Merge branch 'consistent-orientation-from' into 'development'
consistent "shape" keyword in from_X Closes #165 See merge request damask/DAMASK!546
This commit is contained in:
commit
5b87fafcae
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit 459326e9840c843ade72b04cf28e50889c9779f1
|
||||
Subproject commit 00b3eb79ee6f8df2ca50276d2111008e5f79b3e1
|
|
@ -418,15 +418,15 @@ class Rotation:
|
|||
|
||||
|
||||
def reshape(self: MyType,
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
shape: Union[int, IntSequence],
|
||||
order: Literal['C','F','A'] = 'C') -> MyType:
|
||||
"""
|
||||
Reshape array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape : int or tuple of ints
|
||||
The new shape should be compatible with the original shape.
|
||||
shape : int or sequence of ints
|
||||
New shape, number of elements needs to match the original shape.
|
||||
If an integer is supplied, then the result will be a 1-D array of that length.
|
||||
order : {'C', 'F', 'A'}, optional
|
||||
'C' flattens in row-major (C-style) order.
|
||||
|
@ -446,15 +446,15 @@ class Rotation:
|
|||
|
||||
|
||||
def broadcast_to(self: MyType,
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
shape: Union[int, IntSequence],
|
||||
mode: Literal['left', 'right'] = 'right') -> MyType:
|
||||
"""
|
||||
Broadcast array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape : int or tuple of ints
|
||||
Shape of broadcasted array.
|
||||
shape : int or sequence of ints
|
||||
Shape of broadcasted array, needs to be compatible with the original shape.
|
||||
mode : str, optional
|
||||
Where to preferentially locate missing dimensions.
|
||||
Either 'left' or 'right' (default).
|
||||
|
@ -465,9 +465,9 @@ class Rotation:
|
|||
Rotation broadcasted to given shape.
|
||||
|
||||
"""
|
||||
if isinstance(shape,(int,np.integer)): shape = (shape,)
|
||||
return self.copy(np.broadcast_to(self.quaternion.reshape(util.shapeshifter(self.shape,shape,mode)+(4,)),
|
||||
shape+(4,)))
|
||||
shape_ = (shape,) if isinstance(shape,(int,np.integer)) else tuple(shape)
|
||||
return self.copy(np.broadcast_to(self.quaternion.reshape(util.shapeshifter(self.shape,shape_,mode)+(4,)),
|
||||
shape_+(4,)))
|
||||
|
||||
|
||||
def average(self: MyType,
|
||||
|
@ -979,17 +979,15 @@ class Rotation:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def from_random(shape: Tuple[int, ...] = None,
|
||||
def from_random(shape: Union[int, IntSequence] = None,
|
||||
rng_seed: NumpyRngSeed = None) -> 'Rotation':
|
||||
"""
|
||||
Initialize with random rotation.
|
||||
|
||||
Rotations are uniformly distributed.
|
||||
Initialize with samples from a uniform distribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape : tuple of ints, optional
|
||||
Shape of the sample. Defaults to None, which gives a single rotation.
|
||||
shape : int or sequence of ints, optional
|
||||
Shape of the returned array. Defaults to None, which gives a scalar.
|
||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||
A seed to initialize the BitGenerator.
|
||||
Defaults to None, i.e. unpredictable entropy will be pulled from the OS.
|
||||
|
@ -1011,12 +1009,12 @@ class Rotation:
|
|||
@staticmethod
|
||||
def from_ODF(weights: np.ndarray,
|
||||
phi: np.ndarray,
|
||||
N: int = 500,
|
||||
shape: Union[int, IntSequence] = None,
|
||||
degrees: bool = True,
|
||||
fractions: bool = True,
|
||||
rng_seed: NumpyRngSeed = None) -> 'Rotation':
|
||||
"""
|
||||
Sample discrete values from a binned orientation distribution function (ODF).
|
||||
Initialize with samples from a binned orientation distribution function (ODF).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -1024,9 +1022,8 @@ class Rotation:
|
|||
Texture intensity values (probability density or volume fraction) at Euler space grid points.
