I don't like loops

use language features and helper functions for shorter code
This commit is contained in:
Martin Diehl 2020-02-22 15:48:40 +01:00
parent 7d6c0dc5f4
commit 605e976915
1 changed files with 104 additions and 124 deletions

View File

@ -18,12 +18,12 @@ module spectral_utilities
use config use config
use discretization use discretization
use homogenization use homogenization
implicit none implicit none
private private
include 'fftw3-mpi.f03' include 'fftw3-mpi.f03'
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! field labels information ! field labels information
enum, bind(c) enum, bind(c)
@ -109,8 +109,8 @@ module spectral_utilities
real(pReal) :: timeinc real(pReal) :: timeinc
real(pReal) :: timeincOld real(pReal) :: timeincOld
end type tSolutionParams end type tSolutionParams
type, private :: tNumerics type, private :: tNumerics
real(pReal) :: & real(pReal) :: &
FFTW_timelimit !< timelimit for FFTW plan creation, see www.fftw.org FFTW_timelimit !< timelimit for FFTW plan creation, see www.fftw.org
integer :: & integer :: &
@ -122,7 +122,7 @@ module spectral_utilities
FFTW_plan_mode, & !< FFTW plan mode, see www.fftw.org FFTW_plan_mode, & !< FFTW plan mode, see www.fftw.org
PETSc_options PETSc_options
end type tNumerics end type tNumerics
type(tNumerics) :: num ! numerics parameters. Better name? type(tNumerics) :: num ! numerics parameters. Better name?
enum, bind(c) enum, bind(c)
@ -189,18 +189,18 @@ subroutine utilities_init
scalarSize = 1_C_INTPTR_T, & scalarSize = 1_C_INTPTR_T, &
vecSize = 3_C_INTPTR_T, & vecSize = 3_C_INTPTR_T, &
tensorSize = 9_C_INTPTR_T tensorSize = 9_C_INTPTR_T
write(6,'(/,a)') ' <<<+- spectral_utilities init -+>>>' write(6,'(/,a)') ' <<<+- spectral_utilities init -+>>>'
write(6,'(/,a)') ' Diehl, Diploma Thesis TU München, 2010' write(6,'(/,a)') ' Diehl, Diploma Thesis TU München, 2010'
write(6,'(a)') ' https://doi.org/10.13140/2.1.3234.3840' write(6,'(a)') ' https://doi.org/10.13140/2.1.3234.3840'
write(6,'(/,a)') ' Eisenlohr et al., International Journal of Plasticity 46:3753, 2013' write(6,'(/,a)') ' Eisenlohr et al., International Journal of Plasticity 46:3753, 2013'
write(6,'(a)') ' https://doi.org/10.1016/j.ijplas.2012.09.012' write(6,'(a)') ' https://doi.org/10.1016/j.ijplas.2012.09.012'
write(6,'(/,a)') ' Shanthraj et al., International Journal of Plasticity 66:3145, 2015' write(6,'(/,a)') ' Shanthraj et al., International Journal of Plasticity 66:3145, 2015'
write(6,'(a)') ' https://doi.org/10.1016/j.ijplas.2014.02.006' write(6,'(a)') ' https://doi.org/10.1016/j.ijplas.2014.02.006'
write(6,'(/,a)') ' Shanthraj et al., Handbook of Mechanics of Materials, 2019' write(6,'(/,a)') ' Shanthraj et al., Handbook of Mechanics of Materials, 2019'
write(6,'(a)') ' https://doi.org/10.1007/978-981-10-6855-3_80' write(6,'(a)') ' https://doi.org/10.1007/978-981-10-6855-3_80'
@ -209,34 +209,34 @@ subroutine utilities_init
debugGeneral = iand(debug_level(debug_SPECTRAL),debug_LEVELBASIC) /= 0 debugGeneral = iand(debug_level(debug_SPECTRAL),debug_LEVELBASIC) /= 0
debugRotation = iand(debug_level(debug_SPECTRAL),debug_SPECTRALROTATION) /= 0 debugRotation = iand(debug_level(debug_SPECTRAL),debug_SPECTRALROTATION) /= 0
debugPETSc = iand(debug_level(debug_SPECTRAL),debug_SPECTRALPETSC) /= 0 debugPETSc = iand(debug_level(debug_SPECTRAL),debug_SPECTRALPETSC) /= 0
if(debugPETSc) write(6,'(3(/,a),/)') & if(debugPETSc) write(6,'(3(/,a),/)') &
' Initializing PETSc with debug options: ', & ' Initializing PETSc with debug options: ', &
trim(PETScDebug), & trim(PETScDebug), &
' add more using the PETSc_Options keyword in numerics.config '; flush(6) ' add more using the PETSc_Options keyword in numerics.config '; flush(6)
call PETScOptionsClear(PETSC_NULL_OPTIONS,ierr) call PETScOptionsClear(PETSC_NULL_OPTIONS,ierr)
CHKERRQ(ierr) CHKERRQ(ierr)
if(debugPETSc) call PETScOptionsInsertString(PETSC_NULL_OPTIONS,trim(PETSCDEBUG),ierr) if(debugPETSc) call PETScOptionsInsertString(PETSC_NULL_OPTIONS,trim(PETSCDEBUG),ierr)
CHKERRQ(ierr) CHKERRQ(ierr)
call PETScOptionsInsertString(PETSC_NULL_OPTIONS,trim(petsc_options),ierr) call PETScOptionsInsertString(PETSC_NULL_OPTIONS,trim(petsc_options),ierr)
CHKERRQ(ierr) CHKERRQ(ierr)
grid1Red = grid(1)/2 + 1 grid1Red = grid(1)/2 + 1
wgt = 1.0/real(product(grid),pReal) wgt = 1.0/real(product(grid),pReal)
write(6,'(/,a,3(i12 ))') ' grid a b c: ', grid write(6,'(/,a,3(i12 ))') ' grid a b c: ', grid
write(6,'(a,3(es12.5))') ' size x y z: ', geomSize write(6,'(a,3(es12.5))') ' size x y z: ', geomSize
num%memory_efficient = config_numerics%getInt ('memory_efficient', defaultVal=1) > 0 num%memory_efficient = config_numerics%getInt ('memory_efficient', defaultVal=1) > 0
num%FFTW_timelimit = config_numerics%getFloat ('fftw_timelimit', defaultVal=-1.0_pReal) num%FFTW_timelimit = config_numerics%getFloat ('fftw_timelimit', defaultVal=-1.0_pReal)
num%divergence_correction = config_numerics%getInt ('divergence_correction', defaultVal=2) num%divergence_correction = config_numerics%getInt ('divergence_correction', defaultVal=2)
num%spectral_derivative = config_numerics%getString('spectral_derivative', defaultVal='continuous') num%spectral_derivative = config_numerics%getString('spectral_derivative', defaultVal='continuous')
