diff --git a/processing/post/imageDataDeformed.py b/processing/post/imageDataDeformed.py new file mode 100755 index 000000000..1c63d4345 --- /dev/null +++ b/processing/post/imageDataDeformed.py @@ -0,0 +1,188 @@ +#!/usr/bin/env python +# -*- coding: UTF-8 no BOM -*- + +import os,sys,string +import numpy as np +from optparse import OptionParser +from PIL import Image, ImageDraw +import damask + +scriptID = string.replace('$Id: imageDataDeformed.py 4188 2015-05-20 23:21:35Z p.eisenlohr $','\n','\\n') +scriptName = os.path.splitext(scriptID.split()[1])[0] + +# -------------------------------------------------------------------- +# MAIN +# -------------------------------------------------------------------- + +parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ +Generate PNG image from scalar data on grid deformed by (periodic) deformation gradient. + +""", version = scriptID) + +parser.add_option('-l','--label', dest='label', type='string', metavar='string', + help='column containing data)') +parser.add_option('-r','--range', dest='range', type='float', nargs=2, metavar='float float', + help='data range (min max) [auto]') +parser.add_option('--color', dest='color', type='string', metavar='string', + help='color scheme') +parser.add_option('--invert', dest='invert', action='store_true', + help='invert color scheme') +parser.add_option('--abs', dest='abs', action='store_true', + help='magnitude of values') +parser.add_option('--log', dest='log', action='store_true', + help='log10 of values') +parser.add_option('-d','--dimension', dest='dimension', type='int', nargs=3, metavar=' '.join(['int']*3), + help='data dimension (x/y/z)') +parser.add_option('-s','--size', dest='size', type='float', nargs=3, metavar=' '.join(['float']*3), + help='box size (x/y/z)') +parser.add_option('-f','--defgrad', dest='defgrad', metavar='string', + help='column label of deformation gradient [%default]') +parser.add_option('--scaling', dest='scaling', type='float', nargs=3, metavar = ' '.join(['float']*3), + help='x/y/z scaling of displacment fluctuation [%default]') +parser.add_option('-z','--layer', dest='z', type='int', metavar='int', + help='index of z plane to plot [%default]') +parser.add_option('--fliplr', dest='flipLR', action='store_true', + help='flip around vertical axis') +parser.add_option('--flipud', dest='flipUD', action='store_true', + help='flip around horizontal axis') +parser.add_option('--crop', dest='crop', type='int', nargs=4, metavar=' '.join(['int']*3), + help='pixels cropped on left, right, top, bottom') +parser.add_option('--show', dest='show', action='store_true', + help='show resulting image') +parser.add_option('-N','--pixelsize', dest='pixelsize', type='int', metavar='int', + help='pixels per cell edge') + +parser.set_defaults(label = None, + range = [0.0,0.0], + dimension = [], + size = [], + z = 1, + abs = False, + log = False, + defgrad = 'f', + scaling = [1.,1.,1.], + flipLR = False, + flipUD = False, + color = "gray", + invert = False, + crop = [0,0,0,0], + pixelsize = 1, + show = False, + ) + +(options,filenames) = parser.parse_args() + +options.size = np.array(options.size) +options.dimension = np.array(options.dimension) +options.range = np.array(options.range) + +if options.z > 0: options.z -= 1 # adjust to 0-based indexing + +# --- color palette --------------------------------------------------------------------------------- + +theMap = damask.Colormap(predefined=options.color) +if options.invert: theMap = theMap.invert() +theColors = np.uint8(np.array(theMap.export(format='list',steps=256))*255) + +# --- loop over input files ------------------------------------------------------------------------- + +if filenames == []: + filenames = ['STDIN'] + +for name in filenames: + if name == 