untested and unused code
This commit is contained in:
parent
a587e70704
commit
5ea2fa97a0
|
@ -97,7 +97,7 @@ processing:
|
||||||
script:
|
script:
|
||||||
- cd $DAMASKROOT/python
|
- cd $DAMASKROOT/python
|
||||||
- pytest --basetemp=${TESTROOT}/python -v --cov --cov-report=term
|
- pytest --basetemp=${TESTROOT}/python -v --cov --cov-report=term
|
||||||
- coverage report --fail-under=85
|
- coverage report --fail-under=90
|
||||||
except:
|
except:
|
||||||
- master
|
- master
|
||||||
- release
|
- release
|
||||||
|
|
|
@ -85,7 +85,6 @@ class Test:
|
||||||
def execute(self):
|
def execute(self):
|
||||||
"""Run all variants and report first failure."""
|
"""Run all variants and report first failure."""
|
||||||
if not self.options.keep:
|
if not self.options.keep:
|
||||||
if not self.feasible(): return -1
|
|
||||||
self.clean()
|
self.clean()
|
||||||
self.prepareAll()
|
self.prepareAll()
|
||||||
|
|
||||||
|
@ -114,10 +113,6 @@ class Test:
|
||||||
return variant+1 # return culprit
|
return variant+1 # return culprit
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
def feasible(self):
|
|
||||||
"""Check whether test is possible or not (e.g. no license available)."""
|
|
||||||
return True
|
|
||||||
|
|
||||||
def clean(self):
|
def clean(self):
|
||||||
"""Delete directory tree containing current results."""
|
"""Delete directory tree containing current results."""
|
||||||
try:
|
try:
|
||||||
|
@ -172,11 +167,6 @@ class Test:
|
||||||
return os.path.normpath(os.path.join(self.dirBase,'current/'))
|
return os.path.normpath(os.path.join(self.dirBase,'current/'))
|
||||||
|
|
||||||
|
|
||||||
def dirProof(self):
|
|
||||||
"""Directory containing human readable proof of correctness for the test."""
|
|
||||||
return os.path.normpath(os.path.join(self.dirBase,'proof/'))
|
|
||||||
|
|
||||||
|
|
||||||
def fileInRoot(self,dir,file):
|
def fileInRoot(self,dir,file):
|
||||||
"""Path to a file in the root directory of DAMASK."""
|
"""Path to a file in the root directory of DAMASK."""
|
||||||
return str(Path(os.environ['DAMASK_ROOT'])/dir/file)
|
return str(Path(os.environ['DAMASK_ROOT'])/dir/file)
|
||||||
|
@ -192,11 +182,6 @@ class Test:
|
||||||
return os.path.join(self.dirCurrent(),file)
|
return os.path.join(self.dirCurrent(),file)
|
||||||
|
|
||||||
|
|
||||||
def fileInProof(self,file):
|
|
||||||
"""Path to a file in the proof directory for the test."""
|
|
||||||
return os.path.join(self.dirProof(),file)
|
|
||||||
|
|
||||||
|
|
||||||
def copy(self, mapA, mapB,
|
def copy(self, mapA, mapB,
|
||||||
A = [], B = []):
|
A = [], B = []):
|
||||||
"""
|
"""
|
||||||
|
@ -249,17 +234,6 @@ class Test:
|
||||||
raise FileNotFoundError
|
raise FileNotFoundError
|
||||||
|
|
||||||
|
|
||||||
def copy_Proof2Current(self,sourcefiles=[],targetfiles=[]):
|
|
||||||
|
|
||||||
if len(targetfiles) == 0: targetfiles = sourcefiles
|
|
||||||
for i,f in enumerate(sourcefiles):
|
|
||||||
try:
|
|
||||||
shutil.copy2(self.fileInProof(f),self.fileInCurrent(targetfiles[i]))
|
|
||||||
except FileNotFoundError:
|
|
||||||
logging.critical(f'Proof2Current: Unable to copy file "{f}"')
|
|
||||||
raise FileNotFoundError
|
|
||||||
|
|
||||||
|
|
||||||
def copy_Current2Current(self,sourcefiles=[],targetfiles=[]):
|
def copy_Current2Current(self,sourcefiles=[],targetfiles=[]):
|
||||||
|
|
||||||
for i,f in enumerate(sourcefiles):
|
for i,f in enumerate(sourcefiles):
|
||||||
|
@ -281,158 +255,6 @@ class Test:
|
||||||
return out,error
|
return out,error
|
||||||
|
|
||||||
|
|
||||||
def compare_Table(self,headings0,file0,
|
|
||||||
headings1,file1,
|
|
||||||