num%FFTW_plan_mode = config_numerics%getString('fftw_plan_mode', defaultVal='FFTW_MEASURE') num%FFTW_plan_mode = config_numerics%getString('fftw_plan_mode', defaultVal='FFTW_MEASURE')
if (num%divergence_correction < 0 .or. num%divergence_correction > 2) & if (num%divergence_correction < 0 .or. num%divergence_correction > 2) &
call IO_error(301,ext_msg='divergence_correction') call IO_error(301,ext_msg='divergence_correction')
select case (num%spectral_derivative) select case (num%spectral_derivative)
case ('continuous') case ('continuous')
spectral_derivative_ID = DERIVATIVE_CONTINUOUS_ID spectral_derivative_ID = DERIVATIVE_CONTINUOUS_ID
@ -265,8 +265,8 @@ subroutine utilities_init
else else
scaledGeomSize = geomSize scaledGeomSize = geomSize
endif endif
select case(IO_lc(num%FFTW_plan_mode)) ! setting parameters for the plan creation of FFTW. Basically a translation from fftw3.f select case(IO_lc(num%FFTW_plan_mode)) ! setting parameters for the plan creation of FFTW. Basically a translation from fftw3.f
case('fftw_estimate') ! ordered from slow execution (but fast plan creation) to fast execution case('fftw_estimate') ! ordered from slow execution (but fast plan creation) to fast execution
FFTW_planner_flag = FFTW_ESTIMATE FFTW_planner_flag = FFTW_ESTIMATE
@ -285,7 +285,7 @@ subroutine utilities_init
! general initialization of FFTW (see manual on fftw.org for more details) ! general initialization of FFTW (see manual on fftw.org for more details)
if (pReal /= C_DOUBLE .or. kind(1) /= C_INT) call IO_error(0,ext_msg='Fortran to C') ! check for correct precision in C if (pReal /= C_DOUBLE .or. kind(1) /= C_INT) call IO_error(0,ext_msg='Fortran to C') ! check for correct precision in C
call fftw_set_timelimit(num%FFTW_timelimit) ! set timelimit for plan creation call fftw_set_timelimit(num%FFTW_timelimit) ! set timelimit for plan creation
if (debugGeneral) write(6,'(/,a)') ' FFTW initialized'; flush(6) if (debugGeneral) write(6,'(/,a)') ' FFTW initialized'; flush(6)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -295,19 +295,19 @@ subroutine utilities_init
PETSC_COMM_WORLD, local_K, local_K_offset) PETSC_COMM_WORLD, local_K, local_K_offset)
allocate (xi1st (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension allocate (xi1st (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension
allocate (xi2nd (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension allocate (xi2nd (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension
tensorField = fftw_alloc_complex(tensorSize*alloc_local) tensorField = fftw_alloc_complex(tensorSize*alloc_local)
call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, & call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, &
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real tensor representation 2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real tensor representation
call c_f_pointer(tensorField, tensorField_fourier, [3_C_INTPTR_T,3_C_INTPTR_T, & call c_f_pointer(tensorField, tensorField_fourier, [3_C_INTPTR_T,3_C_INTPTR_T, &
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T , gridFFTW(2),local_K]) ! place a pointer for a fourier tensor representation gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T , gridFFTW(2),local_K]) ! place a pointer for a fourier tensor representation
vectorField = fftw_alloc_complex(vecSize*alloc_local) vectorField = fftw_alloc_complex(vecSize*alloc_local)
call c_f_pointer(vectorField, vectorField_real, [3_C_INTPTR_T,& call c_f_pointer(vectorField, vectorField_real, [3_C_INTPTR_T,&
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real vector representation 2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real vector representation
call c_f_pointer(vectorField, vectorField_fourier,[3_C_INTPTR_T,& call c_f_pointer(vectorField, vectorField_fourier,[3_C_INTPTR_T,&
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K]) ! place a pointer for a fourier vector representation gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K]) ! place a pointer for a fourier vector representation
scalarField = fftw_alloc_complex(scalarSize*alloc_local) ! allocate data for real representation (no in place transform) scalarField = fftw_alloc_complex(scalarSize*alloc_local) ! allocate data for real representation (no in place transform)
call c_f_pointer(scalarField, scalarField_real, & call c_f_pointer(scalarField, scalarField_real, &
[2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1),gridFFTW(2),local_K]) ! place a pointer for a real scalar representation [2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1),gridFFTW(2),local_K]) ! place a pointer for a real scalar representation
@ -371,7 +371,7 @@ subroutine utilities_init
xi1st(1:3,i,j,k-grid3Offset) = xi2nd(1:3,i,j,k-grid3Offset) xi1st(1:3,i,j,k-grid3Offset) = xi2nd(1:3,i,j,k-grid3Offset)
endwhere endwhere
enddo; enddo; enddo enddo; enddo; enddo
if(num%memory_efficient) then ! allocate just single fourth order tensor if(num%memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal)) allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal))
else ! precalculation of gamma_hat field else ! precalculation of gamma_hat field
@ -388,7 +388,7 @@ end subroutine utilities_init
!> In case of an on-the-fly calculation, only the reference stiffness is updated. !> In case of an on-the-fly calculation, only the reference stiffness is updated.