|
||||
phi : numpy.ndarray, shape (n,3)
|
||||
Grid coordinates in Euler space at which weights are defined.
|
||||
N : integer, optional
|
||||
Number of discrete orientations to be sampled from the given ODF.
|
||||
Defaults to 500.
|
||||
shape : int or sequence of ints, optional
|
||||
Shape of the returned array. Defaults to None, which gives a scalar.
|
||||
degrees : bool, optional
|
||||
Euler space grid coordinates are in degrees. Defaults to True.
|
||||
fractions : bool, optional
|
||||
|
@ -1036,11 +1033,6 @@ class Rotation:
|
|||
A seed to initialize the BitGenerator.
|
||||
Defaults to None, i.e. unpredictable entropy will be pulled from the OS.
|
||||
|
||||
Returns
|
||||
-------
|
||||
samples : damask.Rotation, shape (N)
|
||||
Array of sampled rotations that approximate the input ODF.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Due to the distortion of Euler space in the vicinity of ϕ = 0, probability densities, p, defined on
|
||||
|
@ -1063,26 +1055,27 @@ class Rotation:
|
|||
dg = 1.0 if fractions else _dg(phi,degrees)
|
||||
dV_V = dg * np.maximum(0.0,weights.squeeze())
|
||||
|
||||
return Rotation.from_Euler_angles(phi[util.hybrid_IA(dV_V,N,rng_seed)],degrees)
|
||||
N = 1 if shape is None else np.prod(shape)
|
||||
return Rotation.from_Euler_angles(phi[util.hybrid_IA(dV_V,N,rng_seed)],degrees).reshape(() if shape is None else shape)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def from_spherical_component(center: 'Rotation',
|
||||
sigma: float,
|
||||
N: int = 500,
|
||||
shape: Union[int, IntSequence] = None,
|
||||
degrees: bool = True,
|
||||
rng_seed: NumpyRngSeed = None) -> 'Rotation':
|
||||
"""
|
||||
Calculate set of rotations with Gaussian distribution around center.
|
||||
Initialize with samples from a Gaussian distribution around a given center.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
center : Rotation
|
||||
Central Rotation.
|
||||
center : Rotation or Orientation
|
||||
Central rotation.
|
||||
sigma : float
|
||||
Standard deviation of (Gaussian) misorientation distribution.
|
||||
N : int, optional
|
||||
Number of samples. Defaults to 500.
|
||||
shape : int or sequence of ints, optional
|
||||
Shape of the returned array. Defaults to None, which gives a scalar.
|
||||
degrees : bool, optional
|
||||
sigma is given in degrees. Defaults to True.
|
||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||
|
@ -1092,24 +1085,25 @@ class Rotation:
|
|||
"""
|
||||
rng = np.random.default_rng(rng_seed)
|
||||
sigma = np.radians(sigma) if degrees else sigma
|
||||
N = 1 if shape is None else np.prod(shape)
|
||||
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
|
||||
omega = abs(rng.normal(scale=sigma,size=N))
|
||||
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
|
||||
np.sqrt(1-u**2)*np.sin(Theta),
|
||||
u, omega])
|
||||
|
||||
return Rotation.from_axis_angle(p) * center
|
||||
return Rotation.from_axis_angle(p).reshape(() if shape is None else shape) * center
|
||||
|
||||
|
||||
@staticmethod
|
||||
def from_fiber_component(alpha: IntSequence,
|
||||
beta: IntSequence,
|
||||
sigma: float = 0.0,
|
||||
N: int = 500,
|
||||
shape: Union[int, IntSequence] = None,
|
||||
degrees: bool = True,
|
||||
rng_seed: NumpyRngSeed = None):
|
||||
"""
|
||||
Calculate set of rotations with Gaussian distribution around direction.
|
||||
Initialize with samples from a Gaussian distribution around a given direction.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -1120,8 +1114,8 @@ class Rotation:
|
|||
sigma : float, optional
|
||||
Standard deviation of (Gaussian) misorientation distribution.
|
||||
Defaults to 0.
