some comments

calling a conversion "Mandel" that does not follow the Mandel convention
(at least according to wikipedia) is not really intuitive
This commit is contained in:
Martin Diehl 2019-01-13 18:54:20 +01:00
parent aaea11d96b
commit 619baefe19
2 changed files with 14 additions and 7 deletions

View File

@ -331,12 +331,12 @@ end subroutine UMAT
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calls the exit function of Abaqus/Standard !> @brief calls the exit function of Abaqus/Standard
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine quit(mpie_error) subroutine quit(DAMASK_error)
use prec, only: & use prec, only: &
pInt pInt
implicit none implicit none
integer(pInt) :: mpie_error integer(pInt) :: DAMASK_error
flush(6) flush(6)
call xit call xit

View File

@ -24,6 +24,14 @@ module math
0.0_pReal,0.0_pReal,1.0_pReal & 0.0_pReal,0.0_pReal,1.0_pReal &
],[3,3]) !< 3x3 Identity ],[3,3]) !< 3x3 Identity
! ToDo MD: Our naming scheme is a little bit odd: We use essentially the re-ordering according to Nye
! (convenient because Abaqus and Marc want to have 12 on position 4)
! but weight the shear components according to Mandel (convenient for matrix multiplications)
! I suggest to keep Voigt3333to66 (required for reading in elasticity matrices) but rename
! mapMandel to mapNye, math_MandelXtoY to math_XtoY and math_PlainXtoY to math_XtoY.
! It is then clear that math_33to9 just reorders and math_33to6 does the "DAMASK conversion"
! without leaving the impression that it follows any established convention
integer(pInt), dimension (2,6), parameter, private :: & integer(pInt), dimension (2,6), parameter, private :: &
mapMandel = reshape([& mapMandel = reshape([&
1_pInt,1_pInt, & 1_pInt,1_pInt, &
@ -32,7 +40,7 @@ module math
1_pInt,2_pInt, & 1_pInt,2_pInt, &
2_pInt,3_pInt, & 2_pInt,3_pInt, &
1_pInt,3_pInt & 1_pInt,3_pInt &
],[2,6]) !< arrangement in Mandel notation ],[2,6]) !< arrangement in Mandel notation. Differs from https://en.wikipedia.org/wiki/Voigt_notation#Mandel_notation
real(pReal), dimension(6), parameter, private :: & real(pReal), dimension(6), parameter, private :: &
nrmMandel = [& nrmMandel = [&
@ -870,7 +878,7 @@ subroutine math_invert(myDim,A, InvA, error)
invA = A invA = A
call dgetrf(myDim,myDim,invA,myDim,ipiv,ierr) call dgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
call dgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr) call dgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
error = merge(.true.,.false., ierr /= 0_pInt) ! http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html error = merge(.true.,.false., ierr /= 0_pInt)
end subroutine math_invert end subroutine math_invert
@ -1163,7 +1171,6 @@ end function math_Plain66toMandel66
pure function math_Mandel3333to66(m3333) pure function math_Mandel3333to66(m3333)
implicit none implicit none
real(pReal), dimension(3,3,3,3), intent(in) :: m3333 real(pReal), dimension(3,3,3,3), intent(in) :: m3333
real(pReal), dimension(6,6) :: math_Mandel3333to66 real(pReal), dimension(6,6) :: math_Mandel3333to66
integer(pInt) :: i,j integer(pInt) :: i,j