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
subroutine utilities_updateGamma(C) subroutine utilities_updateGamma(C)
real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness
complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx
real(pReal), dimension(6,6) :: A, A_inv real(pReal), dimension(6,6) :: A, A_inv
@ -396,9 +396,9 @@ subroutine utilities_updateGamma(C)
i, j, k, & i, j, k, &
l, m, n, o l, m, n, o
logical :: err logical :: err
C_ref = C C_ref = C
if(.not. num%memory_efficient) then if(.not. num%memory_efficient) then
gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A
do k = grid3Offset+1, grid3Offset+grid3; do j = 1, grid(2); do i = 1, grid1Red do k = grid3Offset+1, grid3Offset+grid3; do j = 1, grid(2); do i = 1, grid1Red
@ -419,7 +419,7 @@ subroutine utilities_updateGamma(C)
endif endif
enddo; enddo; enddo enddo; enddo; enddo
endif endif
end subroutine utilities_updateGamma end subroutine utilities_updateGamma
@ -501,17 +501,17 @@ end subroutine utilities_FFTvectorBackward
!> @brief doing convolution gamma_hat * field_real, ensuring that average value = fieldAim !> @brief doing convolution gamma_hat * field_real, ensuring that average value = fieldAim
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_fourierGammaConvolution(fieldAim) subroutine utilities_fourierGammaConvolution(fieldAim)
real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution
complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx
real(pReal), dimension(6,6) :: A, A_inv real(pReal), dimension(6,6) :: A, A_inv
integer :: & integer :: &
i, j, k, & i, j, k, &
l, m, n, o l, m, n, o
logical :: err logical :: err
write(6,'(/,a)') ' ... doing gamma convolution ...............................................' write(6,'(/,a)') ' ... doing gamma convolution ...............................................'
flush(6) flush(6)
@ -531,7 +531,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
temp33_complex = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal) temp33_complex = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
forall(l=1:3, m=1:3, n=1:3, o=1:3) & forall(l=1:3, m=1:3, n=1:3, o=1:3) &
gamma_hat(l,m,n,o,1,1,1) = temp33_complex(l,n)*conjg(-xi1st(o,i,j,k))*xi1st(m,i,j,k) gamma_hat(l,m,n,o,1,1,1) = temp33_complex(l,n)*conjg(-xi1st(o,i,j,k))*xi1st(m,i,j,k)
else else
gamma_hat(1:3,1:3,1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal) gamma_hat(1:3,1:3,1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal)
endif endif
forall(l = 1:3, m = 1:3) & forall(l = 1:3, m = 1:3) &
@ -546,7 +546,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex
enddo; enddo; enddo enddo; enddo; enddo
endif memoryEfficient endif memoryEfficient
if (grid3Offset == 0) tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal) if (grid3Offset == 0) tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal)
end subroutine utilities_fourierGammaConvolution end subroutine utilities_fourierGammaConvolution
@ -561,7 +561,7 @@ subroutine utilities_fourierGreenConvolution(D_ref, mobility_ref, deltaT)
real(pReal), intent(in) :: mobility_ref, deltaT real(pReal), intent(in) :: mobility_ref, deltaT
complex(pReal) :: GreenOp_hat complex(pReal) :: GreenOp_hat
integer :: i, j, k integer :: i, j, k
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation ! do the actual spectral method calculation
do k = 1, grid3; do j = 1, grid(2) ;do i = 1, grid1Red do k = 1, grid3; do j = 1, grid(2) ;do i = 1, grid1Red
@ -625,16 +625,16 @@ real(pReal) function utilities_curlRMS()
integer :: i, j, k, l, ierr integer :: i, j, k, l, ierr
complex(pReal), dimension(3,3) :: curl_fourier complex(pReal), dimension(3,3) :: curl_fourier
complex(pReal), dimension(3) :: rescaledGeom complex(pReal), dimension(3) :: rescaledGeom
write(6,'(/,a)') ' ... calculating curl ......................................................' write(6,'(/,a)') ' ... calculating curl ......................................................'