'STDIN': + file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr} + file['croak'].write('\033[1m'+scriptName+'\033[0m\n') + else: + if not os.path.exists(name): continue + file = {'name':name, + 'input':open(name), + 'output':open(os.path.splitext(name)[0]+ \ + ('' if options.label == None else '_'+options.label)+ \ + '.png','w'), + 'croak':sys.stderr} + file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') + + table = damask.ASCIItable(file['input'],file['output'], + buffered = False, # make unbuffered ASCII_table + labels = options.label != None) # no labels when taking 2D dataset + table.head_read() # read ASCII header info + +# --------------- figure out columns to process --------------------------------------------------- + + errors = [] + if table.label_dimension(options.label) != 1: + errors.append('no scalar data (%s) found...'%options.label) + if table.label_dimension(options.defgrad) != 9: + errors.append('no deformation gradient tensor (1..9_%s) found...'%options.defgrad) + + if errors != []: + file['croak'].write('\n'.join(errors)+'\n') + table.close(dismiss = True) + continue + + table.data_readArray([options.label,options.defgrad]) + + F = table.data[:,1:10].transpose().reshape([3,3]+list(options.dimension),order='F') + data = table.data[:,0 ].transpose().reshape( list(options.dimension),order='F') + + if options.abs: data = np.abs(data) + if options.log: data = np.log10(data) + if np.all(options.range == 0.0): options.range = np.array([data.min(),data.max()]) + elif options.log: options.range = np.log10(options.range) + + data = ( data - options.range.min()) / \ + (options.range.max() - options.range.min()) # data scaled to fraction of range + + data = np.clip(data,0.0,1.0) # cut off outliers (should be none) + +# ---------------- calculate coordinates ----------------------------------------------------------- + + Favg = damask.core.math.tensorAvg(F) + centroids = damask.core.mesh.deformedCoordsFFT(options.size,F,Favg,options.scaling) + nodes = damask.core.mesh.nodesAroundCentres(options.size,Favg,centroids) + + boundingBox = np.array([ \ + [np.amin(nodes[0,:,:,options.z]),np.amin(nodes[1,:,:,options.z]),np.amin(nodes[2,:,:,options.z])], + [np.amax(nodes[0,:,:,options.z]),np.amax(nodes[1,:,:,options.z]),np.amax(nodes[2,:,:,options.z])], + ]) # find x-y bounding box for given z layer + + nodes -= boundingBox[0].repeat(np.prod(options.dimension+1)).reshape([3]+list(options.dimension+1)) + nodes *= (options.pixelsize*options.dimension/options.size).repeat(np.prod(options.dimension+1)).reshape([3]+list(options.dimension+1)) + imagesize = (options.pixelsize*(boundingBox[1]-boundingBox[0])*options.dimension\ + /options.size)[:2].astype('i') # determine image size from number of cells in overall bounding box + im = Image.new('RGBA',imagesize) + draw = ImageDraw.Draw(im) + + for y in xrange(options.dimension[1]): + for x in xrange(options.dimension[0]): + draw.polygon([nodes[0,x ,y ,options.z], + nodes[1,x ,y ,options.z], + nodes[0,x+1,y ,options.z], + nodes[1,x+1,y ,options.z], + nodes[0,x+1,y+1,options.z], + nodes[1,x+1,y+1,options.z], + nodes[0,x ,y+1,options.z], + nodes[1,x ,y+1,options.z], + ], + fill = tuple(theColors[int(255*data[x,y,options.z])]), + outline = None) + +# if options.flipLR: table.data = np.fliplr(table.data) +# if options.flipUD: table.data = np.flipud(table.data) + + +# (height,width,bands) = table.data.shape + +# im = Image.fromarray(table.data.astype('uint8'), 'RGB').\ +# crop(( options.crop[0], +# options.crop[2], +# width -options.crop[1], +# height-options.crop[3])) + +# ------------------------------------------ output result ----------------------------------------- + + im.save(file['output'],format = "PNG") + if options.show: im.show() + + table.close() # close ASCII table file handles