plasticity test (phenoplus) working again with changed polar decomposition
This commit is contained in:
parent
a56f720e36
commit
5d0900ee2e
156
code/math.f90
156
code/math.f90
|
@ -152,6 +152,8 @@ module math
|
|||
math_symmetricEulers, &
|
||||
math_spectralDecompositionSym33, &
|
||||
math_spectralDecompositionSym, &
|
||||
math_eigenValuesVectorsSym33, &
|
||||
math_eigenValuesVectorsSym, &
|
||||
math_rotationalPart33, &
|
||||
math_invariantsSym33, &
|
||||
math_eigenvaluesSym33, &
|
||||
|
@ -472,7 +474,23 @@ end function math_crossproduct
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief tensor product a \otimes b
|
||||
!> @brief tensor product A \otimes B of arbitrary sized vectors A and B
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_tensorproduct(A,B)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(:), intent(in) :: A,B
|
||||
real(pReal), dimension(size(A,1),size(B,1)) :: math_tensorproduct
|
||||
|
||||
integer(pInt) :: i,j
|
||||
|
||||
forall (i=1_pInt:size(A,1),j=1_pInt:size(B,1)) math_tensorproduct(i,j) = A(i)*B(j)
|
||||
|
||||
end function math_tensorproduct
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief tensor product A \otimes B of leght-3 vectors A and B
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_tensorproduct33(A,B)
|
||||
|
||||
|
@ -682,7 +700,7 @@ pure function math_exp33(A,n)
|
|||
math_exp33 = B ! A^0 = eye2
|
||||
|
||||
do i = 1_pInt,n
|
||||
invfac = invfac/real(i) ! invfac = 1/i!
|
||||
invfac = invfac/real(i,pReal) ! invfac = 1/i!
|
||||
B = math_mul33x33(B,A)
|
||||
math_exp33 = math_exp33 + invfac*B ! exp = SUM (A^i)/i!
|
||||
enddo
|
||||
|
@ -761,6 +779,7 @@ pure subroutine math_invert33(A, InvA, DetA, error)
|
|||
DetA = A(1,1) * InvA(1,1) + A(1,2) * InvA(2,1) + A(1,3) * InvA(3,1)
|
||||
|
||||
if (abs(DetA) <= tiny(DetA)) then
|
||||
InvA = 0.0_pReal
|
||||
error = .true.
|
||||
else
|
||||
InvA(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2)
|
||||
|
@ -1913,7 +1932,7 @@ end function math_symmetricEulers
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief eigenvalues and eigenvectors of symmetric matrix m
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine math_spectralDecompositionSym(m,values,vectors,error)
|
||||
subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(:,:), intent(in) :: m
|
||||
|
@ -1924,7 +1943,7 @@ subroutine math_spectralDecompositionSym(m,values,vectors,error)
|
|||
integer(pInt) :: info
|
||||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||
|
||||
vectors = M ! copy matrix to input (doubles as output) array
|
||||
vectors = m ! copy matrix to input (doubles as output) array
|
||||
#if(FLOAT==8)
|
||||
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
|
||||
#elif(FLOAT==4)
|
||||
|
@ -1932,68 +1951,85 @@ subroutine math_spectralDecompositionSym(m,values,vectors,error)
|
|||
#endif
|
||||
error = (info == 0_pInt)
|
||||
|
||||
end subroutine math_spectralDecompositionSym
|
||||
end subroutine math_eigenValuesVectorsSym
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m using an analytical expression
|
||||
!> and the general LAPACK powered version for arbritrary sized matrices as fallback
|
||||
!> @author Joachim Kopp, Max–Planck–Institut für Kernphysik, Heidelberg (Copyright (C) 2006)
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
|
||||
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine math_spectralDecompositionSym33(m,values,vectors)
|
||||
subroutine math_eigenValuesVectorsSym33(m,values,vectors)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3,3),intent(in) :: m