flush(6) flush(6)
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal) rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculating max curl criterion in Fourier space ! calculating max curl criterion in Fourier space
utilities_curlRMS = 0.0_pReal utilities_curlRMS = 0.0_pReal
do k = 1, grid3; do j = 1, grid(2); do k = 1, grid3; do j = 1, grid(2);
do i = 2, grid1Red - 1 do i = 2, grid1Red - 1
do l = 1, 3 do l = 1, 3
@ -669,7 +669,7 @@ real(pReal) function utilities_curlRMS()
utilities_curlRMS = utilities_curlRMS & utilities_curlRMS = utilities_curlRMS &
+ sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1) + sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1)
enddo; enddo enddo; enddo
call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0) call IO_error(894, ext_msg='utilities_curlRMS') if(ierr /=0) call IO_error(894, ext_msg='utilities_curlRMS')
utilities_curlRMS = sqrt(utilities_curlRMS) * wgt utilities_curlRMS = sqrt(utilities_curlRMS) * wgt
@ -688,9 +688,10 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
type(rotation), intent(in) :: rot_BC !< rotation of load frame type(rotation), intent(in) :: rot_BC !< rotation of load frame
logical, intent(in), dimension(3,3) :: mask_stress !< mask of stress BC logical, intent(in), dimension(3,3) :: mask_stress !< mask of stress BC
integer :: j, k, m, n integer :: i, j
logical, dimension(9) :: mask_stressVector logical, dimension(9) :: mask_stressVector
real(pReal), dimension(9,9) :: temp99_Real logical, dimension(9,9) :: mask
real(pReal), dimension(9,9) :: temp99_real
integer :: size_reduced = 0 integer :: size_reduced = 0
real(pReal), dimension(:,:), allocatable :: & real(pReal), dimension(:,:), allocatable :: &
s_reduced, & !< reduced compliance matrix (depending on number of stress BC) s_reduced, & !< reduced compliance matrix (depending on number of stress BC)
@ -698,57 +699,33 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
sTimesC !< temp variable to check inversion sTimesC !< temp variable to check inversion
logical :: errmatinv logical :: errmatinv
character(len=pStringLen):: formatString character(len=pStringLen):: formatString
mask_stressVector = reshape(transpose(mask_stress), [9]) mask_stressVector = reshape(transpose(mask_stress), [9])
size_reduced = count(mask_stressVector) size_reduced = count(mask_stressVector)
if(size_reduced > 0 )then if(size_reduced > 0) then
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal) temp99_real = math_3333to99(rot_BC%rotate(C))
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
allocate (sTimesC(size_reduced,size_reduced), source =0.0_pReal)
temp99_Real = math_3333to99(rot_BC%rotTensor4(C))
if(debugGeneral) then if(debugGeneral) then
write(6,'(/,a)') ' ... updating masked compliance ............................................' write(6,'(/,a)') ' ... updating masked compliance ............................................'
write(6,'(/,a,/,9(9(2x,f12.7,1x)/))',advance='no') ' Stiffness C (load) / GPa =',& write(6,'(/,a,/,9(9(2x,f12.7,1x)/))',advance='no') ' Stiffness C (load) / GPa =',&
transpose(temp99_Real)*1.0e-9_pReal transpose(temp99_Real)*1.0e-9_pReal
flush(6) flush(6)
endif endif
k = 0 ! calculate reduced stiffness
do n = 1,9 do i = 1,9; do j = 1,9
if(mask_stressVector(n)) then mask(i,j) = mask_stressVector(i) .and. mask_stressVector(j)
k = k + 1 enddo; enddo
j = 0 c_reduced = reshape(pack(temp99_Real,mask),[size_reduced,size_reduced])
do m = 1,9
if(mask_stressVector(m)) then allocate(s_reduced,mold = c_reduced)
j = j + 1
c_reduced(k,j) = temp99_Real(n,m)
endif; enddo; endif; enddo
call math_invert(s_reduced, errmatinv, c_reduced) ! invert reduced stiffness call math_invert(s_reduced, errmatinv, c_reduced) ! invert reduced stiffness
if (any(IEEE_is_NaN(s_reduced))) errmatinv = .true. if (any(IEEE_is_NaN(s_reduced))) errmatinv = .true.
