assertion reports offense; fixed seeds for spherical and fiber

This commit is contained in:
Philip Eisenlohr 2020-09-20 12:22:41 -04:00
parent 3cc319ef08
commit 5b0b0de6b4
1 changed files with 39 additions and 60 deletions

View File

@ -496,9 +496,8 @@ class TestRotation:
o = backward(forward(m)) o = backward(forward(m))
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
if np.isclose(rot.as_quaternion()[0],0.0,atol=atol): if np.isclose(rot.as_quaternion()[0],0.0,atol=atol):
ok = ok or np.allclose(m*-1.,o,atol=atol) ok |= np.allclose(m*-1.,o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o),1.0), f'{m},{o},{rot.as_quaternion()}'
assert ok and np.isclose(np.linalg.norm(o),1.0)
@pytest.mark.parametrize('forward,backward',[(Rotation._om2qu,Rotation._qu2om), @pytest.mark.parametrize('forward,backward',[(Rotation._om2qu,Rotation._qu2om),
(Rotation._om2eu,Rotation._eu2om), (Rotation._om2eu,Rotation._eu2om),
@ -512,8 +511,7 @@ class TestRotation:
m = rot.as_matrix() m = rot.as_matrix()
o = backward(forward(m)) o = backward(forward(m))
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.det(o),1.0), f'{m},{o},{rot.as_quaternion()}'
assert ok and np.isclose(np.linalg.det(o),1.0)
@pytest.mark.parametrize('forward,backward',[(Rotation._eu2qu,Rotation._qu2eu), @pytest.mark.parametrize('forward,backward',[(Rotation._eu2qu,Rotation._qu2eu),
(Rotation._eu2om,Rotation._om2eu), (Rotation._eu2om,Rotation._om2eu),
@ -531,9 +529,9 @@ class TestRotation:
ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol) ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol): if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol):
sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]]) sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]])
ok = ok or np.isclose(sum_phi[0],sum_phi[1],atol=atol) ok |= np.isclose(sum_phi[0],sum_phi[1],atol=atol)
print(m,o,rot.as_quaternion()) assert ok and (np.zeros(3)-1.e-9 <= o).all() \
assert ok and (np.zeros(3)-1.e-9 <= o).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all(), f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('forward,backward',[(Rotation._ax2qu,Rotation._qu2ax), @pytest.mark.parametrize('forward,backward',[(Rotation._ax2qu,Rotation._qu2ax),
(Rotation._ax2om,Rotation._om2ax), (Rotation._ax2om,Rotation._om2ax),
@ -548,9 +546,8 @@ class TestRotation:
o = backward(forward(m)) o = backward(forward(m))
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
if np.isclose(m[3],np.pi,atol=atol): if np.isclose(m[3],np.pi,atol=atol):
ok = ok or np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol) ok |= np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi+1.e-9, f'{m},{o},{rot.as_quaternion()}'
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi+1.e-9
@pytest.mark.parametrize('forward,backward',[(Rotation._ro2qu,Rotation._qu2ro), @pytest.mark.parametrize('forward,backward',[(Rotation._ro2qu,Rotation._qu2ro),
#(Rotation._ro2om,Rotation._om2ro), #(Rotation._ro2om,Rotation._om2ro),
@ -566,8 +563,7 @@ class TestRotation:
o = backward(forward(m)) o = backward(forward(m))
ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol) ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol)
ok = ok or np.isclose(m[3],0.0,atol=atol) ok = ok or np.isclose(m[3],0.0,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o[:3]),1.0), f'{m},{o},{rot.as_quaternion()}'
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0)
