axis and angle (in radians)
|
||||
!> @details rotation matrix is meant to represent a ACTIVE rotation
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!> @details formula for active rotation taken from http://mathworld.wolfram.com/RodriguesRotationFormula.html
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_AxisAngleToR(axis,omega)
|
||||
pure function math_axisAngleToR(axis,omega)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3,3) :: math_AxisAngleToR
|
||||
real(pReal), dimension(3,3) :: math_axisAngleToR
|
||||
real(pReal), dimension(3), intent(in) :: axis
|
||||
real(pReal), intent(in) :: omega
|
||||
real(pReal), dimension(3) :: axisNrm
|
||||
|
@ -1549,35 +1582,71 @@ pure function math_AxisAngleToR(axis,omega)
|
|||
c = cos(omega)
|
||||
c1 = 1.0_pReal - c
|
||||
|
||||
! formula for active rotation taken from http://mathworld.wolfram.com/RodriguesRotationFormula.html
|
||||
! below is transposed form to get passive rotation
|
||||
math_axisAngleToR(1,1) = c + c1*axisNrm(1)**2.0_pReal
|
||||
math_axisAngleToR(1,2) = -s*axisNrm(3) + c1*axisNrm(1)*axisNrm(2)
|
||||
math_axisAngleToR(1,3) = s*axisNrm(2) + c1*axisNrm(1)*axisNrm(3)
|
||||
|
||||
math_AxisAngleToR(1,1) = c + c1*axisNrm(1)**2.0_pReal
|
||||
math_AxisAngleToR(2,1) = -s*axisNrm(3) + c1*axisNrm(1)*axisNrm(2)
|
||||
math_AxisAngleToR(3,1) = s*axisNrm(2) + c1*axisNrm(1)*axisNrm(3)
|
||||
math_axisAngleToR(2,1) = s*axisNrm(3) + c1*axisNrm(2)*axisNrm(1)
|
||||
math_axisAngleToR(2,2) = c + c1*axisNrm(2)**2.0_pReal
|
||||
math_axisAngleToR(2,3) = -s*axisNrm(1) + c1*axisNrm(2)*axisNrm(3)
|
||||
|
||||
math_AxisAngleToR(1,2) = s*axisNrm(3) + c1*axisNrm(2)*axisNrm(1)
|
||||
math_AxisAngleToR(2,2) = c + c1*axisNrm(2)**2.0_pReal
|
||||
math_AxisAngleToR(3,2) = -s*axisNrm(1) + c1*axisNrm(2)*axisNrm(3)
|
||||
|
||||
math_AxisAngleToR(1,3) = -s*axisNrm(2) + c1*axisNrm(3)*axisNrm(1)
|
||||
math_AxisAngleToR(2,3) = s*axisNrm(1) + c1*axisNrm(3)*axisNrm(2)
|
||||
math_AxisAngleToR(3,3) = c + c1*axisNrm(3)**2.0_pReal
|
||||
math_axisAngleToR(3,1) = -s*axisNrm(2) + c1*axisNrm(3)*axisNrm(1)
|
||||
math_axisAngleToR(3,2) = s*axisNrm(1) + c1*axisNrm(3)*axisNrm(2)
|
||||
math_axisAngleToR(3,3) = c + c1*axisNrm(3)**2.0_pReal
|
||||
else
|
||||
math_AxisAngleToR = math_I3
|
||||
math_axisAngleToR = math_I3
|
||||
endif
|
||||
|
||||
end function math_axisAngleToR
|
||||
|
||||
end function math_AxisAngleToR
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief rotation matrix from axis and angle (in radians)
|
||||
!> @details rotation matrix is meant to represent a PASSIVE rotation
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_EulerAxisAngleToR(axis,omega)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3,3) :: math_EulerAxisAngleToR
|
||||
real(pReal), dimension(3), intent(in) :: axis
|
||||
real(pReal), intent(in) :: omega
|
||||
|
||||
math_EulerAxisAngleToR = transpose(math_axisAngleToR(axis,omega)) ! convert to passive rotation
|
||||
|
||||
end function math_EulerAxisAngleToR
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief quaternion (w+ix+jy+kz) from Euler axis and angle (in radians)
|
||||
!> @details quaternion is meant to represent a PASSIVE rotation
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!> @details formula for active rotation taken from
|
||||
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_EulerAxisAngleToQ(axis,omega)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(4) :: math_EulerAxisAngleToQ
|
||||
real(pReal), dimension(3), intent(in) :: axis
|
||||
real(pReal), intent(in) :: omega
|
||||
|
||||
math_EulerAxisAngleToQ = math_qConj(math_axisAngleToQ(axis,omega)) ! convert to passive rotation
|
||||
|
||||
end function math_EulerAxisAngleToQ
