also simplifying twin loops
This commit is contained in:
parent
dc91016729
commit
60e60e211c
|
@ -112,7 +112,7 @@ module plastic_dislotwin
|
|||
q, & !< q-exponent in glide velocity
|
||||
r, & !< r-exponent in twin nucleation rate
|
||||
s, & !< s-exponent in trans nucleation rate
|
||||
shear_twin !< characteristic shear for twins
|
||||
shear_twin !< characteristic shear for twins
|
||||
real(pReal), dimension(:,:), allocatable, private :: &
|
||||
interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance
|
||||
interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance
|
||||
|
@ -120,7 +120,8 @@ module plastic_dislotwin
|
|||
interaction_TwinTwin, & !< coefficients for twin-twin interaction for each interaction type and instance
|
||||
interaction_SlipTrans, & !< coefficients for slip-trans interaction for each interaction type and instance
|
||||
interaction_TransSlip, & !< coefficients for trans-slip interaction for each interaction type and instance
|
||||
interaction_TransTrans !< coefficients for trans-trans interaction for each interaction type and instance
|
||||
interaction_TransTrans, & !< coefficients for trans-trans interaction for each interaction type and instance
|
||||
fcc_twinNucleationSlipPair
|
||||
real(pReal), dimension(:,:,:), allocatable :: &
|
||||
Schmid_trans, &
|
||||
Schmid_slip, &
|
||||
|
@ -264,7 +265,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
write(6,'(/,a)') ' F.Roters et al., Computational Materials Science, 39:91–95, 2007'
|
||||
write(6,'(a)') ' https://doi.org/10.1016/j.commatsci.2006.04.014'
|
||||
write(6,'(/,a)') ' Wong et al., Acta Materialia, 118:140–151, 2016'
|
||||
write(6,'(a,/)') ' https://doi.org/10.1016/j.actamat.2016.07.032'
|
||||
write(6,'(a,/)') ' https://doi.org/10.1016/j.actamat.2016.07.032'
|
||||
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
||||
#include "compilation_info.f90"
|
||||
|
||||
|
@ -692,6 +693,8 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
if (allocated(Ctwin3333)) deallocate(Ctwin3333)
|
||||
allocate(Ctwin3333(3,3,3,3,prm%totalNtwin), source=0.0_pReal)
|
||||
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
|
||||
if (lattice_structure(p) == LATTICE_fcc_ID) &
|
||||
allocate(prm%fcc_twinNucleationSlipPair(2,prm%totalNtwin),source = 0.0_pReal)
|
||||
allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal)
|
||||
i = 0_pInt
|
||||
twinFamiliesLoop: do f = 1_pInt, size(prm%Ntwin,1)
|
||||
|
@ -700,8 +703,8 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
i = i + 1_pInt
|
||||
prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,sum(lattice_NTwinsystem(1:f-1,p))+j,p)
|
||||
prm%shear_twin(i) = lattice_shearTwin(sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
|
||||
! nucleation rate prefactor,
|
||||
! and twin size
|
||||
if (lattice_structure(p) == LATTICE_fcc_ID) prm%fcc_twinNucleationSlipPair(1:2,i) = &
|
||||
lattice_fcc_twinNucleationSlipPair(1:2,sum(lattice_Ntwinsystem(1:f-1,p))+j)
|
||||
!* Rotate twin elasticity matrices
|
||||
index_otherFamily = sum(lattice_NtwinSystem(1:f-1_pInt,p)) ! index in full lattice twin list
|
||||
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt
|
||||
|
@ -1179,9 +1182,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
lattice_NslipSystem, &
|
||||
lattice_NtwinSystem, &
|
||||
lattice_NtransSystem, &
|
||||
lattice_shearTwin, &
|
||||
lattice_structure, &
|
||||
lattice_fcc_twinNucleationSlipPair, &
|
||||
LATTICE_fcc_ID
|
||||
|
||||
implicit none
|
||||
|
@ -1349,24 +1350,23 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
if (tau_twin(j) > tol_math_check) then
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin(j))**prm%r(f)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin(j) < tau_r_twin(j,instance)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(tau_r_twin(j,instance)-tau_twin(j))))
|
||||
else
|
||||
Ndot0_twin=0.0_pReal
|
||||
end if
|
||||
case default
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
end select
|
||||
if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau_twin(j) < tau_r_twin(j,instance)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(tau_r_twin(j,instance)-tau_twin(j))))
|
||||
else
|
||||
Ndot0_twin=0.0_pReal
|
||||
end if
|
||||
else
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
endif
|
||||
gdot_twin(j) = &
|
||||
(1.0_pReal-sumf-sumftr)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
(1.0_pReal-sumf-sumftr)*prm%shear_twin(j)*&
|
||||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
dgdot_dtautwin(j) = ((gdot_twin(j)*prm%r(j))/tau_twin(j))*StressRatio_r
|
||||
endif
|
||||
|
@ -1396,8 +1396,8 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
!* Shear rates and their derivatives due to transformation
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau_trans(j) < tau_r_trans(j,instance)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
|
@ -1516,77 +1516,74 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Dislocation density evolution
|
||||
gdot_slip = 0.0_pReal
|
||||
slipSystems: do j = 1_pInt, prm%totalNslip