@pytest.mark.parametrize('forward,backward',[(Rotation._ho2qu,Rotation._qu2ho), @pytest.mark.parametrize('forward,backward',[(Rotation._ho2qu,Rotation._qu2ho),
(Rotation._ho2om,Rotation._om2ho), (Rotation._ho2om,Rotation._om2ho),
@ -581,8 +577,7 @@ class TestRotation:
m = rot.as_homochoric() m = rot.as_homochoric()
o = backward(forward(m)) o = backward(forward(m))
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.linalg.norm(o) < _R1 + 1.e-9, f'{m},{o},{rot.as_quaternion()}'
assert ok and np.linalg.norm(o) < _R1 + 1.e-9
@pytest.mark.parametrize('forward,backward',[(Rotation._cu2qu,Rotation._qu2cu), @pytest.mark.parametrize('forward,backward',[(Rotation._cu2qu,Rotation._qu2cu),
(Rotation._cu2om,Rotation._om2cu), (Rotation._cu2om,Rotation._om2cu),
@ -598,8 +593,7 @@ class TestRotation:
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
if np.count_nonzero(np.isclose(np.abs(o),np.pi**(2./3.)*.5)): if np.count_nonzero(np.isclose(np.abs(o),np.pi**(2./3.)*.5)):
ok = ok or np.allclose(m*-1.,o,atol=atol) ok = ok or np.allclose(m*-1.,o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.max(np.abs(o)) < np.pi**(2./3.) * 0.5 + 1.e-9, f'{m},{o},{rot.as_quaternion()}'
assert ok and np.max(np.abs(o)) < np.pi**(2./3.) * 0.5 + 1.e-9
@pytest.mark.parametrize('vectorized, single',[(Rotation._qu2om,qu2om), @pytest.mark.parametrize('vectorized, single',[(Rotation._qu2om,qu2om),
(Rotation._qu2eu,qu2eu), (Rotation._qu2eu,qu2eu),
@ -612,8 +606,7 @@ class TestRotation:
vectorized(qu.reshape(qu.shape[0]//2,-1,4)) vectorized(qu.reshape(qu.shape[0]//2,-1,4))
co = vectorized(qu) co = vectorized(qu)
for q,c in zip(qu,co): for q,c in zip(qu,co):
print(q,c) assert np.allclose(single(q),c) and np.allclose(single(q),vectorized(q)), f'{q},{c}'
assert np.allclose(single(q),c) and np.allclose(single(q),vectorized(q))
@pytest.mark.parametrize('vectorized, single',[(Rotation._om2qu,om2qu), @pytest.mark.parametrize('vectorized, single',[(Rotation._om2qu,om2qu),
@ -625,8 +618,7 @@ class TestRotation:
vectorized(om.reshape(om.shape[0]//2,-1,3,3)) vectorized(om.reshape(om.shape[0]//2,-1,3,3))
co = vectorized(om) co = vectorized(om)
for o,c in zip(om,co): for o,c in zip(om,co):
print(o,c) assert np.allclose(single(o),c) and np.allclose(single(o),vectorized(o)), f'{o},{c}'
assert np.allclose(single(o),c) and np.allclose(single(o),vectorized(o))
@pytest.mark.parametrize('vectorized, single',[(Rotation._eu2qu,eu2qu), @pytest.mark.parametrize('vectorized, single',[(Rotation._eu2qu,eu2qu),
(Rotation._eu2om,eu2om), (Rotation._eu2om,eu2om),
@ -638,8 +630,7 @@ class TestRotation:
vectorized(eu.reshape(eu.shape[0]//2,-1,3)) vectorized(eu.reshape(eu.shape[0]//2,-1,3))
co = vectorized(eu) co = vectorized(eu)
for e,c in zip(eu,co): for e,c in zip(eu,co):
print(e,c) assert np.allclose(single(e),c) and np.allclose(single(e),vectorized(e)), f'{e},{c}'
assert np.allclose(single(e),c) and np.allclose(single(e),vectorized(e))
@pytest.mark.parametrize('vectorized, single',[(Rotation._ax2qu,ax2qu), @pytest.mark.parametrize('vectorized, single',[(Rotation._ax2qu,ax2qu),
(Rotation._ax2om,ax2om), (Rotation._ax2om,ax2om),
@ -651,8 +642,7 @@ class TestRotation:
vectorized(ax.reshape(ax.shape[0]//2,-1,4)) vectorized(ax.reshape(ax.shape[0]//2,-1,4))
co = vectorized(ax) co = vectorized(ax)
for a,c in zip(ax,co): for a,c in zip(ax,co):
print(a,c) assert np.allclose(single(a),c) and np.allclose(single(a),vectorized(a)), f'{a},{c}'
assert np.allclose(single(a),c) and np.allclose(single(a),vectorized(a))
