Merge branch 'development' of magit1.mpie.de:damask/DAMASK into development
This commit is contained in:
commit
5eed7d06e9
|
@ -0,0 +1,8 @@
|
||||||
|
#! /usr/bin/env bash
|
||||||
|
if [ $1x != 3to2x ]; then
|
||||||
|
echo 'python2.7 to python'
|
||||||
|
find . -name '*.py' | xargs sed -i 's/usr\/bin\/env python2.7/usr\/bin\/env python/g'
|
||||||
|
else
|
||||||
|
echo 'python to python2.7'
|
||||||
|
find . -name '*.py' | xargs sed -i 's/usr\/bin\/env python/usr\/bin\/env python2.7/g'
|
||||||
|
fi
|
30
src/math.f90
30
src/math.f90
|
@ -160,7 +160,7 @@ module math
|
||||||
math_rotate_forward33, &
|
math_rotate_forward33, &
|
||||||
math_rotate_backward33, &
|
math_rotate_backward33, &
|
||||||
math_rotate_forward3333, &
|
math_rotate_forward3333, &
|
||||||
math_limit
|
math_clip
|
||||||
private :: &
|
private :: &
|
||||||
math_check, &
|
math_check, &
|
||||||
halton
|
halton
|
||||||
|
@ -1363,16 +1363,16 @@ pure function math_RtoEuler(R)
|
||||||
sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
||||||
|
|
||||||
! calculate PHI
|
! calculate PHI
|
||||||
math_RtoEuler(2) = acos(math_limit(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal))
|
math_RtoEuler(2) = acos(math_clip(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal))
|
||||||
|
|
||||||
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
|
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
|
||||||
math_RtoEuler(3) = 0.0_pReal
|
math_RtoEuler(3) = 0.0_pReal
|
||||||
math_RtoEuler(1) = acos(math_limit(R(1,1)/squvw, -1.0_pReal, 1.0_pReal))
|
math_RtoEuler(1) = acos(math_clip(R(1,1)/squvw, -1.0_pReal, 1.0_pReal))
|
||||||
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
||||||
else
|
else
|
||||||
math_RtoEuler(3) = acos(math_limit(R(2,3)/sqhk, -1.0_pReal, 1.0_pReal))
|
math_RtoEuler(3) = acos(math_clip(R(2,3)/sqhk, -1.0_pReal, 1.0_pReal))
|
||||||
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
||||||
math_RtoEuler(1) = acos(math_limit(-R(3,2)/sin(math_RtoEuler(2)), -1.0_pReal, 1.0_pReal))
|
math_RtoEuler(1) = acos(math_clip(-R(3,2)/sin(math_RtoEuler(2)), -1.0_pReal, 1.0_pReal))
|
||||||
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
||||||
end if
|
end if
|
||||||
|
|
||||||
|
@ -1654,7 +1654,7 @@ pure function math_qToEuler(qPassive)
|
||||||
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)**2+q(3)**2))
|
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)**2+q(3)**2))
|
||||||
|
|
||||||
if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then
|
if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then
|
||||||
math_qToEuler(1) = sign(2.0_pReal*acos(math_limit(q(1),-1.0_pReal, 1.0_pReal)),q(4))
|
math_qToEuler(1) = sign(2.0_pReal*acos(math_clip(q(1),-1.0_pReal, 1.0_pReal)),q(4))
|
||||||
math_qToEuler(3) = 0.0_pReal
|
math_qToEuler(3) = 0.0_pReal
|
||||||
else
|
else
|
||||||
math_qToEuler(1) = atan2(+q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4))
|
math_qToEuler(1) = atan2(+q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4))
|
||||||
|
@ -1681,7 +1681,7 @@ pure function math_qToAxisAngle(Q)
|
||||||
real(pReal) :: halfAngle, sinHalfAngle
|
real(pReal) :: halfAngle, sinHalfAngle
|
||||||
real(pReal), dimension(4) :: math_qToAxisAngle
|
real(pReal), dimension(4) :: math_qToAxisAngle
|
||||||
|
|
||||||
halfAngle = acos(math_limit(Q(1),-1.0_pReal,1.0_pReal))
|
halfAngle = acos(math_clip(Q(1),-1.0_pReal,1.0_pReal))
|
||||||
sinHalfAngle = sin(halfAngle)
|
sinHalfAngle = sin(halfAngle)
|
||||||
|
|
||||||
smallRotation: if (sinHalfAngle <= 1.0e-4_pReal) then
|
smallRotation: if (sinHalfAngle <= 1.0e-4_pReal) then
|
||||||
