numpy is already imported
This commit is contained in:
parent
898c696ef7
commit
5ce143e36e
|
@ -1,5 +1,3 @@
|
|||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
from . import Lambert
|
||||
|
@ -580,19 +578,19 @@ class Symmetry:
|
|||
Rabs = abs(rodrigues)
|
||||
|
||||
if self.lattice == 'cubic':
|
||||
return math.sqrt(2.0)-1.0 >= Rabs[0] \
|
||||
and math.sqrt(2.0)-1.0 >= Rabs[1] \
|
||||
and math.sqrt(2.0)-1.0 >= Rabs[2] \
|
||||
return np.sqrt(2.0)-1.0 >= Rabs[0] \
|
||||
and np.sqrt(2.0)-1.0 >= Rabs[1] \
|
||||
and np.sqrt(2.0)-1.0 >= Rabs[2] \
|
||||
and 1.0 >= Rabs[0] + Rabs[1] + Rabs[2]
|
||||
elif self.lattice == 'hexagonal':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2] \
|
||||
and 2.0 >= math.sqrt(3)*Rabs[0] + Rabs[1] \
|
||||
and 2.0 >= math.sqrt(3)*Rabs[1] + Rabs[0] \
|
||||
and 2.0 >= math.sqrt(3) + Rabs[2]
|
||||
and 2.0 >= np.sqrt(3)*Rabs[0] + Rabs[1] \
|
||||
and 2.0 >= np.sqrt(3)*Rabs[1] + Rabs[0] \
|
||||
and 2.0 >= np.sqrt(3) + Rabs[2]
|
||||
elif self.lattice == 'tetragonal':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] \
|
||||
and math.sqrt(2.0) >= Rabs[0] + Rabs[1] \
|
||||
and math.sqrt(2.0) >= Rabs[2] + 1.0
|
||||
and np.sqrt(2.0) >= Rabs[0] + Rabs[1] \
|
||||
and np.sqrt(2.0) >= Rabs[2] + 1.0
|
||||
elif self.lattice == 'orthorhombic':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2]
|
||||
else:
|
||||
|
@ -615,13 +613,13 @@ class Symmetry:
|
|||
|
||||
epsilon = 0.0
|
||||
if self.lattice == 'cubic':
|
||||
return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon
|
||||
return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'hexagonal':
|
||||
return R[0] >= math.sqrt(3)*(R[1]-epsilon) and R[1] >= epsilon and R[2] >= epsilon
|
||||
return R[0] >= np.sqrt(3)*(R[1]-epsilon) and R[1] >= epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'tetragonal':
|
||||
return R[0] >= R[1]-epsilon and R[1] >= epsilon and R[2] >= epsilon
|
||||
return R[0] >= R[1]-epsilon and R[1] >= epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'orthorhombic':
|
||||
return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon
|
||||
return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon
|
||||
else:
|
||||
return True
|
||||
|
||||
|
|
Loading…
Reference in New Issue