@pytest.mark.parametrize('vectorized, single',[(Rotation._ro2ax,ro2ax), @pytest.mark.parametrize('vectorized, single',[(Rotation._ro2ax,ro2ax),
@ -663,8 +653,7 @@ class TestRotation:
vectorized(ro.reshape(ro.shape[0]//2,-1,4)) vectorized(ro.reshape(ro.shape[0]//2,-1,4))
co = vectorized(ro) co = vectorized(ro)
for r,c in zip(ro,co): for r,c in zip(ro,co):
print(r,c) assert np.allclose(single(r),c) and np.allclose(single(r),vectorized(r)), f'{r},{c}'
assert np.allclose(single(r),c) and np.allclose(single(r),vectorized(r))
@pytest.mark.parametrize('vectorized, single',[(Rotation._ho2ax,ho2ax), @pytest.mark.parametrize('vectorized, single',[(Rotation._ho2ax,ho2ax),
(Rotation._ho2cu,ho2cu)]) (Rotation._ho2cu,ho2cu)])
@ -674,8 +663,7 @@ class TestRotation:
vectorized(ho.reshape(ho.shape[0]//2,-1,3)) vectorized(ho.reshape(ho.shape[0]//2,-1,3))
co = vectorized(ho) co = vectorized(ho)
for h,c in zip(ho,co): for h,c in zip(ho,co):
print(h,c) assert np.allclose(single(h),c) and np.allclose(single(h),vectorized(h)), f'{h},{c}'
assert np.allclose(single(h),c) and np.allclose(single(h),vectorized(h))
@pytest.mark.parametrize('vectorized, single',[(Rotation._cu2ho,cu2ho)]) @pytest.mark.parametrize('vectorized, single',[(Rotation._cu2ho,cu2ho)])
def test_cubochoric_vectorization(self,set_of_rotations,vectorized,single): def test_cubochoric_vectorization(self,set_of_rotations,vectorized,single):
@ -684,8 +672,7 @@ class TestRotation:
vectorized(cu.reshape(cu.shape[0]//2,-1,3)) vectorized(cu.reshape(cu.shape[0]//2,-1,3))
co = vectorized(cu) co = vectorized(cu)
for u,c in zip(cu,co): for u,c in zip(cu,co):
print(u,c) assert np.allclose(single(u),c) and np.allclose(single(u),vectorized(u)), f'{u},{c}'
assert np.allclose(single(u),c) and np.allclose(single(u),vectorized(u))
@pytest.mark.parametrize('func',[Rotation.from_axis_angle]) @pytest.mark.parametrize('func',[Rotation.from_axis_angle])
def test_normalization_vectorization(self,func): def test_normalization_vectorization(self,func):
@ -703,9 +690,8 @@ class TestRotation:
o = Rotation.from_Eulers(rot.as_Eulers(degrees),degrees).as_quaternion() o = Rotation.from_Eulers(rot.as_Eulers(degrees),degrees).as_quaternion()
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
if np.isclose(rot.as_quaternion()[0],0.0,atol=atol): if np.isclose(rot.as_quaternion()[0],0.0,atol=atol):
ok = ok or np.allclose(m*-1.,o,atol=atol) ok |= np.allclose(m*-1.,o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o),1.0), f'{m},{o},{rot.as_quaternion()}'
assert ok and np.isclose(np.linalg.norm(o),1.0)
@pytest.mark.parametrize('P',[1,-1]) @pytest.mark.parametrize('P',[1,-1])
@pytest.mark.parametrize('normalize',[True,False]) @pytest.mark.parametrize('normalize',[True,False])
@ -717,12 +703,12 @@ class TestRotation:
o = Rotation.from_axis_angle(rot.as_axis_angle(degrees)*c,degrees,normalize,P).as_Eulers() o = Rotation.from_axis_angle(rot.as_axis_angle(degrees)*c,degrees,normalize,P).as_Eulers()
u = np.array([np.pi*2,np.pi,np.pi*2]) u = np.array([np.pi*2,np.pi,np.pi*2])
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol) ok |= np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol): if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol):
sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]]) sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]])
ok = ok or np.isclose(sum_phi[0],sum_phi[1],atol=atol) ok |= np.isclose(sum_phi[0],sum_phi[1],atol=atol)
print(m,o,rot.as_quaternion()) assert ok and (np.zeros(3)-1.e-9 <= o).all() \
