naming reflect change from Piola-Kirchhoff to Mandel stress
not using the symmetrized stress anymore to avoid handling of symmetrized Schmid matrizes. The time saved when calculating the double contraction is probably anyway lost during the conversion from (3,3) to (6) of Mstar
This commit is contained in:
parent
0a6bde70c5
commit
5cf2973715
|
@ -482,7 +482,8 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
|
|||
real(pReal), dimension(9,9) :: &
|
||||
dLp_dMstar !< derivative of Lp with respect to Mstar (4th-order tensor)
|
||||
real(pReal), dimension(3,3) :: &
|
||||
temp_33
|
||||
temp_33, &
|
||||
Mstar
|
||||
integer(pInt) :: &
|
||||
ho, & !< homogenization
|
||||
tme !< thermal member position
|
||||
|
@ -492,7 +493,8 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
|
|||
ho = material_homog(ip,el)
|
||||
tme = thermalMapping(ho)%p(ip,el)
|
||||
|
||||
Mstar_v = math_Mandel33to6(math_mul33x33(math_mul33x33(transpose(Fi),Fi),math_Mandel6to33(Tstar_v)))
|
||||
Mstar = math_mul33x33(math_mul33x33(transpose(Fi),Fi),math_Mandel6to33(Tstar_v))
|
||||
Mstar_v = math_Mandel33to6(Mstar)
|
||||
|
||||
plasticityType: select case (phase_plasticity(material_phase(ipc,ip,el)))
|
||||
case (PLASTICITY_NONE_ID) plasticityType
|
||||
|
@ -501,7 +503,7 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
|
|||
case (PLASTICITY_ISOTROPIC_ID) plasticityType
|
||||
call plastic_isotropic_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
|
||||
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
|
||||
call plastic_phenopowerlaw_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
|
||||
call plastic_phenopowerlaw_LpAndItsTangent (Lp,dLp_dMstar,Mstar,ipc,ip,el)
|
||||
case (PLASTICITY_KINEHARDENING_ID) plasticityType
|
||||
call plastic_kinehardening_LpAndItsTangent (Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
|
||||
case (PLASTICITY_NONLOCAL_ID) plasticityType
|
||||
|
|
|
@ -357,6 +357,16 @@ subroutine plastic_phenopowerlaw_init
|
|||
index_myFamily = sum(prm%Nslip(1:f-1_pInt))
|
||||
|
||||
mySlipSystems: do j = 1_pInt,prm%Nslip(f)
|
||||
!prm%Schmid_pos(1:3,1:3,index_myFamily+j) = lattice_Sslip(1:3,1:3,1,index_myFamily+j,p)
|
||||
!prm%Schmid_neg(1:3,1:3,index_myFamily+j) = lattice_Sslip(1:3,1:3,2,index_myFamily+j,p)
|
||||
!do k = 1,size(prm%nonSchmidCoeff)
|
||||
! prm%nonSchmid_pos(1:3,1:3,k,index_myFamily+j) = lattice_Sslip(1:3,1:3,2*k, index_myFamily+j,p)
|
||||
! prm%nonSchmid_neg(1:3,1:3,k,index_myFamily+j) = lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+j,p)
|
||||
! !nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + prm%nonSchmidCoeff(k)*&
|
||||
! ! lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph)
|
||||
! !nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + prm%nonSchmidCoeff(k)*&
|
||||
! ! lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph)
|
||||
!enddo
|
||||
otherSlipFamilies: do o = 1_pInt,size(prm%Nslip,1)
|
||||
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
|
||||
otherSlipSystems: do k = 1_pInt,prm%Nslip(o)
|
||||
|
@ -467,17 +477,16 @@ end subroutine plastic_phenopowerlaw_init
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates plastic velocity gradient and its tangent
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
||||
subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar,ipc,ip,el)
|
||||
use prec, only: &
|
||||
dNeq0
|
||||
use math, only: &
|
||||
math_mul33xx33,&
|
||||
math_Plain3333to99, &
|
||||
math_Mandel6to33
|
||||
use lattice, only: &
|
||||
lattice_Sslip, &
|
||||
lattice_Sslip_v, &
|
||||
lattice_Stwin, &
|
||||
lattice_Stwin_v, &
|
||||
lattice_NslipSystem, &
|
||||
lattice_NtwinSystem
|
||||
use material, only: &
|
||||
|
@ -489,14 +498,14 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
real(pReal), dimension(3,3), intent(out) :: &
|
||||
Lp !< plastic velocity gradient
|
||||
real(pReal), dimension(9,9), intent(out) :: &
|
||||
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
|
||||
dLp_dMstar99 !< derivative of Lp with respect to the Mandel stress
|
||||
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
el !< element