normHeadings='',normType=None,
|
|
||||||
absoluteTolerance=False,perLine=False,skipLines=[]):
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
logging.info('\n '.join(['comparing ASCII Tables',file0,file1]))
|
|
||||||
if normHeadings == '': normHeadings = headings0
|
|
||||||
|
|
||||||
# check if comparison is possible and determine length of columns
|
|
||||||
if len(headings0) == len(headings1) == len(normHeadings):
|
|
||||||
dataLength = len(headings0)
|
|
||||||
length = [1 for i in range(dataLength)]
|
|
||||||
shape = [[] for i in range(dataLength)]
|
|
||||||
data = [[] for i in range(dataLength)]
|
|
||||||
maxError = [0.0 for i in range(dataLength)]
|
|
||||||
absTol = [absoluteTolerance for i in range(dataLength)]
|
|
||||||
column = [[1 for i in range(dataLength)] for j in range(2)]
|
|
||||||
|
|
||||||
norm = [[] for i in range(dataLength)]
|
|
||||||
normLength = [1 for i in range(dataLength)]
|
|
||||||
normShape = [[] for i in range(dataLength)]
|
|
||||||
normColumn = [1 for i in range(dataLength)]
|
|
||||||
|
|
||||||
for i in range(dataLength):
|
|
||||||
if headings0[i]['shape'] != headings1[i]['shape']:
|
|
||||||
raise Exception(f"shape mismatch between {headings0[i]['label']} and {headings1[i]['label']}")
|
|
||||||
shape[i] = headings0[i]['shape']
|
|
||||||
for j in range(np.shape(shape[i])[0]):
|
|
||||||
length[i] *= shape[i][j]
|
|
||||||
normShape[i] = normHeadings[i]['shape']
|
|
||||||
for j in range(np.shape(normShape[i])[0]):
|
|
||||||
normLength[i] *= normShape[i][j]
|
|
||||||
else:
|
|
||||||
raise Exception(f'trying to compare {len(headings0)} with {len(headings1)} normed by {len(normHeadings)} data sets')
|
|
||||||
|
|
||||||
table0 = damask.ASCIItable(name=file0,readonly=True)
|
|
||||||
table0.head_read()
|
|
||||||
table1 = damask.ASCIItable(name=file1,readonly=True)
|
|
||||||
table1.head_read()
|
|
||||||
|
|
||||||
for i in range(dataLength):
|
|
||||||
key0 = ('1_' if length[i]>1 else '') + headings0[i]['label']
|
|
||||||
key1 = ('1_' if length[i]>1 else '') + headings1[i]['label']
|
|
||||||
normKey = ('1_' if normLength[i]>1 else '') + normHeadings[i]['label']
|
|
||||||
if key0 not in table0.labels(raw = True):
|
|
||||||
raise Exception(f'column "{key0}" not found in first table...')
|
|
||||||
elif key1 not in table1.labels(raw = True):
|
|
||||||
raise Exception(f'column "{key1}" not found in second table...')
|
|
||||||
elif normKey not in table0.labels(raw = True):
|
|
||||||
raise Exception(f'column "{normKey}" not found in first table...')
|
|
||||||
else:
|
|
||||||
column[0][i] = table0.label_index(key0)
|
|
||||||
column[1][i] = table1.label_index(key1)
|
|
||||||
normColumn[i] = table0.label_index(normKey)
|
|
||||||
|
|
||||||
line0 = 0
|
|
||||||
while table0.data_read(): # read next data line of ASCII table
|
|
||||||
if line0 not in skipLines:
|
|
||||||
for i in range(dataLength):
|
|
||||||
myData = np.array(list(map(float,table0.data[column[0][i]:\
|
|
||||||
column[0][i]+length[i]])),'d')
|
|
||||||
normData = np.array(list(map(float,table0.data[normColumn[i]:\
|
|
||||||
normColumn[i]+normLength[i]])),'d')
|
|
||||||
data[i] = np.append(data[i],np.reshape(myData,shape[i]))
|
|
||||||
if normType == 'pInf':
|
|
||||||
norm[i] = np.append(norm[i],np.max(np.abs(normData)))
|
|
||||||
else:
|
|
||||||
norm[i] = np.append(norm[i],np.linalg.norm(np.reshape(normData,normShape[i]),normType))
|
|
||||||
line0 += 1
|
|
||||||
|
|
||||||
for i in range(dataLength):
|
|
||||||
if not perLine: norm[i] = [np.max(norm[i]) for j in range(line0-len(skipLines))]
|
|
||||||
data[i] = np.reshape(data[i],[line0-len(skipLines),length[i]])