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau_slip(j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
|
||||
if((abs(tau_slip(j))-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
||||
StressRatio_p = stressRatio** prm%p(j)
|
||||
StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = plasticState(ph)%state(j, of)*prm%burgers_slip(j)*prm%v0(j)
|
||||
if((abs(tau_slip(j))-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
||||
StressRatio_p = stressRatio** prm%p(j)
|
||||
StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal)
|
||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = plasticState(ph)%state(j, of)*prm%burgers_slip(j)*prm%v0(j)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** &
|
||||
prm%q(j))*sign(1.0_pReal,tau_slip(j))
|
||||
endif
|
||||
!* Multiplication
|
||||
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** &
|
||||
prm%q(j))*sign(1.0_pReal,tau_slip(j))
|
||||
endif
|
||||
!* Multiplication
|
||||
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
|
||||
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip(j)
|
||||
if (dEq0(tau_slip(j))) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
else
|
||||
EdgeDipDistance = &
|
||||
(3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/&
|
||||
(16.0_pReal*pi*abs(tau_slip(j)))
|
||||
if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = &
|
||||
((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/prm%burgers_slip(j))*&
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))*prm%dipoleFormationFactor
|
||||
endif
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip(j)
|
||||
if (dEq0(tau_slip(j))) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
else
|
||||
EdgeDipDistance = &
|
||||
(3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/&
|
||||
(16.0_pReal*pi*abs(tau_slip(j)))
|
||||
if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = &
|
||||
((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/prm%burgers_slip(j))*&
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))*prm%dipoleFormationFactor
|
||||
endif
|
||||
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*&
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*&
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))
|
||||
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*&
|
||||
state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*&
|
||||
state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||||
|
||||
!* Dislocation dipole climb
|
||||
AtomicVolume = &
|
||||
prm%CAtomicVolume*prm%burgers_slip(j)**(3.0_pReal)
|
||||
VacancyDiffusion = &
|
||||
prm%D0*exp(-prm%Qsd/(kB*Temperature))
|
||||
if (dEq0(tau_slip(j))) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
else
|
||||
if (dEq0(EdgeDipDistance-EdgeDipMinDistance)) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
else
|
||||
ClimbVelocity = 3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume/ &
|
||||
(2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance))
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*state(instance)%rhoEdgeDip(j,of)/ &
|
||||
(EdgeDipDistance-EdgeDipMinDistance)
|
||||
endif
|
||||
endif
|
||||
!* Edge dislocation density rate of change
|
||||
dotState(instance)%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
!* Dislocation dipole climb
|
||||
AtomicVolume = &
|
||||
prm%CAtomicVolume*prm%burgers_slip(j)**(3.0_pReal)
|
||||
VacancyDiffusion = &
|
||||
prm%D0*exp(-prm%Qsd/(kB*Temperature))
|
||||
if (dEq0(tau_slip(j))) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
else
|
||||
if (dEq0(EdgeDipDistance-EdgeDipMinDistance)) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
else
|
||||
ClimbVelocity = 3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume/ &
|
||||
(2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance))
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*state(instance)%rhoEdgeDip(j,of)/ &
|
||||
(EdgeDipDistance-EdgeDipMinDistance)
|
||||
endif
|
||||
endif
|
||||
!* Edge dislocation density rate of change
|
||||
dotState(instance)%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
|
||||
!* Edge dislocation dipole density rate of change
|
||||
dotState(instance)%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
!* Edge dislocation dipole density rate of change
|
||||
dotState(instance)%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
|
||||
!* Dotstate for accumulated shear due to slip
|
||||
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||
!* Dotstate for accumulated shear due to slip
|
||||
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||
|
||||
enddo slipSystems
|
||||
|
||||
|
@ -1637,7 +1634,6 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
do i = 1_pInt,prm%Ntrans(f) ! process each (active) trans system in family
|
||||
j = j+1_pInt
|
||||
|
||||
!* Resolved shear stress on transformation system
|
||||
tau_trans(j) = math_mul33xx33(S,lattice_Strans(1:3,1:3,index_myFamily+i,ph))
|
||||
|
||||
!* Stress ratios
|
||||
|
|
Loading…
Reference in New Issue