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief quaternion (w+ix+jy+kz) from axis and angle (in radians)
|
||||
!> @details quaternion is meant to represent an ACTIVE rotation
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!> @details formula for active rotation taken from
|
||||
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_AxisAngleToQ(axis,omega)
|
||||
pure function math_axisAngleToQ(axis,omega)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(4) :: math_AxisAngleToQ
|
||||
real(pReal), dimension(4) :: math_axisAngleToQ
|
||||
real(pReal), dimension(3), intent(in) :: axis
|
||||
real(pReal), intent(in) :: omega
|
||||
real(pReal), dimension(3) :: axisNrm
|
||||
|
@ -1586,79 +1655,89 @@ pure function math_AxisAngleToQ(axis,omega)
|
|||
norm = sqrt(math_mul3x3(axis,axis))
|
||||
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
||||
axisNrm = axis/norm ! normalize axis to be sure
|
||||
! formula taken from http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
||||
s = sin(0.5_pReal*omega)
|
||||
c = cos(0.5_pReal*omega)
|
||||
math_AxisAngleToQ(1) = c
|
||||
math_AxisAngleToQ(2:4) = s * axisNrm(1:3)
|
||||
math_axisAngleToQ(1) = c
|
||||
math_axisAngleToQ(2:4) = s * axisNrm(1:3)
|
||||
else
|
||||
math_AxisAngleToQ = [1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal] ! no rotation
|
||||
math_axisAngleToQ = [1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal] ! no rotation
|
||||
endif
|
||||
|
||||
end function math_AxisAngleToQ
|
||||
end function math_axisAngleToQ
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief orientation matrix from quaternion (w+ix+jy+kz)
|
||||
!> @details taken from http://arxiv.org/pdf/math/0701759v1.pdf
|
||||
!> @dteails see also http://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_qToR(Q)
|
||||
pure function math_qToR(q)
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), dimension(4), intent(in) :: Q
|
||||
real(pReal), dimension(4), intent(in) :: q
|
||||
real(pReal), dimension(3,3) :: math_qToR, T,S
|
||||
integer(pInt) :: i, j
|
||||
|
||||
forall (i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
|
||||
T(i,j) = Q(i+1_pInt) * Q(j+1_pInt)
|
||||
S = reshape( (/0.0_pReal, Q(4), -Q(3), &
|
||||
-Q(4),0.0_pReal, +Q(2), &
|
||||
Q(3), -Q(2),0.0_pReal/),(/3,3/)) ! notation is transposed!
|
||||
T(i,j) = q(i+1_pInt) * q(j+1_pInt)
|
||||
S = reshape( [0.0_pReal, -q(4), q(3), &
|
||||
q(4), 0.0_pReal, -q(2), &
|
||||
-q(3), q(2), 0.0_pReal],[3,3]) ! notation is transposed!
|
||||
|
||||
math_qToR = (2.0_pReal * Q(1)*Q(1) - 1.0_pReal) * math_I3 + &
|
||||
2.0_pReal * T - &
|
||||
2.0_pReal * Q(1) * S
|
||||
math_qToR = (2.0_pReal * q(1)*q(1) - 1.0_pReal) * math_I3 &
|
||||
+ 2.0_pReal * T - 2.0_pReal * q(1) * S
|
||||
|
||||
end function math_qToR
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz)
|
||||
!> @details quaternion is meant to represent a PASSIVE rotation,
|
||||
!> @details composed of INTRINSIC rotations around the axes of the
|
||||
!> @details rotating reference frame
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_qToEuler(Q)
|
||||
pure function math_qToEuler(qPassive)
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), dimension(4), intent(in) :: Q
|
||||
real(pReal), dimension(4), intent(in) :: qPassive
|
||||
real(pReal), dimension(4) :: q
|
||||
real(pReal), dimension(3) :: math_qToEuler
|
||||
real(pReal) :: acos_arg
|
||||
|
||||
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(Q(2)*Q(2)+Q(3)*Q(3)))
|
||||
q = math_qConj(qPassive) ! convert to active rotation, since formulas are defined for active rotations
|
||||
|
||||
if (abs(math_qToEuler(2)) < 1.0e-3_pReal) then
|
||||
acos_arg=Q(1)
|
||||
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)*q(2)+q(3)*q(3)))
