plasticity test (phenoplus) working again with changed polar decomposition

This commit is contained in:
Martin Diehl 2016-02-26 15:36:24 +01:00
parent a56f720e36
commit 5d0900ee2e
2 changed files with 101 additions and 71 deletions

View File

@ -152,6 +152,8 @@ module math
math_symmetricEulers, & math_symmetricEulers, &
math_spectralDecompositionSym33, & math_spectralDecompositionSym33, &
math_spectralDecompositionSym, & math_spectralDecompositionSym, &
math_eigenValuesVectorsSym33, &
math_eigenValuesVectorsSym, &
math_rotationalPart33, & math_rotationalPart33, &
math_invariantsSym33, & math_invariantsSym33, &
math_eigenvaluesSym33, & math_eigenvaluesSym33, &
@ -472,7 +474,23 @@ end function math_crossproduct
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief tensor product a \otimes b !> @brief tensor product A \otimes B of arbitrary sized vectors A and B
!--------------------------------------------------------------------------------------------------
pure function math_tensorproduct(A,B)
implicit none
real(pReal), dimension(:), intent(in) :: A,B
real(pReal), dimension(size(A,1),size(B,1)) :: math_tensorproduct
integer(pInt) :: i,j
forall (i=1_pInt:size(A,1),j=1_pInt:size(B,1)) math_tensorproduct(i,j) = A(i)*B(j)
end function math_tensorproduct
!--------------------------------------------------------------------------------------------------
!> @brief tensor product A \otimes B of leght-3 vectors A and B
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure function math_tensorproduct33(A,B) pure function math_tensorproduct33(A,B)
@ -682,7 +700,7 @@ pure function math_exp33(A,n)
math_exp33 = B ! A^0 = eye2 math_exp33 = B ! A^0 = eye2
do i = 1_pInt,n do i = 1_pInt,n
invfac = invfac/real(i) ! invfac = 1/i! invfac = invfac/real(i,pReal) ! invfac = 1/i!
B = math_mul33x33(B,A) B = math_mul33x33(B,A)
math_exp33 = math_exp33 + invfac*B ! exp = SUM (A^i)/i! math_exp33 = math_exp33 + invfac*B ! exp = SUM (A^i)/i!
enddo enddo
@ -761,6 +779,7 @@ pure subroutine math_invert33(A, InvA, DetA, error)
DetA = A(1,1) * InvA(1,1) + A(1,2) * InvA(2,1) + A(1,3) * InvA(3,1) DetA = A(1,1) * InvA(1,1) + A(1,2) * InvA(2,1) + A(1,3) * InvA(3,1)
if (abs(DetA) <= tiny(DetA)) then if (abs(DetA) <= tiny(DetA)) then
InvA = 0.0_pReal
error = .true. error = .true.
else else
InvA(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2) InvA(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2)
@ -1913,7 +1932,7 @@ end function math_symmetricEulers
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric matrix m !> @brief eigenvalues and eigenvectors of symmetric matrix m
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine math_spectralDecompositionSym(m,values,vectors,error) subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
implicit none implicit none
real(pReal), dimension(:,:), intent(in) :: m real(pReal), dimension(:,:), intent(in) :: m
@ -1924,7 +1943,7 @@ subroutine math_spectralDecompositionSym(m,values,vectors,error)
integer(pInt) :: info integer(pInt) :: info
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
vectors = M ! copy matrix to input (doubles as output) array vectors = m ! copy matrix to input (doubles as output) array
#if(FLOAT==8) #if(FLOAT==8)
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info) call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
#elif(FLOAT==4) #elif(FLOAT==4)
@ -1932,68 +1951,85 @@ subroutine math_spectralDecompositionSym(m,values,vectors,error)
#endif #endif
error = (info == 0_pInt) error = (info == 0_pInt)
end subroutine math_spectralDecompositionSym end subroutine math_eigenValuesVectorsSym
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m using an analytical expression !> @brief eigenvalues and eigenvectors of symmetric 33 matrix m
!> and the general LAPACK powered version for arbritrary sized matrices as fallback
!> @author Joachim Kopp, MaxPlanckInstitut für Kernphysik, Heidelberg (Copyright (C) 2006)
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine math_spectralDecompositionSym33(m,values,vectors) subroutine math_eigenValuesVectorsSym33(m,values,vectors)
implicit none implicit none
real(pReal), dimension(3,3),intent(in) :: m real(pReal), dimension(3,3), intent(in) :: m
real(pReal), dimension(3), intent(out) :: values real(pReal), dimension(3), intent(out) :: values
real(pReal), dimension(3,3),intent(out) :: vectors real(pReal), dimension(3,3), intent(out) :: vectors
real(pReal) :: T, U, norm, threshold
logical :: error logical :: error
integer(pInt) :: info
real(pReal), dimension((64+2)*3) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