if (errmatinv) call IO_error(error_ID=400,ext_msg='utilities_maskedCompliance') if (errmatinv) call IO_error(error_ID=400,ext_msg='utilities_maskedCompliance')
temp99_Real = 0.0_pReal ! fill up compliance with zeros
k = 0
do n = 1,9
if(mask_stressVector(n)) then
k = k + 1
j = 0
do m = 1,9
if(mask_stressVector(m)) then
j = j + 1
temp99_Real(n,m) = s_reduced(k,j)
endif; enddo; endif; enddo
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! check if inversion was successful ! check if inversion was successful
sTimesC = matmul(c_reduced,s_reduced) sTimesC = matmul(c_reduced,s_reduced)
do m=1, size_reduced errmatinv = errmatinv .or. any(dNeq(sTimesC,math_identity2nd(size_reduced),1.0e-12_pReal))
do n=1, size_reduced
errmatinv = errmatinv &
.or. (m==n .and. abs(sTimesC(m,n)-1.0_pReal) > 1.0e-12_pReal) & ! diagonal elements of S*C should be 1
.or. (m/=n .and. abs(sTimesC(m,n)) > 1.0e-12_pReal) ! off-diagonal elements of S*C should be 0
enddo
enddo
if (debugGeneral .or. errmatinv) then if (debugGeneral .or. errmatinv) then
write(formatString, '(i2)') size_reduced write(formatString, '(i2)') size_reduced
formatString = '(/,a,/,'//trim(formatString)//'('//trim(formatString)//'(2x,es9.2,1x)/))' formatString = '(/,a,/,'//trim(formatString)//'('//trim(formatString)//'(2x,es9.2,1x)/))'
@ -757,15 +734,18 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
write(6,trim(formatString),advance='no') ' S (load) ', transpose(s_reduced) write(6,trim(formatString),advance='no') ' S (load) ', transpose(s_reduced)
if(errmatinv) call IO_error(error_ID=400,ext_msg='utilities_maskedCompliance') if(errmatinv) call IO_error(error_ID=400,ext_msg='utilities_maskedCompliance')
endif endif
temp99_real = reshape(unpack(reshape(s_reduced,[size_reduced**2]),reshape(mask,[81]),0.0_pReal),[9,9])
else else
temp99_real = 0.0_pReal temp99_real = 0.0_pReal
endif endif
utilities_maskedCompliance = math_99to3333(temp99_Real)
if(debugGeneral) then if(debugGeneral) then
write(6,'(/,a,/,9(9(2x,f10.5,1x)/),/)',advance='no') & write(6,'(/,a,/,9(9(2x,f10.5,1x)/),/)',advance='no') &
' Masked Compliance (load) * GPa =', transpose(temp99_Real)*1.0e9_pReal ' Masked Compliance (load) * GPa =', transpose(temp99_Real)*1.0e9_pReal
flush(6) flush(6)
endif endif
utilities_maskedCompliance = math_99to3333(temp99_Real)
end function utilities_maskedCompliance end function utilities_maskedCompliance
@ -774,9 +754,9 @@ end function utilities_maskedCompliance
!> @brief calculate scalar gradient in fourier field !> @brief calculate scalar gradient in fourier field
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_fourierScalarGradient() subroutine utilities_fourierScalarGradient()
integer :: i, j, k integer :: i, j, k
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) ! ToDo: no -conjg? vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) ! ToDo: no -conjg?
enddo; enddo; enddo enddo; enddo; enddo
@ -788,9 +768,9 @@ end subroutine utilities_fourierScalarGradient
!> @brief calculate vector divergence in fourier field !> @brief calculate vector divergence in fourier field
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_fourierVectorDivergence() subroutine utilities_fourierVectorDivergence()
integer :: i, j, k integer :: i, j, k
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red
scalarField_fourier(i,j,k) = sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k))) scalarField_fourier(i,j,k) = sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k)))
enddo; enddo; enddo enddo; enddo; enddo
@ -802,9 +782,9 @@ end subroutine utilities_fourierVectorDivergence
!> @brief calculate vector gradient in fourier field !> @brief calculate vector gradient in fourier field
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_fourierVectorGradient() subroutine utilities_fourierVectorGradient()
integer :: i, j, k, m, n integer :: i, j, k, m, n
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red
do m = 1, 3; do n = 1, 3 do m = 1, 3; do n = 1, 3
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k) tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
@ -820,7 +800,7 @@ end subroutine utilities_fourierVectorGradient
subroutine utilities_fourierTensorDivergence() subroutine utilities_fourierTensorDivergence()
integer :: i, j, k integer :: i, j, k
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red
vectorField_fourier(:,i,j,k) = matmul(tensorField_fourier(:,:,i,j,k),conjg(-xi1st(:,i,j,k))) vectorField_fourier(:,i,j,k) = matmul(tensorField_fourier(:,:,i,j,k),conjg(-xi1st(:,i,j,k)))
enddo; enddo; enddo enddo; enddo; enddo
@ -833,28 +813,28 @@ end subroutine utilities_fourierTensorDivergence
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,& subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
F,timeinc,rotation_BC) F,timeinc,rotation_BC)
real(pReal), intent(out), dimension(3,3,3,3) :: C_volAvg, C_minmaxAvg !< average stiffness real(pReal), intent(out), dimension(3,3,3,3) :: C_volAvg, C_minmaxAvg !< average stiffness
real(pReal), intent(out), dimension(3,3) :: P_av !< average PK stress real(pReal), intent(out), dimension(3,3) :: P_av !< average PK stress
real(pReal), intent(out), dimension(3,3,grid(1),grid(2),grid3) :: P !< PK stress real(pReal), intent(out), dimension(3,3,grid(1),grid(2),grid3) :: P !< PK stress
real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: F !< deformation gradient target real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: F !< deformation gradient target
real(pReal), intent(in) :: timeinc !< loading time real(pReal), intent(in) :: timeinc !< loading time
type(rotation), intent(in), optional :: rotation_BC !< rotation of load frame type(rotation), intent(in), optional :: rotation_BC !< rotation of load frame
integer :: & integer :: &
i,ierr i,ierr
real(pReal), dimension(3,3,3,3) :: dPdF_max, dPdF_min real(pReal), dimension(3,3,3,3) :: dPdF_max, dPdF_min
real(pReal) :: dPdF_norm_max, dPdF_norm_min real(pReal) :: dPdF_norm_max, dPdF_norm_min
real(pReal), dimension(2) :: valueAndRank !< pair of min/max norm of dPdF to synchronize min/max of dPdF real(pReal), dimension(2) :: valueAndRank !< pair of min/max norm of dPdF to synchronize min/max of dPdF
write(6,'(/,a)') ' ... evaluating constitutive response ......................................' write(6,'(/,a)') ' ... evaluating constitutive response ......................................'
