18-Oct-23-1
This commit is contained in:
parent
d54484dfa6
commit
5aff0d96b6
|
@ -1,3 +1,17 @@
|
|||
! Copyright 2011-2022 Max-Planck-Institut für Eisenforschung GmbH
|
||||
!
|
||||
! DAMASK is free software: you can redistribute it and/or modify
|
||||
! it under the terms of the GNU Affero General Public License as
|
||||
! published by the Free Software Foundation, either version 3 of the
|
||||
! License, or (at your option) any later version.
|
||||
!
|
||||
! This program is distributed in the hope that it will be useful,
|
||||
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
! GNU Affero General Public License for more details.
|
||||
!
|
||||
! You should have received a copy of the GNU Affero General Public License
|
||||
! along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||||
|
@ -7,132 +21,158 @@
|
|||
submodule(phase:plastic) phenopowerlaw
|
||||
|
||||
type :: tParameters
|
||||
real(pReal) :: &
|
||||
real(pReal) :: & !< declaring real number variables
|
||||
dot_gamma_0_sl = 1.0_pReal, & !< reference shear strain rate for slip
|
||||
dot_gamma_0_tw = 1.0_pReal, & !< reference shear strain rate for twin
|
||||
n_sl = 1.0_pReal, & !< stress exponent for slip
|
||||
n_tw = 1.0_pReal, & !< stress exponent for twin
|
||||
f_sat_sl_tw = 1.0_pReal, & !< push-up factor for slip saturation due to twinning
|
||||
c_1 = 1.0_pReal, &
|
||||
c_1 = 1.0_pReal, & !< hardening parameters
|
||||
c_2 = 1.0_pReal, &
|
||||
c_3 = 1.0_pReal, &
|
||||
c_4 = 1.0_pReal, &
|
||||
h_0_sl_sl = 1.0_pReal, & !< reference hardening slip - slip
|
||||
h_0_tw_sl = 1.0_pReal, & !< reference hardening twin - slip
|
||||
h_0_tw_tw = 1.0_pReal, & !< reference hardening twin - twin
|
||||
a_sl = 1.0_pReal
|
||||
real(pReal), allocatable, dimension(:) :: &
|
||||
h_0_tw_tw_nuc = 1.0_pReal, & !< Achal twin nucleation
|
||||
h_0_tw_tw_grt = 1.0_pReal, & !< Achal twin growth
|
||||
a_sl = 1.0_pReal, & !< non-Schmid Coefficient
|
||||
chkstep_nucl = 1.0_pReal, & !< Achal Monte Carlo sampling frequency (for twin nucleation)
|
||||
chkstep_grow = 1.0_pReal, & !< Achal Monte Carlo sampling frequency (for twin growth)
|
||||
chkgrowth_twin = 1.0_pReal, & !< Achal flag for twin growth
|
||||
prefdecay_slip = 1.0_pReal, & !< Achal pre-factor for the flag_slip decay
|
||||
twin_inclusion = 1.0_pReal !< Achal flag_slip to introduce specific twin vol fraction to particular phase
|
||||
|
||||
real(pReal), allocatable, dimension(:) :: & !< 1D array
|
||||
xi_inf_sl, & !< maximum critical shear stress for slip
|
||||
h_int, & !< per family hardening activity (optional)
|
||||
gamma_char !< characteristic shear for twins
|
||||
real(pReal), allocatable, dimension(:,:) :: &
|
||||
real(pReal), allocatable, dimension(:,:) :: & !< 2D array
|
||||
h_sl_sl, & !< slip resistance from slip activity
|
||||
h_sl_tw, & !< slip resistance from twin activity
|
||||
h_tw_sl, & !< twin resistance from slip activity
|
||||
h_tw_tw !< twin resistance from twin activity
|
||||
real(pReal), allocatable, dimension(:,:,:) :: &
|
||||
P_sl, &
|
||||
P_tw, &
|
||||
P_nS_pos, &
|
||||
P_nS_neg
|
||||
!h_tw_tw!, & !< twin resistance from twin activity
|
||||
h_tw_tw_grow, &
|
||||
h_tw_tw_nucl
|
||||
real(pReal), allocatable, dimension(:,:,:) :: & !< 3D array
|
||||
P_sl, & !< Schmid slip
|
||||
P_tw, & !< Schmid twin
|
||||
P_nS_pos, & !< Non Schmid +ve
|
||||
P_nS_neg, & !< Non Schmid -ve
|
||||
Corrs_Matr !< Achal Correspondence Matrix
|
||||
integer :: &
|
||||
sum_N_sl, & !< total number of active slip system
|
||||
sum_N_tw !< total number of active twin systems
|
||||
logical :: &
|
||||
logical :: & !< flag if non-Schmid slip is Active
|
||||
nonSchmidActive = .false.