|
||||
real(pReal), dimension(3), intent(out) :: values
|
||||
real(pReal), dimension(3,3),intent(out) :: vectors
|
||||
real(pReal) :: T, U, norm, threshold
|
||||
real(pReal), dimension(3,3), intent(in) :: m
|
||||
real(pReal), dimension(3), intent(out) :: values
|
||||
real(pReal), dimension(3,3), intent(out) :: vectors
|
||||
logical :: error
|
||||
integer(pInt) :: info
|
||||
real(pReal), dimension((64+2)*3) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||
|
||||
values = math_eigenvaluesSym33(m)
|
||||
vectors = m ! copy matrix to input (doubles as output) array
|
||||
#if(FLOAT==8)
|
||||
call dsyev('V','U',3,vectors,3,values,work,(64+2)*3,info)
|
||||
#elif(FLOAT==4)
|
||||
call ssyev('V','U',3,vectors,3,values,work,(64+2)*3,info)
|
||||
#endif
|
||||
error = (info == 0_pInt)
|
||||
|
||||
vectors(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), &
|
||||
m(1, 3) * m(1, 2) - m(2, 3) * m(1, 1), &
|
||||
m(1, 2)**2_pInt]
|
||||
|
||||
T = maxval(abs(values))
|
||||
U = max(T, T**2_pInt)
|
||||
threshold = sqrt(5.0e-14_pReal * U**2_pInt)
|
||||
|
||||
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
|
||||
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
|
||||
vectors(2,2) + m(2, 3) * values(1), &
|
||||
(m(1,1) - values(1)) * (m(2,2) - values(1)) - vectors(3,2)]
|
||||
norm = norm2(vectors(1:3, 1))
|
||||
|
||||
fallback1: if(norm < threshold) then
|
||||
call math_spectralDecompositionSym(m,values,vectors,error)
|
||||
return
|
||||
endif fallback1
|
||||
|
||||
vectors(1:3,1) = vectors(1:3, 1) / norm
|
||||
|
||||
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
|
||||
vectors(1:3,2) = [ vectors(1,2) + m(1, 3) * values(2), &
|
||||
vectors(2,2) + m(2, 3) * values(2), &
|
||||
(m(1,1) - values(2)) * (m(2,2) - values(2)) - vectors(3,2)]
|
||||
norm = norm2(vectors(1:3, 2))
|
||||
|
||||
fallback2: if(norm < threshold) then
|
||||
call math_spectralDecompositionSym(m,values,vectors,error)
|
||||
return
|
||||
endif fallback2
|
||||
vectors(1:3,2) = vectors(1:3, 2) / norm
|
||||
|
||||
! Calculate third eigenvector according to v[2] = v[0] x v[1]
|
||||
vectors(1:3,3) = math_crossproduct(vectors(1:3,1),vectors(1:3,2))
|
||||
|
||||
end subroutine math_spectralDecompositionSym33
|
||||
end subroutine math_eigenValuesVectorsSym33
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief rotational part from polar decomposition of tensor m
|
||||
!> @brief eigenvalues and eigenvectors of symmetric matrix m
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_spectralDecompositionSym(m)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(:,:), intent(in) :: m
|
||||
real(pReal), dimension(size(m,1)) :: values
|
||||
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
|
||||
real(pReal), dimension(size(m,1),size(m,1)) :: math_spectralDecompositionSym
|
||||
logical :: error
|
||||
integer(pInt) :: i
|
||||
|
||||
math_spectralDecompositionSym = 0.0_pReal
|
||||
call math_eigenValuesVectorsSym(m,values,vectors,error)
|
||||
if(error) return
|
||||
|
||||
do i=1_pInt, size(m,1)
|
||||
math_spectralDecompositionSym = math_spectralDecompositionSym &
|
||||
+ sqrt(values(i)) * math_tensorproduct(vectors(:,i),vectors(:,i))
|
||||
enddo
|
||||
|
||||
end function math_spectralDecompositionSym
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_spectralDecompositionSym33(m)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3,3), intent(in) :: m
|
||||
real(pReal), dimension(3,3) :: math_spectralDecompositionSym33