|
||||
N : int, optional
|
||||
Number of samples. Defaults to 500.
|
||||
shape : int or sequence of ints, optional
|
||||
Shape of the returned array. Defaults to None, which gives a scalar.
|
||||
degrees : bool, optional
|
||||
sigma, alpha, and beta are given in degrees.
|
||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||
|
@ -1139,6 +1133,7 @@ class Rotation:
|
|||
if np.isclose(ax_align[3],0.0): ax_align[:3] = np.array([1,0,0])
|
||||
R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0.0 else -ax_align,normalize=True) # rotate fiber axis from sample to crystal frame
|
||||
|
||||
N = 1 if shape is None else np.prod(shape)
|
||||
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
|
||||
omega = abs(rng.normal(scale=sigma_,size=N))
|
||||
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
|
||||
|
@ -1148,9 +1143,9 @@ class Rotation:
|
|||
f = np.column_stack((np.broadcast_to(d_lab,(N,3)),rng.random(N)*np.pi))
|
||||
f[::2,:3] *= -1 # flip half the rotation axes to negative sense
|
||||
|
||||
return R_align.broadcast_to(N) \
|
||||
* Rotation.from_axis_angle(p,normalize=True) \
|
||||
* Rotation.from_axis_angle(f)
|
||||
return (R_align.broadcast_to(N)
|
||||
* Rotation.from_axis_angle(p,normalize=True)
|
||||
* Rotation.from_axis_angle(f)).reshape(() if shape is None else shape)
|
||||
|
||||
|
||||
####################################################################################################
|
||||
|
|
|
@ -146,14 +146,14 @@ class TestOrientation:
|
|||
|
||||
def test_from_spherical_component(self):
|
||||
assert np.all(Orientation.from_spherical_component(center=Rotation(),
|
||||
sigma=0.0,N=1,family='triclinic').as_matrix()
|
||||
sigma=0.0,shape=1,family='triclinic').as_matrix()
|
||||
== np.eye(3))
|
||||
|
||||
def test_from_fiber_component(self):
|
||||
r = Rotation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2),
|
||||
sigma=0.0,N=1,rng_seed=0)
|
||||
sigma=0.0,shape=1,rng_seed=0)
|
||||
assert np.all(Orientation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2),
|
||||
sigma=0.0,N=1,rng_seed=0,family='triclinic').quaternion
|
||||
sigma=0.0,shape=None,rng_seed=0,family='triclinic').quaternion
|
||||
== r.quaternion)
|
||||
|
||||
@pytest.mark.parametrize('kwargs',[
|
||||
|
|
|
@ -6,6 +6,7 @@ from damask import Rotation
|
|||
from damask import Table
|
||||
from damask import _rotation
|
||||
from damask import grid_filters
|
||||
from damask import util
|
||||
|
||||
n = 1000
|
||||
atol=1.e-4
|
||||
|
@ -1055,12 +1056,12 @@ class TestRotation:
|
|||
|
||||
|
||||
@pytest.mark.parametrize('sigma',[5,10,15,20])
|
||||
@pytest.mark.parametrize('N',[1000,10000,100000])
|
||||
def test_spherical_component(self,N,sigma):
|
||||
@pytest.mark.parametrize('shape',[1000,10000,100000,(10,100)])
|
||||
def test_spherical_component(self,sigma,shape):
|
||||
p = []
|
||||
for run in range(5):
|
||||
c = Rotation.from_random()
|
||||
o = Rotation.from_spherical_component(c,sigma,N)
|
||||
o = Rotation.from_spherical_component(c,sigma,shape)
|
||||
_, angles = c.misorientation(o).as_axis_angle(pair=True,degrees=True)
|
||||
angles[::2] *= -1 # flip angle for every second to symmetrize distribution
|
||||
|
||||
|
@ -1072,8 +1073,8 @@ class TestRotation:
|
|||
|
||||
|
||||
@pytest.mark.parametrize('sigma',[5,10,15,20])
|
||||
@pytest.mark.parametrize('N',[1000,10000,100000])
|
||||