|
||||
character(len=pStringLen), allocatable, dimension(:) :: &
|
||||
character(len=pStringLen), allocatable, dimension(:) :: & !< Storing output messages
|
||||
output
|
||||
character(len=:), allocatable, dimension(:) :: &
|
||||
character(len=:), allocatable, dimension(:) :: & !< Labels of active slip and twin systems
|
||||
systems_sl, &
|
||||
systems_tw
|
||||
end type tParameters
|
||||
|
||||
type :: tIndexDotState
|
||||
type :: tIndexDotState !< Index to access variables in 2D tPhenopowerlawState
|
||||
integer, dimension(2) :: &
|
||||
xi_sl, &
|
||||
xi_tw, &
|
||||
!xi_tw, &
|
||||
gamma_sl, &
|
||||
gamma_tw
|
||||
gamma_tw, &
|
||||
xi_tw_nucl, &
|
||||
xi_tw_grow
|
||||
end type tIndexDotState
|
||||
|
||||
type :: tPhenopowerlawState
|
||||
type :: tPhenopowerlawState !< state variables at material points
|
||||
real(pReal), pointer, dimension(:,:) :: &
|
||||
xi_sl, &
|
||||
xi_tw, &
|
||||
gamma_sl, &
|
||||
gamma_tw
|
||||
xi_sl, & !< critical shear stress for slip
|
||||
!xi_tw, & !< critical shear stress for twin
|
||||
gamma_sl, & !< shear strain due to slip
|
||||
gamma_tw, & !< shear strain due to twin
|
||||
xi_tw_nucl, &
|
||||
xi_tw_grow, &
|
||||
f_tw_nucl, &
|
||||
f_tw_grow, &
|
||||
fmc_tw_nucl, &
|
||||
fmc_tw_grwo
|
||||
!real(pReal), pointer, dimension(:) :: &
|
||||
! variant_twin, & !< flag used to assign twin variant
|
||||
! frozen !< 0 to 1
|
||||
|
||||
end type tPhenopowerlawState
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! containers for parameters, dot state index, and state
|
||||
! containers are arrays used to store parameters, state indices and state variables for multiple material points
|
||||
type(tParameters), allocatable, dimension(:) :: param
|
||||
type(tIndexDotState), allocatable, dimension(:) :: indexDotState
|
||||
type(tPhenopowerlawState), allocatable, dimension(:) :: state
|
||||
|
||||
contains
|
||||
|
||||
!< "contains" means the above types are used in below functions.
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Perform module initialization.
|
||||
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
module function plastic_phenopowerlaw_init() result(myPlasticity)
|
||||
module function plastic_phenopowerlaw_init() result(myPlasticity) !< function "plastic_phenopowerlaw_init" returns myPlasticity
|
||||
|
||||
logical, dimension(:), allocatable :: myPlasticity
|
||||
integer :: &
|
||||
logical, dimension(:), allocatable :: myPlasticity !< logical array: phenopowerlaw is active or not
|
||||
integer :: & !< integer variables to iterate
|
||||
ph, i, &
|
||||
Nmembers, &
|
||||
sizeState, sizeDotState, &
|
||||
startIndex, endIndex
|
||||
integer, dimension(:), allocatable :: &
|
||||
integer, dimension(:), allocatable :: & !< active number of slip and twin systems
|
||||
N_sl, N_tw
|
||||
real(pReal), dimension(:), allocatable :: &
|
||||
xi_0_sl, & !< initial critical shear stress for slip
|
||||
xi_0_tw, & !< initial critical shear stress for twin
|
||||
a !< non-Schmid coefficients
|
||||
character(len=pStringLen) :: &
|
||||
character(len=pStringLen) :: & !< to store error messages
|
||||
extmsg = ''
|
||||
class(tNode), pointer :: &
|
||||
class(tNode), pointer :: & !< pointers variables, tNode objects
|
||||
phases, &
|
||||
phase, &
|
||||
mech, &
|
||||
pl
|
||||
mech, & !< mechanical model info
|
||||
pl !< plastic model info
|
||||
|
||||
|
||||
myPlasticity = plastic_active('phenopowerlaw')
|
||||
if(count(myPlasticity) == 0) return
|
||||
myPlasticity = plastic_active('phenopowerlaw') !< function defined in phase_mechanical_plastic
|
||||
if(count(myPlasticity) == 0) return !< if phenopowerlaw is active or not
|
||||
|
||||
print'(/,1x,a)', '<<<+- phase:mechanical:plastic:phenopowerlaw init -+>>>'