assert ok and (np.zeros(3)-1.e-9 <= o).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all(), f'{m},{o},{rot.as_quaternion()}'
def test_matrix(self,set_of_rotations): def test_matrix(self,set_of_rotations):
for rot in set_of_rotations: for rot in set_of_rotations:
@ -731,8 +717,8 @@ class TestRotation:
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
if np.isclose(m[3],np.pi,atol=atol): if np.isclose(m[3],np.pi,atol=atol):
ok = ok or np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol) ok = ok or np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) \
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi+1.e-9 and o[3]<=np.pi+1.e-9, f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('P',[1,-1]) @pytest.mark.parametrize('P',[1,-1])
@pytest.mark.parametrize('normalize',[True,False]) @pytest.mark.parametrize('normalize',[True,False])
@ -742,8 +728,7 @@ class TestRotation:
m = rot.as_matrix() m = rot.as_matrix()
o = Rotation.from_Rodrigues(rot.as_Rodrigues()*c,normalize,P).as_matrix() o = Rotation.from_Rodrigues(rot.as_Rodrigues()*c,normalize,P).as_matrix()
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
print(m,o) assert ok and np.isclose(np.linalg.det(o),1.0), f'{m},{o}'
assert ok and np.isclose(np.linalg.det(o),1.0)
@pytest.mark.parametrize('P',[1,-1]) @pytest.mark.parametrize('P',[1,-1])
def test_homochoric(self,set_of_rotations,P): def test_homochoric(self,set_of_rotations,P):
@ -753,8 +738,7 @@ class TestRotation:
o = Rotation.from_homochoric(rot.as_homochoric()*P*-1,P).as_Rodrigues() o = Rotation.from_homochoric(rot.as_homochoric()*P*-1,P).as_Rodrigues()
ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol) ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol)
ok = ok or np.isclose(m[3],0.0,atol=atol) ok = ok or np.isclose(m[3],0.0,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o[:3]),1.0), f'{m},{o},{rot.as_quaternion()}'
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0)
@pytest.mark.parametrize('P',[1,-1]) @pytest.mark.parametrize('P',[1,-1])
def test_cubochoric(self,set_of_rotations,P): def test_cubochoric(self,set_of_rotations,P):
@ -762,8 +746,7 @@ class TestRotation:
m = rot.as_homochoric() m = rot.as_homochoric()
o = Rotation.from_cubochoric(rot.as_cubochoric()*P*-1,P).as_homochoric() o = Rotation.from_cubochoric(rot.as_cubochoric()*P*-1,P).as_homochoric()
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and np.linalg.norm(o) < (3.*np.pi/4.)**(1./3.) + 1.e-9, f'{m},{o},{rot.as_quaternion()}'
assert ok and np.linalg.norm(o) < (3.*np.pi/4.)**(1./3.) + 1.e-9
@pytest.mark.parametrize('P',[1,-1]) @pytest.mark.parametrize('P',[1,-1])
@pytest.mark.parametrize('accept_homomorph',[True,False]) @pytest.mark.parametrize('accept_homomorph',[True,False])
@ -774,9 +757,8 @@ class TestRotation:
o = Rotation.from_quaternion(rot.as_quaternion()*c,accept_homomorph,P).as_cubochoric() o = Rotation.from_quaternion(rot.as_quaternion()*c,accept_homomorph,P).as_cubochoric()
ok = np.allclose(m,o,atol=atol) ok = np.allclose(m,o,atol=atol)
if np.count_nonzero(np.isclose(np.abs(o),np.pi**(2./3.)*.5)): if np.count_nonzero(np.isclose(np.abs(o),np.pi**(2./3.)*.5)):
ok = ok or np.allclose(m*-1.,o,atol=atol) ok |= np.allclose(m*-1.,o,atol=atol)
print(m,o,rot.as_quaternion()) assert ok and o.max() < np.pi**(2./3.)*0.5+1.e-9, f'{m},{o},{rot.as_quaternion()}'
assert ok and o.max() < np.pi**(2./3.)*0.5+1.e-9