|
||||
|
||||
if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then
|
||||
acos_arg = q(1)
|
||||
if(acos_arg > 1.0_pReal) acos_arg = 1.0_pReal
|
||||
if(acos_arg < -1.0_pReal) acos_arg = -1.0_pReal
|
||||
math_qToEuler(1) = 2.0_pReal*acos(acos_arg)
|
||||
math_qToEuler(1) = sign(2.0_pReal * acos(acos_arg),q(4))
|
||||
math_qToEuler(3) = 0.0_pReal
|
||||
else
|
||||
math_qToEuler(1) = atan2(Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)-Q(3)*Q(4))
|
||||
if (math_qToEuler(1) < 0.0_pReal) &
|
||||
math_qToEuler(1) = math_qToEuler(1) + 2.0_pReal * pi
|
||||
|
||||
math_qToEuler(3) = atan2(-Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)+Q(3)*Q(4))
|
||||
if (math_qToEuler(3) < 0.0_pReal) &
|
||||
math_qToEuler(3) = math_qToEuler(3) + 2.0_pReal * pi
|
||||
math_qToEuler(1) = atan2(q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4))
|
||||
math_qToEuler(3) = atan2(-q(1)*q(3)+q(2)*q(4), q(1)*q(2)+q(3)*q(4))
|
||||
endif
|
||||
|
||||
if (math_qToEuler(1) < 0.0_pReal) &
|
||||
math_qToEuler(1) = math_qToEuler(1) + 2.0_pReal * pi
|
||||
if (math_qToEuler(2) < 0.0_pReal) &
|
||||
math_qToEuler(2) = math_qToEuler(2) + pi
|
||||
if (math_qToEuler(3) < 0.0_pReal) &
|
||||
math_qToEuler(3) = math_qToEuler(3) + 2.0_pReal * pi
|
||||
|
||||
end function math_qToEuler
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
||||
!> @details quaternion is meant to represent an ACTIVE rotation
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!> @details formula for active rotation taken from
|
||||
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_qToAxisAngle(Q)
|
||||
|
||||
|
@ -1681,6 +1760,25 @@ pure function math_qToAxisAngle(Q)
|
|||
end function math_qToAxisAngle
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Euler axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
||||
!> @details quaternion is meant to represent a PASSIVE rotation
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_qToEulerAxisAngle(qPassive)
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), dimension(4), intent(in) :: qPassive
|
||||
real(pReal), dimension(4) :: q
|
||||
real(pReal), dimension(4) :: math_qToEulerAxisAngle
|
||||
|
||||
q = math_qConj(qPassive) ! convert to active rotation
|
||||
math_qToEulerAxisAngle = math_qToAxisAngle(q)
|
||||
|
||||
end function math_qToEulerAxisAngle
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -1890,7 +1988,7 @@ function math_sampleFiberOri(alpha,beta,noise)
|
|||
if(angle /= 0.0_pReal) then
|
||||
! rotation axis between sample and crystal system (cross product)
|
||||
forall(i=1_pInt:3_pInt) axis(i) = fiberInC(rotMap(1,i))*fiberInS(rotMap(2,i))-fiberInC(rotMap(2,i))*fiberInS(rotMap(1,i))
|
||||
oRot = math_AxisAngleToR(math_vectorproduct(fiberInC,fiberInS),angle)
|
||||
oRot = math_EulerAxisAngleToR(math_vectorproduct(fiberInC,fiberInS),angle)
|
||||
else
|
||||
oRot = math_I3
|
||||
end if
|
||||
|
@ -1898,7 +1996,7 @@ function math_sampleFiberOri(alpha,beta,noise)
|
|||
! ---# rotation matrix about fiber axis (random angle) #---
|
||||
do
|
||||
call halton(6_pInt,rnd)
|
||||
fRot = math_AxisAngleToR(fiberInS,rnd(1)*2.0_pReal*pi)
|
||||
fRot = math_EulerAxisAngleToR(fiberInS,rnd(1)*2.0_pReal*pi)
|
||||
|
||||
! ---# rotation about random axis perpend to fiber #---
|
||||
! random axis pependicular to fiber axis
|
||||
|
@ -1924,7 +2022,7 @@ function math_sampleFiberOri(alpha,beta,noise)
|
|||
enddo
|
||||
if (rnd(6) <= 0.5) angle = -angle
|
||||
|
||||
pRot = math_AxisAngleToR(axis,angle)
|
||||
pRot = math_EulerAxisAngleToR(axis,angle)
|
||||
|
||||
! ---# apply the three rotations #---
|
||||
math_sampleFiberOri = math_RtoEuler(math_mul33x33(pRot,math_mul33x33(fRot,oRot)))
|
||||
|
|
Loading…
Reference in New Issue