|
||||
print'(/,a,i0)', ' # phases: ',count(myPlasticity); flush(IO_STDOUT)
|
||||
print'(/,a,i0)', ' # phases: ',count(myPlasticity); flush(IO_STDOUT) !< print for which phases phenopowerlaw is active
|
||||
|
||||
|
||||
phases => config_material%get('phase')
|
||||
phases => config_material%get('phase') !< get "phase" objects from config_material object
|
||||
allocate(param(phases%length))
|
||||
allocate(indexDotState(phases%length))
|
||||
allocate(state(phases%length))
|
||||
|
||||
do ph = 1, phases%length
|
||||
|
||||
do ph = 1, phases%length !< looping for each phase
|
||||
if (.not. myPlasticity(ph)) cycle
|
||||
|
||||
associate(prm => param(ph), stt => state(ph), &
|
||||
associate(prm => param(ph), stt => state(ph), & !< parameters, state var, dot state indices of current phase
|
||||
idx_dot => indexDotState(ph))
|
||||
|
||||
phase => phases%get(ph)
|
||||
phase => phases%get(ph) !< getting objects
|
||||
mech => phase%get('mechanical')
|
||||
pl => mech%get('plastic')
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! slip related parameters
|
||||
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
|
||||
prm%sum_N_sl = sum(abs(N_sl))
|
||||
slipActive: if (prm%sum_N_sl > 0) then
|
||||
prm%systems_sl = lattice_labels_slip(N_sl,phase_lattice(ph))
|
||||
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray) !< Read and Store no. of slip systems
|
||||
prm%sum_N_sl = sum(abs(N_sl)) !< total no. of slip systems
|
||||
slipActive: if (prm%sum_N_sl > 0) then !< if +ve, active slip system exists
|
||||
prm%systems_sl = lattice_labels_slip(N_sl,phase_lattice(ph)) !<
|
||||
prm%P_sl = lattice_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
|
||||
|
||||
if (phase_lattice(ph) == 'cI') then
|
||||
a = pl%get_as1dFloat('a_nonSchmid',defaultVal=emptyRealArray)
|
||||
if (phase_lattice(ph) == 'cI') then !< cI: BCC
|
||||
a = pl%get_as1dFloat('a_nonSchmid',defaultVal=emptyRealArray) !< a: non-Schmid coefficients for projections
|
||||
if(size(a) > 0) prm%nonSchmidActive = .true.
|
||||
prm%P_nS_pos = lattice_nonSchmidMatrix(N_sl,a,+1)
|
||||
prm%P_nS_pos = lattice_nonSchmidMatrix(N_sl,a,+1) !< function returns non-schmid projections
|
||||
prm%P_nS_neg = lattice_nonSchmidMatrix(N_sl,a,-1)
|
||||
else
|
||||
prm%P_nS_pos = prm%P_sl
|
||||
|
@ -177,6 +217,14 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|||
prm%P_tw = lattice_SchmidMatrix_twin(N_tw,phase_lattice(ph),phase_cOverA(ph))
|
||||
prm%h_tw_tw = lattice_interaction_TwinByTwin(N_tw,pl%get_as1dFloat('h_tw-tw'),phase_lattice(ph))
|
||||
prm%gamma_char = lattice_characteristicShear_twin(N_tw,phase_lattice(ph),phase_cOverA(ph))
|
||||
!prm%h_tw_tw_nucl =
|
||||
!prm%h_tw_tw_grow =
|
||||
!prm%chkstep_nucl =
|
||||
!prm%chkstep_grow =
|
||||
!prm%chkgrowth_twin =
|
||||
!prm%twin_inclusion =
|
||||
!prm%prefdecay_slip =
|
||||
|
||||
|
||||
xi_0_tw = pl%get_as1dFloat('xi_0_tw',requiredSize=size(N_tw))
|
||||
|
||||
|
@ -200,6 +248,8 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|||
xi_0_tw = emptyRealArray
|
||||
allocate(prm%gamma_char,source=emptyRealArray)
|
||||
allocate(prm%h_tw_tw(0,0))
|
||||
!allocate(prm%h_tw_tw_nucl(0,0))
|
||||
!allocate(prm%h_tw_tw_grow(0,0))
|
||||
end if twinActive
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -229,8 +279,16 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|||
! allocate state arrays
|
||||
Nmembers = count(material_phaseID == ph)
|
||||
sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl &
|
||||
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw
|
||||
sizeState = sizeDotState
|
||||
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw !&
|
||||
+ size(['xi_tw_nucl','xi_tw_grow']) * prm%sum_N_tw & ! Why not size(['xi_tw_nucl','gamma_tw'])?