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mstar !< Mandel stress
|
||||
|
||||
integer(pInt) :: &
|
||||
index_myFamily, &
|
||||
|
@ -509,7 +518,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
dgdot_dtauslip_pos,dgdot_dtauslip_neg, &
|
||||
gdot_twin,dgdot_dtautwin,tau_twin
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
dLp_dTstar3333 !< derivative of Lp with respect to Tstar as 4th order tensor
|
||||
dLp_dMstar3333 !< derivative of Lp with respect to Mstar as 4th order tensor
|
||||
real(pReal), dimension(3,3,2) :: &
|
||||
nonSchmid_tensor
|
||||
type(tParameters) :: prm
|
||||
|
@ -518,11 +527,12 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
of = phasememberAt(ipc,ip,el)
|
||||
ph = material_phase(ipc,ip,el)
|
||||
|
||||
associate(prm => param(phase_plasticityInstance(ph)), stt => state(phase_plasticityInstance(ph)))
|
||||
associate(prm => param(phase_plasticityInstance(ph)),&
|
||||
stt => state(phase_plasticityInstance(ph)))
|
||||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dTstar3333 = 0.0_pReal
|
||||
dLp_dTstar99 = 0.0_pReal
|
||||
dLp_dMstar3333 = 0.0_pReal
|
||||
dLp_dMstar99 = 0.0_pReal
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Slip part
|
||||
|
@ -533,15 +543,15 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
j = j+1_pInt
|
||||
|
||||
! Calculation of Lp
|
||||
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
tau_slip_pos = math_mul33xx33(Mstar,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_pos
|
||||
nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
|
||||
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
|
||||
do k = 1,size(prm%nonSchmidCoeff)
|
||||
tau_slip_pos = tau_slip_pos + prm%nonSchmidCoeff(k)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph))
|
||||
math_mul33xx33(Mstar,lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph))
|
||||
tau_slip_neg = tau_slip_neg + prm%nonSchmidCoeff(k)* &
|
||||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
math_mul33xx33(Mstar,lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph))
|
||||
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + prm%nonSchmidCoeff(k)*&
|
||||
lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph)
|
||||
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + prm%nonSchmidCoeff(k)*&
|
||||
|
@ -560,7 +570,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
if (dNeq0(tau_slip_pos)) then
|
||||
dgdot_dtauslip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
||||
dLp_dMstar3333(k,l,m,n) = dLp_dMstar3333(k,l,m,n) + &
|
||||
dgdot_dtauslip_pos*lattice_Sslip(k,l,1,index_myFamily+i,ph)* &
|
||||
nonSchmid_tensor(m,n,1)
|
||||
endif
|
||||
|
@ -568,7 +578,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
if (dNeq0(tau_slip_neg)) then
|
||||
dgdot_dtauslip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
||||
dLp_dMstar3333(k,l,m,n) = dLp_dMstar3333(k,l,m,n) + &
|
||||
dgdot_dtauslip_neg*lattice_Sslip(k,l,1,index_myFamily+i,ph)* &
|
||||
nonSchmid_tensor(m,n,2)
|
||||
endif
|
||||
|
@ -584,7 +594,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
j = j+1_pInt
|
||||
|
||||
! Calculation of Lp
|
||||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,ph))
|
||||
tau_twin = math_mul33xx33(Mstar,lattice_Stwin(1:3,1:3,index_myFamily+i,ph))
|
||||
gdot_twin = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin*&
|
||||
(abs(tau_twin)/stt%s_twin(j,of))**&
|
||||
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||
|
@ -594,14 +604,14 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,
|
|||
if (dNeq0(gdot_twin)) then
|
||||
dgdot_dtautwin = gdot_twin*prm%n_twin/tau_twin
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
||||
dLp_dMstar3333(k,l,m,n) = dLp_dMstar3333(k,l,m,n) + &
|
||||
dgdot_dtautwin*lattice_Stwin(k,l,index_myFamily+i,ph)* &
|
||||
lattice_Stwin(m,n,index_myFamily+i,ph)
|
||||
endif
|
||||
enddo twinSystems
|
||||
enddo twinFamilies
|
||||
|
||||
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
|
||||
dLp_dMstar99 = math_Plain3333to99(dLp_dMstar3333)
|
||||
|
||||
end associate
|
||||
end subroutine plastic_phenopowerlaw_LpAndItsTangent
|
||||
|
|
Loading…
Reference in New Issue