enhanced and documented

This commit is contained in:
Martin Diehl 2019-10-19 08:51:51 +02:00
parent f4a0a5cfe5
commit 5f0a48fae7
1 changed files with 64 additions and 2 deletions

View File

@ -1,6 +1,18 @@
import numpy as np import numpy as np
def Cauchy(F,P): def Cauchy(F,P):
"""
Calculate Cauchy stress from 1st Piola-Kirchhoff stress and deformation gradient.
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
Parameters
----------
F : numpy.array of shape (x,3,3) or (3,3)
Deformation gradient.
P : numpy.array of shape (x,3,3) or (3,3)
1st Piola-Kirchhoff.
"""
if np.shape(F) == np.shape(P) == (3,3): if np.shape(F) == np.shape(P) == (3,3):
sigma = 1.0/np.linalg.det(F) * np.dot(F,P) sigma = 1.0/np.linalg.det(F) * np.dot(F,P)
return (sigma+sigma.T)*0.5 return (sigma+sigma.T)*0.5
@ -9,15 +21,65 @@ def Cauchy(F,P):
return (sigma + np.transpose(sigma,(0,2,1)))*0.5 return (sigma + np.transpose(sigma,(0,2,1)))*0.5
def deviator(x): def deviatoric_part(x):
"""
Calculate deviatoric part of a tensor.
Parameters
----------
x : numpy.array of shape (x,3,3) or (3,3)
Tensor.
"""
if np.shape(x) == (3,3): if np.shape(x) == (3,3):
return x - np.eye(3)*np.trace(x)/3.0 return x - np.eye(3)*np.trace(x)/3.0
else: else:
return x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),np.trace(x,axis1=1,axis2=2)/3.0) return x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),np.trace(x,axis1=1,axis2=2)/3.0)
def spherical(x): def spherical_part(x):
"""
Calculate spherical(hydrostatic) part of a tensor.
A single scalar is returned, i.e. the hydrostatic part is not mapped on the 3rd order identity matrix.
Parameters
----------
x : numpy.array of shape (x,3,3) or (3,3)
Tensor.
"""
if np.shape(x) == (3,3): if np.shape(x) == (3,3):
return np.trace(x)/3.0 return np.trace(x)/3.0
else: else:
return np.trace(x,axis1=1,axis2=2)/3.0 return np.trace(x,axis1=1,axis2=2)/3.0
def Mises_stress(sigma):
"""
Calculate the Mises equivalent of a stress tensor.
Parameters
----------
sigma : numpy.array of shape (x,3,3) or (3,3)
Symmetric stress tensor.
"""
s = deviatoric_part(sigma)
if np.shape(sigma) == (3,3):
return np.sqrt(3.0/2.0*np.trace(s))
else:
return np.sqrt(np.einsum('ijk->i',s)*3.0/2.0)
def Mises_strain(epsilon):
"""
Calculate the Mises equivalent of a strain tensor.
Parameters
----------
sigma : numpy.array of shape (x,3,3) or (3,3)
Symmetric strain tensor.
"""
s = deviatoric_part(epsilon)
if np.shape(epsilon) == (3,3):
return np.sqrt(2.0/3.0*np.trace(s))
else:
return np.sqrt(2.0/3.0*np.einsum('ijk->i',s))