|
|
||||||
if any(norm[i]) == 0.0 or absTol[i]:
|
|
||||||
norm[i] = [1.0 for j in range(line0-len(skipLines))]
|
|
||||||
absTol[i] = True
|
|
||||||
logging.warning(f'''{"At least one" if perLine else "Maximum"} norm of
|
|
||||||
"{headings0[i]['label']}" in first table is 0.0, using absolute tolerance''')
|
|
||||||
|
|
||||||
line1 = 0
|
|
||||||
while table1.data_read(): # read next data line of ASCII table
|
|
||||||
if line1 not in skipLines:
|
|
||||||
for i in range(dataLength):
|
|
||||||
myData = np.array(list(map(float,table1.data[column[1][i]:\
|
|
||||||
column[1][i]+length[i]])),'d')
|
|
||||||
maxError[i] = max(maxError[i],np.linalg.norm(np.reshape(myData-data[i][line1-len(skipLines),:],shape[i]))/
|
|
||||||
norm[i][line1-len(skipLines)])
|
|
||||||
line1 +=1
|
|
||||||
|
|
||||||
if (line0 != line1): raise Exception(f'found {line0} lines in first table but {line1} in second table')
|
|
||||||
|
|
||||||
logging.info(' ********')
|
|
||||||
for i in range(dataLength):
|
|
||||||
logging.info(f''' * maximum {'absolute' if absTol[i] else 'relative'} error {maxError[i]}
|
|
||||||
between {headings0[i]['label']} and {headings1[i]['label']}''')
|
|
||||||
logging.info(' ********')
|
|
||||||
return maxError
|
|
||||||
|
|
||||||
|
|
||||||
def compare_TablesStatistically(self,
|
|
||||||
files = [None,None], # list of file names
|
|
||||||
columns = [None], # list of list of column labels (per file)
|
|
||||||
meanTol = 1.0e-4,
|
|
||||||
stdTol = 1.0e-6,
|
|
||||||
preFilter = 1.0e-9):
|
|
||||||
"""
|
|
||||||
Calculate statistics of tables.
|
|
||||||
|
|
||||||
threshold can be used to ignore small values (a negative number disables this feature)
|
|
||||||
"""
|
|
||||||
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
|
||||||
files = [str(files)]
|
|
||||||
|
|
||||||
tables = [damask.Table.load(filename) for filename in files]
|
|
||||||
for table in tables:
|
|
||||||
table._label_discrete()
|
|
||||||
|
|
||||||
columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files
|
|
||||||
columns = columns[:len(files)] # truncate to same length as files
|
|
||||||
|
|
||||||
for i,column in enumerate(columns):
|
|
||||||
if column is None: columns[i] = list(tables[i].data.columns) # if no column is given, read all
|
|
||||||
|
|
||||||
logging.info('comparing ASCIItables statistically')
|
|
||||||
for i in range(len(columns)):
|
|
||||||
columns[i] = columns[0] if not columns[i] else \
|
|
||||||
([columns[i]] if not (isinstance(columns[i], Iterable) and not isinstance(columns[i], str)) else \
|
|
||||||
columns[i]
|
|
||||||
)
|
|
||||||
logging.info(files[i]+':'+','.join(columns[i]))
|
|
||||||
|
|
||||||
if len(files) < 2: return True # single table is always close to itself...
|
|
||||||
|
|
||||||
data = []
|
|
||||||
for table,labels in zip(tables,columns):
|
|
||||||
table._label_uniform()
|
|
||||||
data.append(np.hstack(list(table.get(label) for label in labels)))
|
|
||||||
|
|
||||||
|
|
||||||
for i in range(1,len(data)):
|
|
||||||
delta = data[i]-data[i-1]
|
|
||||||
normBy = (np.abs(data[i]) + np.abs(data[i-1]))*0.5
|
|
||||||
normedDelta = np.where(normBy>preFilter,delta/normBy,0.0)
|
|
||||||
mean = np.amax(np.abs(np.mean(normedDelta,0)))
|
|
||||||
std = np.amax(np.std(normedDelta,0))
|
|
||||||
logging.info(f'mean: {mean:f}')
|
|
||||||
logging.info(f'std: {std:f}')
|
|
||||||
|
|
||||||
return (mean < meanTol) & (std < stdTol)
|
|
||||||
|
|
||||||
|
|
||||||
def report_Success(self,culprit):
|
def report_Success(self,culprit):
|
||||||
|
|
||||||
ret = culprit
|
ret = culprit
|
||||||
|
|
Loading…
Reference in New Issue