def test_from_fiber_component(self,N,sigma):
|
||||
@pytest.mark.parametrize('shape',[1000,10000,100000,(10,100)])
|
||||
def test_from_fiber_component(self,sigma,shape):
|
||||
p = []
|
||||
for run in range(5):
|
||||
alpha = np.random.random()*2*np.pi,np.arccos(np.random.random())
|
||||
|
@ -1084,9 +1085,9 @@ class TestRotation:
|
|||
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
|
||||
n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system
|
||||
|
||||
o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),N,False)
|
||||
angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,(N,3)),n@f_in_S),-1,1))
|
||||
dist = np.array(angles) * (np.random.randint(0,2,N)*2-1)
|
||||
o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),shape,False)
|
||||
angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,tuple(util.aslist(shape))+(3,)),n@f_in_S),-1,1))
|
||||
dist = np.array(angles) * (np.random.randint(0,2,util.aslist(shape))*2-1)
|
||||
|
||||
p.append(stats.normaltest(dist)[1])
|
||||
|
||||
|
@ -1097,8 +1098,8 @@ class TestRotation:
|
|||
|
||||
@pytest.mark.parametrize('fractions',[True,False])
|
||||
@pytest.mark.parametrize('degrees',[True,False])
|
||||
@pytest.mark.parametrize('N',[2**13,2**14,2**15])
|
||||
def test_ODF_cell(self,ref_path,fractions,degrees,N):
|
||||
@pytest.mark.parametrize('shape',[2**13,2**14,2**15,(2**8,2**6)])
|
||||
def test_ODF_cell(self,ref_path,fractions,degrees,shape):
|
||||
steps = np.array([144,36,36])
|
||||
limits = np.array([360.,90.,90.])
|
||||
rng = tuple(zip(np.zeros(3),limits))
|
||||
|
@ -1107,14 +1108,14 @@ class TestRotation:
|
|||
Eulers = grid_filters.coordinates0_point(steps,limits)
|
||||
Eulers = np.radians(Eulers) if not degrees else Eulers
|
||||
|
||||
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees,fractions).as_Euler_angles(True)
|
||||
weights_r = np.histogramdd(Eulers_r,steps,rng)[0].flatten(order='F')/N * np.sum(weights)
|
||||
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),shape,degrees,fractions).as_Euler_angles(True)
|
||||
weights_r = np.histogramdd(Eulers_r.reshape(-1,3),steps,rng)[0].flatten(order='F')/np.prod(shape) * np.sum(weights)
|
||||
|
||||
if fractions: assert np.sqrt(((weights_r - weights) ** 2).mean()) < 4
|
||||
|
||||
@pytest.mark.parametrize('degrees',[True,False])
|
||||
@pytest.mark.parametrize('N',[2**13,2**14,2**15])
|
||||
def test_ODF_node(self,ref_path,degrees,N):
|
||||
@pytest.mark.parametrize('shape',[2**13,2**14,2**15,(2**8,2**6)])
|
||||
def test_ODF_node(self,ref_path,degrees,shape):
|
||||
steps = np.array([144,36,36])
|
||||
limits = np.array([360.,90.,90.])
|
||||
rng = tuple(zip(-limits/steps*.5,limits-limits/steps*.5))
|
||||
|
@ -1125,8 +1126,8 @@ class TestRotation:
|
|||
Eulers = grid_filters.coordinates0_node(steps,limits)[:-1,:-1,:-1]
|
||||
Eulers = np.radians(Eulers) if not degrees else Eulers
|
||||
|
||||
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees).as_Euler_angles(True)
|
||||
weights_r = np.histogramdd(Eulers_r,steps,rng)[0].flatten(order='F')/N * np.sum(weights)
|
||||
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),shape,degrees).as_Euler_angles(True)
|
||||
weights_r = np.histogramdd(Eulers_r.reshape(-1,3),steps,rng)[0].flatten(order='F')/np.prod(shape) * np.sum(weights)
|
||||
|
||||
assert np.sqrt(((weights_r - weights) ** 2).mean()) < 5
|
||||
|
||||
|
|
Loading…
Reference in New Issue