|
||||
real(pReal), dimension(3) :: values
|
||||
real(pReal), dimension(3,3) :: vectors
|
||||
logical :: error
|
||||
integer(pInt) :: i
|
||||
|
||||
math_spectralDecompositionSym33 = 0.0_pReal
|
||||
call math_eigenValuesVectorsSym33(m,values,vectors)
|
||||
if(error) return
|
||||
|
||||
do i=1_pInt, 3_pInt
|
||||
math_spectralDecompositionSym33 = math_spectralDecompositionSym33 &
|
||||
+ sqrt(values(i)) * math_tensorproduct(vectors(:,i),vectors(:,i))
|
||||
enddo
|
||||
|
||||
end function math_spectralDecompositionSym33
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief rotational part from polar decomposition of 33 tensor m
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_rotationalPart33(m)
|
||||
use IO, only: &
|
||||
|
@ -2002,17 +2038,11 @@ function math_rotationalPart33(m)
|
|||
implicit none
|
||||
real(pReal), intent(in), dimension(3,3) :: m
|
||||
real(pReal), dimension(3,3) :: math_rotationalPart33
|
||||
real(pReal), dimension(3,3) :: U, mTm , Uinv, EB
|
||||
real(pReal), dimension(3) :: EV
|
||||
|
||||
mTm = math_mul33x33(math_transpose33(m),m)
|
||||
call math_spectralDecompositionSym33(mTm,EV,EB)
|
||||
|
||||
U = sqrt(EV(1)) * math_tensorproduct33(EB(1:3,1),EB(1:3,1)) &
|
||||
+ sqrt(EV(2)) * math_tensorproduct33(EB(1:3,2),EB(1:3,2)) &
|
||||
+ sqrt(EV(3)) * math_tensorproduct33(EB(1:3,3),EB(1:3,3))
|
||||
real(pReal), dimension(3,3) :: U , Uinv
|
||||
|
||||
U = math_spectralDecompositionSym33(math_mul33x33(transpose(m),m))
|
||||
Uinv = math_inv33(U)
|
||||
|
||||
if (all(abs(Uinv) <= tiny(Uinv))) then ! math_inv33 returns zero when failed, avoid floating point equality comparison
|
||||
math_rotationalPart33 = math_I3
|
||||
call IO_warning(650_pInt)
|
||||
|
|
|
@ -1637,7 +1637,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
math_Plain3333to99, &
|
||||
math_Mandel6to33, &
|
||||
math_Mandel33to6, &
|
||||
math_spectralDecompositionSym, &
|
||||
math_eigenValuesVectorsSym, &
|
||||
math_tensorproduct33, &
|
||||
math_symmetric33, &
|
||||
math_mul33x3
|
||||
|
@ -1783,7 +1783,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
abs(plastic_dislotwin_sbResistance(instance)) > tiny(0.0_pReal)) then
|
||||
gdot_sb = 0.0_pReal
|
||||
dgdot_dtausb = 0.0_pReal
|
||||
call math_spectralDecompositionSym(math_Mandel6to33(Tstar_v),eigValues,eigVectors,error)
|
||||
call math_eigenValuesVectorsSym(math_Mandel6to33(Tstar_v),eigValues,eigVectors,error)
|
||||
do j = 1_pInt,6_pInt
|
||||
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j))
|
||||
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j))
|
||||
|
@ -2197,8 +2197,8 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
use math, only: &
|
||||
pi, &
|
||||
math_Mandel6to33, &
|
||||
math_eigenvaluesSym33, &
|
||||
math_spectralDecompositionSym33
|
||||
math_eigenValuesSym33, &
|
||||
math_eigenValuesVectorsSym33
|
||||
use material, only: &
|
||||
material_phase, &
|
||||
phase_plasticityInstance,&
|
||||
|
@ -2519,7 +2519,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
plastic_dislotwin_postResults(c+1_pInt:c+3_pInt) = math_eigenvaluesSym33(math_Mandel6to33(Tstar_v))
|
||||
c = c + 3_pInt
|
||||
case (sb_eigenvectors_ID)
|
||||
call math_spectralDecompositionSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors)
|
||||
call math_eigenValuesVectorsSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+9_pInt) = reshape(eigVectors,[9])
|
||||
c = c + 9_pInt
|
||||
case (stress_trans_fraction_ID)
|
||||
|
|
Loading…
Reference in New Issue