better make internal function

- not used
- no check whether matrix is positive-definite, i.e. danger of NaN
This commit is contained in:
Martin Diehl 2020-03-15 16:11:28 +01:00
parent 8c78347a8b
commit 5b71f1050f
1 changed files with 62 additions and 60 deletions

View File

@ -961,65 +961,6 @@ subroutine math_eigh33(m,w,v)
end subroutine math_eigh33
!--------------------------------------------------------------------------------------------------
!> @brief eigenvector basis of positive-definite 3x3 matrix
!--------------------------------------------------------------------------------------------------
pure function math_eigenvectorBasisSym33(m)
real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33
real(pReal), dimension(3,3), intent(in) :: m !< positive-definite matrix of which the basis is computed
real(pReal), dimension(3) :: I, v
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
real(pReal), dimension(3,3,3) :: N, EB
I = math_invariantsSym33(m)
P = I(2)-I(1)**2.0_pReal/3.0_pReal
Q = -2.0_pReal/27.0_pReal*I(1)**3.0_pReal+product(I(1:2))/3.0_pReal-I(3)
threeSimilarEigVals: if(all(abs([P,Q]) < TOL)) then
v = I(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
EB = 0.0_pReal
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
EB(3,3,3)=1.0_pReal
else threeSimilarEigVals
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
v = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* [cos((phi )/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + I(1)/3.0_pReal
N(1:3,1:3,1) = m-v(1)*math_I3
N(1:3,1:3,2) = m-v(2)*math_I3
N(1:3,1:3,3) = m-v(3)*math_I3
twoSimilarEigVals: if(abs(v(1)-v(2)) < TOL) then
EB(1:3,1:3,3) = matmul(N(1:3,1:3,1),N(1:3,1:3,2))/((v(3)-v(1))*(v(3)-v(2)))
EB(1:3,1:3,1) = math_I3-EB(1:3,1:3,3)
EB(1:3,1:3,2) = 0.0_pReal
elseif (abs(v(2)-v(3)) < TOL) then twoSimilarEigVals
EB(1:3,1:3,1) = matmul(N(1:3,1:3,2),N(1:3,1:3,3))/((v(1)-v(2))*(v(1)-v(3)))
EB(1:3,1:3,2) = math_I3-EB(1:3,1:3,1)
EB(1:3,1:3,3) = 0.0_pReal
elseif (abs(v(3)-v(1)) < TOL) then twoSimilarEigVals
EB(1:3,1:3,2) = matmul(N(1:3,1:3,3),N(1:3,1:3,1))/((v(2)-v(3))*(v(2)-v(1)))
EB(1:3,1:3,3) = math_I3-EB(1:3,1:3,2)
EB(1:3,1:3,1) = 0.0_pReal
else twoSimilarEigVals
EB(1:3,1:3,1) = matmul(N(1:3,1:3,2),N(1:3,1:3,3))/((v(1)-v(2))*(v(1)-v(3)))
EB(1:3,1:3,2) = matmul(N(1:3,1:3,3),N(1:3,1:3,1))/((v(2)-v(3))*(v(2)-v(1)))
EB(1:3,1:3,3) = matmul(N(1:3,1:3,1),N(1:3,1:3,2))/((v(3)-v(1))*(v(3)-v(2)))
endif twoSimilarEigVals
endif threeSimilarEigVals
math_eigenvectorBasisSym33 = sqrt(v(1)) * EB(1:3,1:3,1) &
+ sqrt(v(2)) * EB(1:3,1:3,2) &
+ sqrt(v(3)) * EB(1:3,1:3,3)
end function math_eigenvectorBasisSym33
!--------------------------------------------------------------------------------------------------
@ -1031,7 +972,7 @@ function math_rotationalPart(m)
real(pReal), dimension(3,3) :: math_rotationalPart
real(pReal), dimension(3,3) :: U , Uinv
U = math_eigenvectorBasisSym33(matmul(transpose(m),m))
U = eigenvectorBasis(matmul(transpose(m),m))
Uinv = math_inv33(U)
inversionFailed: if (all(dEq0(Uinv))) then
@ -1041,6 +982,67 @@ function math_rotationalPart(m)
math_rotationalPart = matmul(m,Uinv)
endif inversionFailed
contains
!--------------------------------------------------------------------------------------------------
!> @brief eigenvector basis of positive-definite 3x3 matrix
!--------------------------------------------------------------------------------------------------
pure function eigenvectorBasis(m)
real(pReal), dimension(3,3) :: eigenvectorBasis
real(pReal), dimension(3,3), intent(in) :: m !< positive-definite matrix of which the basis is computed
real(pReal), dimension(3) :: I, v
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
real(pReal), dimension(3,3,3) :: N, EB
I = math_invariantsSym33(m)
P = I(2)-I(1)**2.0_pReal/3.0_pReal
Q = -2.0_pReal/27.0_pReal*I(1)**3.0_pReal+product(I(1:2))/3.0_pReal-I(3)
threeSimilarEigVals: if(all(abs([P,Q]) < TOL)) then
v = I(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
EB = 0.0_pReal
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
EB(3,3,3)=1.0_pReal
else threeSimilarEigVals
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
v = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* [cos((phi )/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + I(1)/3.0_pReal
N(1:3,1:3,1) = m-v(1)*math_I3
N(1:3,1:3,2) = m-v(2)*math_I3
N(1:3,1:3,3) = m-v(3)*math_I3
twoSimilarEigVals: if(abs(v(1)-v(2)) < TOL) then
EB(1:3,1:3,3) = matmul(N(1:3,1:3,1),N(1:3,1:3,2))/((v(3)-v(1))*(v(3)-v(2)))
EB(1:3,1:3,1) = math_I3-EB(1:3,1:3,3)
EB(1:3,1:3,2) = 0.0_pReal
elseif (abs(v(2)-v(3)) < TOL) then twoSimilarEigVals
EB(1:3,1:3,1) = matmul(N(1:3,1:3,2),N(1:3,1:3,3))/((v(1)-v(2))*(v(1)-v(3)))
EB(1:3,1:3,2) = math_I3-EB(1:3,1:3,1)
EB(1:3,1:3,3) = 0.0_pReal
elseif (abs(v(3)-v(1)) < TOL) then twoSimilarEigVals
EB(1:3,1:3,2) = matmul(N(1:3,1:3,3),N(1:3,1:3,1))/((v(2)-v(3))*(v(2)-v(1)))
EB(1:3,1:3,3) = math_I3-EB(1:3,1:3,2)
EB(1:3,1:3,1) = 0.0_pReal
else twoSimilarEigVals
EB(1:3,1:3,1) = matmul(N(1:3,1:3,2),N(1:3,1:3,3))/((v(1)-v(2))*(v(1)-v(3)))
EB(1:3,1:3,2) = matmul(N(1:3,1:3,3),N(1:3,1:3,1))/((v(2)-v(3))*(v(2)-v(1)))
EB(1:3,1:3,3) = matmul(N(1:3,1:3,1),N(1:3,1:3,2))/((v(3)-v(1))*(v(3)-v(2)))
endif twoSimilarEigVals
endif threeSimilarEigVals
eigenvectorBasis = sqrt(v(1)) * EB(1:3,1:3,1) &
+ sqrt(v(2)) * EB(1:3,1:3,2) &
+ sqrt(v(3)) * EB(1:3,1:3,3)
end function eigenvectorBasis
end function math_rotationalPart