values = math_eigenvaluesSym33(m) vectors = m ! copy matrix to input (doubles as output) array
#if(FLOAT==8)
call dsyev('V','U',3,vectors,3,values,work,(64+2)*3,info)
#elif(FLOAT==4)
call ssyev('V','U',3,vectors,3,values,work,(64+2)*3,info)
#endif
error = (info == 0_pInt)
vectors(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), & end subroutine math_eigenValuesVectorsSym33
m(1, 3) * m(1, 2) - m(2, 3) * m(1, 1), &
m(1, 2)**2_pInt]
T = maxval(abs(values))
U = max(T, T**2_pInt)
threshold = sqrt(5.0e-14_pReal * U**2_pInt)
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
vectors(2,2) + m(2, 3) * values(1), &
(m(1,1) - values(1)) * (m(2,2) - values(1)) - vectors(3,2)]
norm = norm2(vectors(1:3, 1))
fallback1: if(norm < threshold) then
call math_spectralDecompositionSym(m,values,vectors,error)
return
endif fallback1
vectors(1:3,1) = vectors(1:3, 1) / norm
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
vectors(1:3,2) = [ vectors(1,2) + m(1, 3) * values(2), &
vectors(2,2) + m(2, 3) * values(2), &
(m(1,1) - values(2)) * (m(2,2) - values(2)) - vectors(3,2)]
norm = norm2(vectors(1:3, 2))
fallback2: if(norm < threshold) then
call math_spectralDecompositionSym(m,values,vectors,error)
return
endif fallback2
vectors(1:3,2) = vectors(1:3, 2) / norm
! Calculate third eigenvector according to v[2] = v[0] x v[1]
vectors(1:3,3) = math_crossproduct(vectors(1:3,1),vectors(1:3,2))
end subroutine math_spectralDecompositionSym33
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief rotational part from polar decomposition of tensor m !> @brief eigenvalues and eigenvectors of symmetric matrix m
!--------------------------------------------------------------------------------------------------
function math_spectralDecompositionSym(m)
implicit none
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)) :: values
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
real(pReal), dimension(size(m,1),size(m,1)) :: math_spectralDecompositionSym
logical :: error
integer(pInt) :: i
math_spectralDecompositionSym = 0.0_pReal
call math_eigenValuesVectorsSym(m,values,vectors,error)
if(error) return
do i=1_pInt, size(m,1)
math_spectralDecompositionSym = math_spectralDecompositionSym &
+ sqrt(values(i)) * math_tensorproduct(vectors(:,i),vectors(:,i))
enddo
end function math_spectralDecompositionSym
!--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m
!--------------------------------------------------------------------------------------------------
function math_spectralDecompositionSym33(m)
implicit none
real(pReal), dimension(3,3), intent(in) :: m
real(pReal), dimension(3,3) :: math_spectralDecompositionSym33
real(pReal), dimension(3) :: values
real(pReal), dimension(3,3) :: vectors
logical :: error
integer(pInt) :: i
math_spectralDecompositionSym33 = 0.0_pReal
call math_eigenValuesVectorsSym33(m,values,vectors)
if(error) return
do i=1_pInt, 3_pInt
math_spectralDecompositionSym33 = math_spectralDecompositionSym33 &
+ sqrt(values(i)) * math_tensorproduct(vectors(:,i),vectors(:,i))
enddo
end function math_spectralDecompositionSym33
!--------------------------------------------------------------------------------------------------
!> @brief rotational part from polar decomposition of 33 tensor m
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function math_rotationalPart33(m) function math_rotationalPart33(m)
use IO, only: & use IO, only: &
@ -2002,17 +2038,11 @@ function math_rotationalPart33(m)
implicit none implicit none
real(pReal), intent(in), dimension(3,3) :: m real(pReal), intent(in), dimension(3,3) :: m
real(pReal), dimension(3,3) :: math_rotationalPart33 real(pReal), dimension(3,3) :: math_rotationalPart33
real(pReal), dimension(3,3) :: U, mTm , Uinv, EB real(pReal), dimension(3,3) :: U , Uinv
real(pReal), dimension(3) :: EV
mTm = math_mul33x33(math_transpose33(m),m)
call math_spectralDecompositionSym33(mTm,EV,EB)
U = sqrt(EV(1)) * math_tensorproduct33(EB(1:3,1),EB(1:3,1)) &
+ sqrt(EV(2)) * math_tensorproduct33(EB(1:3,2),EB(1:3,2)) &
+ sqrt(EV(3)) * math_tensorproduct33(EB(1:3,3),EB(1:3,3))
U = math_spectralDecompositionSym33(math_mul33x33(transpose(m),m))
Uinv = math_inv33(U) Uinv = math_inv33(U)
if (all(abs(Uinv) <= tiny(Uinv))) then ! math_inv33 returns zero when failed, avoid floating point equality comparison if (all(abs(Uinv) <= tiny(Uinv))) then ! math_inv33 returns zero when failed, avoid floating point equality comparison
math_rotationalPart33 = math_I3 math_rotationalPart33 = math_I3
call IO_warning(650_pInt) call IO_warning(650_pInt)
@ -2675,4 +2705,4 @@ real(pReal) pure function math_limit(a, left, right)
end function math_limit end function math_limit
end module math end module math