flush(6) flush(6)
materialpoint_F = reshape(F,[3,3,1,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field materialpoint_F = reshape(F,[3,3,1,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field
call materialpoint_stressAndItsTangent(.true.,timeinc) ! calculate P field call materialpoint_stressAndItsTangent(.true.,timeinc) ! calculate P field
P = reshape(materialpoint_P, [3,3,grid(1),grid(2),grid3]) P = reshape(materialpoint_P, [3,3,grid(1),grid(2),grid3])
P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P
call MPI_Allreduce(MPI_IN_PLACE,P_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) call MPI_Allreduce(MPI_IN_PLACE,P_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
@ -862,11 +842,11 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress (lab) / MPa =',& write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress (lab) / MPa =',&
transpose(P_av)*1.e-6_pReal transpose(P_av)*1.e-6_pReal
if(present(rotation_BC)) & if(present(rotation_BC)) &
P_av = rotation_BC%rotTensor2(P_av) P_av = rotation_BC%rotate(P_av)
write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress / MPa =',& write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress / MPa =',&
transpose(P_av)*1.e-6_pReal transpose(P_av)*1.e-6_pReal
flush(6) flush(6)
dPdF_max = 0.0_pReal dPdF_max = 0.0_pReal
dPdF_norm_max = 0.0_pReal dPdF_norm_max = 0.0_pReal
dPdF_min = huge(1.0_pReal) dPdF_min = huge(1.0_pReal)
@ -881,21 +861,21 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
dPdF_norm_min = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal) dPdF_norm_min = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)
endif endif
end do end do
valueAndRank = [dPdF_norm_max,real(worldrank,pReal)] valueAndRank = [dPdF_norm_max,real(worldrank,pReal)]
call MPI_Allreduce(MPI_IN_PLACE,valueAndRank,1, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, PETSC_COMM_WORLD, ierr) call MPI_Allreduce(MPI_IN_PLACE,valueAndRank,1, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, PETSC_COMM_WORLD, ierr)
if (ierr /= 0) call IO_error(894, ext_msg='MPI_Allreduce max') if (ierr /= 0) call IO_error(894, ext_msg='MPI_Allreduce max')
call MPI_Bcast(dPdF_max,81,MPI_DOUBLE,int(valueAndRank(2)),PETSC_COMM_WORLD, ierr) call MPI_Bcast(dPdF_max,81,MPI_DOUBLE,int(valueAndRank(2)),PETSC_COMM_WORLD, ierr)
if (ierr /= 0) call IO_error(894, ext_msg='MPI_Bcast max') if (ierr /= 0) call IO_error(894, ext_msg='MPI_Bcast max')
valueAndRank = [dPdF_norm_min,real(worldrank,pReal)] valueAndRank = [dPdF_norm_min,real(worldrank,pReal)]
call MPI_Allreduce(MPI_IN_PLACE,valueAndRank,1, MPI_2DOUBLE_PRECISION, MPI_MINLOC, PETSC_COMM_WORLD, ierr) call MPI_Allreduce(MPI_IN_PLACE,valueAndRank,1, MPI_2DOUBLE_PRECISION, MPI_MINLOC, PETSC_COMM_WORLD, ierr)
if (ierr /= 0) call IO_error(894, ext_msg='MPI_Allreduce min') if (ierr /= 0) call IO_error(894, ext_msg='MPI_Allreduce min')
call MPI_Bcast(dPdF_min,81,MPI_DOUBLE,int(valueAndRank(2)),PETSC_COMM_WORLD, ierr) call MPI_Bcast(dPdF_min,81,MPI_DOUBLE,int(valueAndRank(2)),PETSC_COMM_WORLD, ierr)
if (ierr /= 0) call IO_error(894, ext_msg='MPI_Bcast min') if (ierr /= 0) call IO_error(894, ext_msg='MPI_Bcast min')
C_minmaxAvg = 0.5_pReal*(dPdF_max + dPdF_min) C_minmaxAvg = 0.5_pReal*(dPdF_max + dPdF_min)
C_volAvg = sum(sum(materialpoint_dPdF,dim=6),dim=5) C_volAvg = sum(sum(materialpoint_dPdF,dim=6),dim=5)
call MPI_Allreduce(MPI_IN_PLACE,C_volAvg,81,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) call MPI_Allreduce(MPI_IN_PLACE,C_volAvg,81,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
C_volAvg = C_volAvg * wgt C_volAvg = C_volAvg * wgt
@ -908,7 +888,7 @@ end subroutine utilities_constitutiveResponse
!> @brief calculates forward rate, either guessing or just add delta/timeinc !> @brief calculates forward rate, either guessing or just add delta/timeinc
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure function utilities_calculateRate(heterogeneous,field0,field,dt,avRate) pure function utilities_calculateRate(heterogeneous,field0,field,dt,avRate)
real(pReal), intent(in), dimension(3,3) :: & real(pReal), intent(in), dimension(3,3) :: &
avRate !< homogeneous addon avRate !< homogeneous addon
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
@ -920,7 +900,7 @@ pure function utilities_calculateRate(heterogeneous,field0,field,dt,avRate)
field !< data of current step field !< data of current step
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: & real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: &
utilities_calculateRate utilities_calculateRate
if (heterogeneous) then if (heterogeneous) then