@pytest.mark.parametrize('reciprocal',[True,False]) @pytest.mark.parametrize('reciprocal',[True,False])
def test_basis(self,set_of_rotations,reciprocal): def test_basis(self,set_of_rotations,reciprocal):
@ -858,8 +840,7 @@ class TestRotation:
for rot in set_of_rotations: for rot in set_of_rotations:
v = rot.broadcast_to((5,)) @ data v = rot.broadcast_to((5,)) @ data
for i in range(data.shape[0]): for i in range(data.shape[0]):
print(i-data[i]) assert np.allclose(mul(rot,data[i]),v[i]), f'{i-data[i]}'
assert np.allclose(mul(rot,data[i]),v[i])
@pytest.mark.parametrize('data',[np.random.rand(3), @pytest.mark.parametrize('data',[np.random.rand(3),
@ -927,33 +908,31 @@ class TestRotation:
@pytest.mark.parametrize('N',[1000,10000,100000]) @pytest.mark.parametrize('N',[1000,10000,100000])
def test_spherical_component(self,N,sigma): def test_spherical_component(self,N,sigma):
c = Rotation.from_random() c = Rotation.from_random()
o = Rotation.from_spherical_component(c,sigma,N) o = Rotation.from_spherical_component(c,sigma,N,seed=N+sigma)
_, angles = c.misorientation(o).as_axis_angle(pair=True,degrees=True) _, angles = c.misorientation(o).as_axis_angle(pair=True,degrees=True)
angles[::2] *= -1 # flip angle for every second to symmetrize distribution angles[::2] *= -1 # flip angle for every second to symmetrize distribution
p = stats.normaltest(angles)[1] p = stats.normaltest(angles)[1]
sigma_out = np.std(angles) sigma_out = np.std(angles)
print(f'\np: {p}, sigma ratio {sigma/sigma_out}') assert (.9 < sigma/sigma_out < 1.1) and p > 1, f'{sigma/sigma_out},{p}'
assert (.9 < sigma/sigma_out < 1.1) and p > 0.001
@pytest.mark.parametrize('sigma',[5,10,15,20]) @pytest.mark.parametrize('sigma',[5,10,15,20])
@pytest.mark.parametrize('N',[1000,10000,100000]) @pytest.mark.parametrize('N',[1000,10000,100000])
def test_from_fiber_component(self,N,sigma): def test_from_fiber_component(self,N,sigma):
"""https://en.wikipedia.org/wiki/Full_width_at_half_maximum.""" """https://en.wikipedia.org/wiki/Full_width_at_half_maximum."""
alpha = np.random.random(2)*np.pi alpha = np.random.random()*2*np.pi,np.arccos(np.random.random())
beta = np.random.random(2)*np.pi beta = np.random.random()*2*np.pi,np.arccos(np.random.random())
f_in_C = np.array([np.sin(alpha[0])*np.cos(alpha[1]), np.sin(alpha[0])*np.sin(alpha[1]), np.cos(alpha[0])]) f_in_C = np.array([np.sin(alpha[0])*np.cos(alpha[1]), np.sin(alpha[0])*np.sin(alpha[1]), np.cos(alpha[0])])
f_in_S = np.array([np.sin(beta[0] )*np.cos(beta[1] ), np.sin(beta[0] )*np.sin(beta[1] ), np.cos(beta[0] )]) f_in_S = np.array([np.sin(beta[0] )*np.cos(beta[1] ), np.sin(beta[0] )*np.sin(beta[1] ), np.cos(beta[0] )])
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S))) ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system
o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),N,False) o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),N,False,seed=N+sigma)
angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,(N,3)),n@f_in_S),-1,1)) angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,(N,3)),n@f_in_S),-1,1))
dist = np.array(angles) * (np.random.randint(0,2,N)*2-1) dist = np.array(angles) * (np.random.randint(0,2,N)*2-1)
p = stats.normaltest(dist)[1] p = stats.normaltest(dist)[1]
sigma_out = np.degrees(np.std(dist)) sigma_out = np.degrees(np.std(dist))
print(f'\np: {p}, sigma ratio {sigma/sigma_out}') assert (.9 < sigma/sigma_out < 1.1) and p > 0.001, f'{sigma/sigma_out},{p}'
assert (.9 < sigma/sigma_out < 1.1) and p > 0.001