View File

@ -1637,7 +1637,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
math_Plain3333to99, & math_Plain3333to99, &
math_Mandel6to33, & math_Mandel6to33, &
math_Mandel33to6, & math_Mandel33to6, &
math_spectralDecompositionSym, & math_eigenValuesVectorsSym, &
math_tensorproduct33, & math_tensorproduct33, &
math_symmetric33, & math_symmetric33, &
math_mul33x3 math_mul33x3
@ -1783,7 +1783,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
abs(plastic_dislotwin_sbResistance(instance)) > tiny(0.0_pReal)) then abs(plastic_dislotwin_sbResistance(instance)) > tiny(0.0_pReal)) then
gdot_sb = 0.0_pReal gdot_sb = 0.0_pReal
dgdot_dtausb = 0.0_pReal dgdot_dtausb = 0.0_pReal
call math_spectralDecompositionSym(math_Mandel6to33(Tstar_v),eigValues,eigVectors,error) call math_eigenValuesVectorsSym(math_Mandel6to33(Tstar_v),eigValues,eigVectors,error)
do j = 1_pInt,6_pInt do j = 1_pInt,6_pInt
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j)) sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j))
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j)) sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j))
@ -2197,8 +2197,8 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
use math, only: & use math, only: &
pi, & pi, &
math_Mandel6to33, & math_Mandel6to33, &
math_eigenvaluesSym33, & math_eigenValuesSym33, &
math_spectralDecompositionSym33 math_eigenValuesVectorsSym33
use material, only: & use material, only: &
material_phase, & material_phase, &
phase_plasticityInstance,& phase_plasticityInstance,&
@ -2519,7 +2519,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
plastic_dislotwin_postResults(c+1_pInt:c+3_pInt) = math_eigenvaluesSym33(math_Mandel6to33(Tstar_v)) plastic_dislotwin_postResults(c+1_pInt:c+3_pInt) = math_eigenvaluesSym33(math_Mandel6to33(Tstar_v))
c = c + 3_pInt c = c + 3_pInt
case (sb_eigenvectors_ID) case (sb_eigenvectors_ID)
call math_spectralDecompositionSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors) call math_eigenValuesVectorsSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors)
plastic_dislotwin_postResults(c+1_pInt:c+9_pInt) = reshape(eigVectors,[9]) plastic_dislotwin_postResults(c+1_pInt:c+9_pInt) = reshape(eigVectors,[9])
c = c + 9_pInt c = c + 9_pInt
case (stress_trans_fraction_ID) case (stress_trans_fraction_ID)
@ -2539,4 +2539,4 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
enddo enddo
end function plastic_dislotwin_postResults end function plastic_dislotwin_postResults
end module plastic_dislotwin end module plastic_dislotwin