utilities_calculateRate = (field-field0) / dt utilities_calculateRate = (field-field0) / dt
else else
@ -971,14 +951,14 @@ pure function utilities_getFreqDerivative(k_s)
complex(pReal), dimension(3) :: utilities_getFreqDerivative complex(pReal), dimension(3) :: utilities_getFreqDerivative
select case (spectral_derivative_ID) select case (spectral_derivative_ID)
case (DERIVATIVE_CONTINUOUS_ID) case (DERIVATIVE_CONTINUOUS_ID)
utilities_getFreqDerivative = cmplx(0.0_pReal, 2.0_pReal*PI*real(k_s,pReal)/geomSize,pReal) utilities_getFreqDerivative = cmplx(0.0_pReal, 2.0_pReal*PI*real(k_s,pReal)/geomSize,pReal)
case (DERIVATIVE_CENTRAL_DIFF_ID) case (DERIVATIVE_CENTRAL_DIFF_ID)
utilities_getFreqDerivative = cmplx(0.0_pReal, sin(2.0_pReal*PI*real(k_s,pReal)/real(grid,pReal)), pReal)/ & utilities_getFreqDerivative = cmplx(0.0_pReal, sin(2.0_pReal*PI*real(k_s,pReal)/real(grid,pReal)), pReal)/ &
cmplx(2.0_pReal*geomSize/real(grid,pReal), 0.0_pReal, pReal) cmplx(2.0_pReal*geomSize/real(grid,pReal), 0.0_pReal, pReal)
case (DERIVATIVE_FWBW_DIFF_ID) case (DERIVATIVE_FWBW_DIFF_ID)
utilities_getFreqDerivative(1) = & utilities_getFreqDerivative(1) = &
cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) - 1.0_pReal, & cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) - 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* &
@ -986,7 +966,7 @@ pure function utilities_getFreqDerivative(k_s)
sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, & cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ &
cmplx(4.0_pReal*geomSize(1)/real(grid(1),pReal), 0.0_pReal, pReal) cmplx(4.0_pReal*geomSize(1)/real(grid(1),pReal), 0.0_pReal, pReal)
utilities_getFreqDerivative(2) = & utilities_getFreqDerivative(2) = &
cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, & cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* &
@ -994,7 +974,7 @@ pure function utilities_getFreqDerivative(k_s)
sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, & cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ &
cmplx(4.0_pReal*geomSize(2)/real(grid(2),pReal), 0.0_pReal, pReal) cmplx(4.0_pReal*geomSize(2)/real(grid(2),pReal), 0.0_pReal, pReal)
utilities_getFreqDerivative(3) = & utilities_getFreqDerivative(3) = &
cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, & cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* &
@ -1002,7 +982,7 @@ pure function utilities_getFreqDerivative(k_s)
sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) - 1.0_pReal, & cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) - 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ &
cmplx(4.0_pReal*geomSize(3)/real(grid(3),pReal), 0.0_pReal, pReal) cmplx(4.0_pReal*geomSize(3)/real(grid(3),pReal), 0.0_pReal, pReal)
end select end select
end function utilities_getFreqDerivative end function utilities_getFreqDerivative
@ -1014,7 +994,7 @@ end function utilities_getFreqDerivative
! convolution ! convolution
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_updateCoords(F) subroutine utilities_updateCoords(F)
real(pReal), dimension(3,3,grid(1),grid(2),grid3), intent(in) :: F real(pReal), dimension(3,3,grid(1),grid(2),grid3), intent(in) :: F
real(pReal), dimension(3, grid(1),grid(2),grid3) :: IPcoords real(pReal), dimension(3, grid(1),grid(2),grid3) :: IPcoords
real(pReal), dimension(3, grid(1),grid(2),grid3+2) :: IPfluct_padded ! Fluctuations of cell center displacement (padded along z for MPI) real(pReal), dimension(3, grid(1),grid(2),grid3+2) :: IPfluct_padded ! Fluctuations of cell center displacement (padded along z for MPI)
@ -1040,7 +1020,7 @@ subroutine utilities_updateCoords(F)
1, 0, 1, & 1, 0, 1, &
1, 1, 1, & 1, 1, 1, &
0, 1, 1 ], [3,8]) 0, 1, 1 ], [3,8])
step = geomSize/real(grid, pReal) step = geomSize/real(grid, pReal)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! integration in Fourier space to get fluctuations of cell center discplacements ! integration in Fourier space to get fluctuations of cell center discplacements
@ -1057,27 +1037,27 @@ subroutine utilities_updateCoords(F)
enddo; enddo; enddo enddo; enddo; enddo
call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real) call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! average F ! average F
if (grid3Offset == 0) Favg = real(tensorField_fourier(1:3,1:3,1,1,1),pReal)*wgt if (grid3Offset == 0) Favg = real(tensorField_fourier(1:3,1:3,1,1,1),pReal)*wgt
call MPI_Bcast(Favg,9,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr) call MPI_Bcast(Favg,9,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr)
if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Bcast') if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Bcast')
