common order is theta,phi

This commit is contained in:
Martin Diehl 2022-04-28 01:33:33 +02:00
parent 07b95a3dec
commit 5c4d481155
2 changed files with 20 additions and 8 deletions

View File

@ -1108,9 +1108,11 @@ class Rotation:
Parameters Parameters
---------- ----------
crystal : numpy.ndarray, shape (2) crystal : numpy.ndarray, shape (2)
Polar coordinates (phi from x, theta from z) of fiber direction in crystal frame. Polar coordinates (polar angle θ from [0 0 1], azimuthal angle φ from [1 0 0])
of fiber direction in crystal frame.
sample : numpy.ndarray, shape (2) sample : numpy.ndarray, shape (2)
Polar coordinates (phi from x, theta from z) of fiber direction in sample frame. Polar coordinates (polar angle θ from z, azimuthal angle φ from x)
of fiber direction in sample frame.
sigma : float, optional sigma : float, optional
Standard deviation of (Gaussian) misorientation distribution. Standard deviation of (Gaussian) misorientation distribution.
Defaults to 0. Defaults to 0.
@ -1122,13 +1124,23 @@ class Rotation:
A seed to initialize the BitGenerator. A seed to initialize the BitGenerator.
Defaults to None, i.e. unpredictable entropy will be pulled from the OS. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.
Notes
-----
Polar coordinates follow the conventions typically used in physics,
see https://en.wikipedia.org/wiki/Spherical_coordinate_system.
The common ranges are 0θπ and 0φ2π for a unique set of coordinates.
Examples
--------
""" """
rng = np.random.default_rng(rng_seed) rng = np.random.default_rng(rng_seed)
sigma_,alpha_,beta_ = (np.radians(coordinate) for coordinate in (sigma,crystal,sample)) if degrees else \ sigma_,alpha,beta = (np.radians(coordinate) for coordinate in (sigma,crystal,sample)) if degrees else \
map(np.array, (sigma,crystal,sample)) map(np.array, (sigma,crystal,sample))
d_cr = np.array([np.sin(alpha_[0])*np.cos(alpha_[1]), np.sin(alpha_[0])*np.sin(alpha_[1]), np.cos(alpha_[0])]) d_cr = np.array([np.sin(alpha[1])*np.cos(alpha[0]), np.sin(alpha[1])*np.sin(alpha[0]), np.cos(alpha[1])])
d_lab = np.array([np.sin( beta_[0])*np.cos( beta_[1]), np.sin( beta_[0])*np.sin( beta_[1]), np.cos( beta_[0])]) d_lab = np.array([np.sin( beta[1])*np.cos( beta[0]), np.sin( beta[1])*np.sin( beta[0]), np.cos( beta[1])])
ax_align = np.append(np.cross(d_lab,d_cr), np.arccos(np.dot(d_lab,d_cr))) ax_align = np.append(np.cross(d_lab,d_cr), np.arccos(np.dot(d_lab,d_cr)))
if np.isclose(ax_align[3],0.0): ax_align[:3] = np.array([1,0,0]) if np.isclose(ax_align[3],0.0): ax_align[:3] = np.array([1,0,0])
R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0.0 else -ax_align,normalize=True) # rotate fiber axis from sample to crystal frame R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0.0 else -ax_align,normalize=True) # rotate fiber axis from sample to crystal frame

View File

@ -1080,8 +1080,8 @@ class TestRotation:
alpha = np.random.random()*2*np.pi,np.arccos(np.random.random()) alpha = np.random.random()*2*np.pi,np.arccos(np.random.random())
beta = np.random.random()*2*np.pi,np.arccos(np.random.random()) beta = np.random.random()*2*np.pi,np.arccos(np.random.random())
f_in_C = np.array([np.sin(alpha[0])*np.cos(alpha[1]), np.sin(alpha[0])*np.sin(alpha[1]), np.cos(alpha[0])]) f_in_C = np.array([np.sin(alpha[1])*np.cos(alpha[0]), np.sin(alpha[1])*np.sin(alpha[0]), np.cos(alpha[1])])
f_in_S = np.array([np.sin(beta[0] )*np.cos(beta[1] ), np.sin(beta[0] )*np.sin(beta[1] ), np.cos(beta[0] )]) f_in_S = np.array([np.sin(beta[1] )*np.cos(beta[0] ), np.sin(beta[1] )*np.sin(beta[0] ), np.cos(beta[1] )])
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S))) ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system