|
@ -1741,7 +1741,7 @@ real(pReal) pure function math_EulerMisorientation(EulerA,EulerB)
|
||||||
cosTheta = (math_trace33(math_mul33x33(math_EulerToR(EulerB), &
|
cosTheta = (math_trace33(math_mul33x33(math_EulerToR(EulerB), &
|
||||||
transpose(math_EulerToR(EulerA)))) - 1.0_pReal) * 0.5_pReal
|
transpose(math_EulerToR(EulerA)))) - 1.0_pReal) * 0.5_pReal
|
||||||
|
|
||||||
math_EulerMisorientation = acos(math_limit(cosTheta,-1.0_pReal,1.0_pReal))
|
math_EulerMisorientation = acos(math_clip(cosTheta,-1.0_pReal,1.0_pReal))
|
||||||
|
|
||||||
end function math_EulerMisorientation
|
end function math_EulerMisorientation
|
||||||
|
|
||||||
|
@ -2052,7 +2052,7 @@ function math_eigenvectorBasisSym33(m)
|
||||||
EB(3,3,3)=1.0_pReal
|
EB(3,3,3)=1.0_pReal
|
||||||
else threeSimilarEigenvalues
|
else threeSimilarEigenvalues
|
||||||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||||||
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||||||
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||||||
[cos(phi/3.0_pReal), &
|
[cos(phi/3.0_pReal), &
|
||||||
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
||||||
|
@ -2117,7 +2117,7 @@ function math_eigenvectorBasisSym33_log(m)
|
||||||
EB(3,3,3)=1.0_pReal
|
EB(3,3,3)=1.0_pReal
|
||||||
else threeSimilarEigenvalues
|
else threeSimilarEigenvalues
|
||||||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||||||
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||||||
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||||||
[cos(phi/3.0_pReal), &
|
[cos(phi/3.0_pReal), &
|
||||||
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
||||||
|
@ -2229,7 +2229,7 @@ function math_eigenvaluesSym33(m)
|
||||||
math_eigenvaluesSym33 = math_eigenvaluesSym(m)
|
math_eigenvaluesSym33 = math_eigenvaluesSym(m)
|
||||||
else
|
else
|
||||||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||||||
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||||||
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||||||
[cos(phi/3.0_pReal), &
|
[cos(phi/3.0_pReal), &
|
||||||
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
||||||
|
@ -2614,7 +2614,7 @@ end function math_rotate_forward3333
|
||||||
!> @brief limits a scalar value to a certain range (either one or two sided)
|
!> @brief limits a scalar value to a certain range (either one or two sided)
|
||||||
! Will return NaN if left > right
|
! Will return NaN if left > right
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
real(pReal) pure function math_limit(a, left, right)
|
real(pReal) pure function math_clip(a, left, right)
|
||||||
use, intrinsic :: &
|
use, intrinsic :: &
|
||||||
IEEE_arithmetic
|
IEEE_arithmetic
|
||||||
|
|
||||||
|
@ -2623,14 +2623,14 @@ real(pReal) pure function math_limit(a, left, right)
|
||||||
real(pReal), intent(in), optional :: left, right
|
real(pReal), intent(in), optional :: left, right
|
||||||
|
|
||||||
|
|
||||||
math_limit = min ( &
|
math_clip = min ( &
|
||||||
max (merge(left, -huge(a), present(left)), a), &
|
max (merge(left, -huge(a), present(left)), a), &
|
||||||
merge(right, huge(a), present(right)) &
|
merge(right, huge(a), present(right)) &
|
||||||
)
|
)
|
||||||
|
|
||||||
if (present(left) .and. present(right)) &
|
if (present(left) .and. present(right)) &
|
||||||
math_limit = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_limit, left>right)
|
math_clip = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_clip, left>right)
|
||||||
|
|
||||||
end function math_limit
|
end function math_clip
|
||||||
|
|
||||||
end module math
|
end module math
|
||||||
|
|
Loading…
Reference in New Issue