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! pad cell center fluctuations along z-direction (needed when running MPI simulation) ! pad cell center fluctuations along z-direction (needed when running MPI simulation)
IPfluct_padded(1:3,1:grid(1),1:grid(2),2:grid3+1) = vectorField_real(1:3,1:grid(1),1:grid(2),1:grid3) IPfluct_padded(1:3,1:grid(1),1:grid(2),2:grid3+1) = vectorField_real(1:3,1:grid(1),1:grid(2),1:grid3)
c = product(shape(IPfluct_padded(:,:,:,1))) !< amount of data to transfer c = product(shape(IPfluct_padded(:,:,:,1))) !< amount of data to transfer
rank_t = modulo(worldrank+1,worldsize) rank_t = modulo(worldrank+1,worldsize)
rank_b = modulo(worldrank-1,worldsize) rank_b = modulo(worldrank-1,worldsize)
! send bottom layer to process below ! send bottom layer to process below
call MPI_Isend(IPfluct_padded(:,:,:,2), c,MPI_DOUBLE,rank_b,0,PETSC_COMM_WORLD,r,ierr) call MPI_Isend(IPfluct_padded(:,:,:,2), c,MPI_DOUBLE,rank_b,0,PETSC_COMM_WORLD,r,ierr)
if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Isend') if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Isend')
call MPI_Irecv(IPfluct_padded(:,:,:,grid3+2),c,MPI_DOUBLE,rank_t,0,PETSC_COMM_WORLD,r,ierr) call MPI_Irecv(IPfluct_padded(:,:,:,grid3+2),c,MPI_DOUBLE,rank_t,0,PETSC_COMM_WORLD,r,ierr)
if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Irecv') if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Irecv')
call MPI_Wait(r,s,ierr) call MPI_Wait(r,s,ierr)
! send top layer to process above ! send top layer to process above
if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Wait') if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Wait')
call MPI_Isend(IPfluct_padded(:,:,:,grid3+1),c,MPI_DOUBLE,rank_t,0,PETSC_COMM_WORLD,r,ierr) call MPI_Isend(IPfluct_padded(:,:,:,grid3+1),c,MPI_DOUBLE,rank_t,0,PETSC_COMM_WORLD,r,ierr)
@ -1085,9 +1065,9 @@ subroutine utilities_updateCoords(F)
call MPI_Irecv(IPfluct_padded(:,:,:,1), c,MPI_DOUBLE,rank_b,0,PETSC_COMM_WORLD,r,ierr) call MPI_Irecv(IPfluct_padded(:,:,:,1), c,MPI_DOUBLE,rank_b,0,PETSC_COMM_WORLD,r,ierr)
if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Irecv') if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords/MPI_Irecv')
call MPI_Wait(r,s,ierr) call MPI_Wait(r,s,ierr)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculate nodal displacements ! calculate nodal displacements
nodeCoords = 0.0_pReal nodeCoords = 0.0_pReal
do k = 0,grid3; do j = 0,grid(2); do i = 0,grid(1) do k = 0,grid3; do j = 0,grid(2); do i = 0,grid(1)
nodeCoords(1:3,i+1,j+1,k+1) = matmul(Favg,step*(real([i,j,k+grid3Offset],pReal))) nodeCoords(1:3,i+1,j+1,k+1) = matmul(Favg,step*(real([i,j,k+grid3Offset],pReal)))
@ -1097,17 +1077,17 @@ subroutine utilities_updateCoords(F)
+ IPfluct_padded(1:3,modulo(me(1)-1,grid(1))+1,modulo(me(2)-1,grid(2))+1,me(3)+1)*0.125_pReal + IPfluct_padded(1:3,modulo(me(1)-1,grid(1))+1,modulo(me(2)-1,grid(2))+1,me(3)+1)*0.125_pReal
enddo averageFluct enddo averageFluct
enddo; enddo; enddo enddo; enddo; enddo
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculate cell center displacements ! calculate cell center displacements
do k = 1,grid3; do j = 1,grid(2); do i = 1,grid(1) do k = 1,grid3; do j = 1,grid(2); do i = 1,grid(1)
IPcoords(1:3,i,j,k) = vectorField_real(1:3,i,j,k) & IPcoords(1:3,i,j,k) = vectorField_real(1:3,i,j,k) &
+ matmul(Favg,step*real([i,j,k+grid3Offset]-0.5_pReal,pReal)) + matmul(Favg,step*real([i,j,k+grid3Offset]-0.5_pReal,pReal))
enddo; enddo; enddo enddo; enddo; enddo
call discretization_setNodeCoords(reshape(NodeCoords,[3,(grid(1)+1)*(grid(2)+1)*(grid3+1)])) call discretization_setNodeCoords(reshape(NodeCoords,[3,(grid(1)+1)*(grid(2)+1)*(grid3+1)]))
call discretization_setIPcoords (reshape(IPcoords, [3,grid(1)*grid(2)*grid3])) call discretization_setIPcoords (reshape(IPcoords, [3,grid(1)*grid(2)*grid3]))
end subroutine utilities_updateCoords end subroutine utilities_updateCoords
@ -1115,7 +1095,7 @@ end subroutine utilities_updateCoords
!> @brief Write out the current reference stiffness for restart. !> @brief Write out the current reference stiffness for restart.
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
subroutine utilities_saveReferenceStiffness subroutine utilities_saveReferenceStiffness
integer :: & integer :: &
fileUnit fileUnit
@ -1125,7 +1105,7 @@ subroutine utilities_saveReferenceStiffness
write(fileUnit) C_ref write(fileUnit) C_ref
close(fileUnit) close(fileUnit)
endif endif
end subroutine utilities_saveReferenceStiffness end subroutine utilities_saveReferenceStiffness
end module spectral_utilities end module spectral_utilities