|
||||
!+ size(['f_tw_nucl','f_tw_grow']) * prm%sum_N_tw &
|
||||
!+ size(['variant_twin','frozen']) * prm%sum_N_tw &
|
||||
sizeState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl &
|
||||
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw !&
|
||||
+ size(['xi_tw_nucl','xi_tw_grow']) * prm%sum_N_tw & ! Why not size(['xi_tw_nucl','gamma_tw'])?
|
||||
!+ size(['f_tw_nucl','f_tw_grow']) * prm%sum_N_tw &
|
||||
!+ size(['fmc_tw_nucl','fmc_tw_grow']) * prm%sum_N_tw &
|
||||
!+ size(['variant_twin','frozen']) * prm%sum_N_tw &
|
||||
|
||||
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
|
||||
deallocate(plasticState(ph)%dotState) ! ToDo: remove dotState completely
|
||||
|
@ -245,12 +303,12 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
||||
if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
|
||||
|
||||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_tw
|
||||
idx_dot%xi_tw = [startIndex,endIndex]
|
||||
stt%xi_tw => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
stt%xi_tw = spread(xi_0_tw, 2, Nmembers)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
||||
!startIndex = endIndex + 1
|
||||
!endIndex = endIndex + prm%sum_N_tw
|
||||
!idx_dot%xi_tw = [startIndex,endIndex]
|
||||
!stt%xi_tw => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
!stt%xi_tw = spread(xi_0_tw, 2, Nmembers)
|
||||
!plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
||||
|
||||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_sl
|
||||
|
@ -265,6 +323,50 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|||
stt%gamma_tw => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
||||
|
||||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_tw
|
||||
idx_dot%xi_tw_nucl = [startIndex,endIndex]
|
||||
stt%xi_tw_nucl => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
stt%xi_tw_nucl = spread(xi_0_tw, 2, Nmembers)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
||||
|
||||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_tw
|
||||
idx_dot%xi_tw_grow = [startIndex,endIndex]
|
||||
stt%xi_tw_grow => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
stt%xi_tw_grow = spread(xi_0_tw, 2, Nmembers)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
||||
|
||||
!startIndex = endIndex + 1
|
||||
!endIndex = endIndex + prm%sum_N_tw
|
||||
!idx_dot%f_twin_nucl = [startIndex,endIndex]
|
||||
!stt%f_twin_nucl => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
!plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
||||
|
||||
!startIndex = endIndex + 1
|
||||
!endIndex = endIndex + prm%sum_N_tw
|
||||
!idx_dot%f_twin_grow = [startIndex,endIndex]
|
||||
!stt%f_twin_grow => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
!plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
||||
|
||||
!startIndex = endIndex + 1
|
||||
!endIndex = endIndex + prm%sum_N_tw
|
||||
!idx_dot%fmc_twin_nucl = [startIndex,endIndex]
|
||||
!stt%fmc_twin_nucl => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
!plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
||||
|
||||
!startIndex = endIndex + 1
|
||||
!endIndex = endIndex + prm%sum_N_tw
|
||||
!idx_dot%fmc_twin_grow = [startIndex,endIndex]
|
||||
!stt%fmc_twin_grow => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
!plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
||||
|
||||
!startIndex = endIndex + 1
|
||||
!endIndex = endIndex + prm%sum_N_tw
|
||||
!idx_dot%frozen = [startIndex,endIndex]
|
||||
!stt%frozen => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
!plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
||||
|
||||
end associate
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -299,9 +401,9 @@ pure module subroutine phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,ph,en)
|
|||
real(pReal), dimension(param(ph)%sum_N_sl) :: &
|
||||
dot_gamma_sl_pos,dot_gamma_sl_neg, &
|
||||
ddot_gamma_dtau_sl_pos,ddot_gamma_dtau_sl_neg
|
||||
|
||||
real(pReal), dimension(param(ph)%sum_N_tw) :: &
|
||||
dot_gamma_tw,ddot_gamma_dtau_tw
|
||||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dMp = 0.0_pReal
|
||||
|
||||
|
@ -332,7 +434,7 @@ end subroutine phenopowerlaw_LpAndItsTangent
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Calculate the rate of change of microstructure.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
module function phenopowerlaw_dotState(Mp,ph,en) result(dotState)
|
||||
module function phenopowerlaw_dotState(Mp,ph,en) result(dotState) !< Rate of change of state variables
|
||||
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
|
@ -348,13 +450,23 @@ module function phenopowerlaw_dotState(Mp,ph,en) result(dotState)
|
|||
real(pReal), dimension(param(ph)%sum_N_sl) :: &
|
||||
dot_gamma_sl_pos,dot_gamma_sl_neg, &
|
||||
right_SlipSlip
|
||||
!real(pReal), dimension(param(ph)%sum_N_tw) :: &
|
||||
!fdot_twin_nucl, fdot_twin_grow
|
||||
|
||||
|
||||
associate(prm => param(ph), stt => state(ph), &
|
||||
dot_xi_sl => dotState(indexDotState(ph)%xi_sl(1):indexDotState(ph)%xi_sl(2)), &
|
||||
dot_xi_tw => dotState(indexDotState(ph)%xi_tw(1):indexDotState(ph)%xi_tw(2)), &
|
||||
!dot_xi_tw => dotState(indexDotState(ph)%xi_tw(1):indexDotState(ph)%xi_tw(2)), &
|
||||
dot_gamma_sl => dotState(indexDotState(ph)%gamma_sl(1):indexDotState(ph)%gamma_sl(2)), &
|
||||
dot_gamma_tw => dotState(indexDotState(ph)%gamma_tw(1):indexDotState(ph)%gamma_tw(2)))
|
||||
!dot_gamma_tw => dotState(indexDotState(ph)%gamma_tw(1):indexDotState(ph)%gamma_tw(2))!, &
|
||||
dot_gamma_tw_nucl => dotState(indexDotState(ph)%gamma_tw(1):indexDotState(ph)%gamma_tw(2)), &
|
||||
dot_gamma_tw_grow => dotState(indexDotState(ph)%gamma_tw(1):indexDotState(ph)%gamma_tw(2)), &
|
||||
dot_xi_tw_nucl => dotState(indexDotState(ph)%xi_tw_nucl(1):indexDotState(ph)%xi_tw_nucl(2)), &
|
||||
dot_xi_tw_grow => dotState(indexDotState(ph)%xi_tw_grow(1):indexDotState(ph)%xi_tw_grow(2))
|
||||
|
||||
!sumGamma
|
||||
!sumF_nucl
|
||||
!sumF_grow
|
||||
|
||||
call kinetics_sl(Mp,ph,en,dot_gamma_sl_pos,dot_gamma_sl_neg)
|
||||
dot_gamma_sl = abs(dot_gamma_sl_pos+dot_gamma_sl_neg)
|
||||
|
@ -368,15 +480,219 @@ module function phenopowerlaw_dotState(Mp,ph,en) result(dotState)
|
|||
dot_xi_sl = prm%h_0_sl_sl * (1.0_pReal + prm%c_1*sumF** prm%c_2) * (1.0_pReal + prm%h_int) &
|
||||
* matmul(prm%h_sl_sl,dot_gamma_sl*right_SlipSlip) &
|
||||
+ matmul(prm%h_sl_tw,dot_gamma_tw)
|
||||
!< Rate of change of critical shear stress
|
||||
!dot_xi_tw = prm%h_0_tw_sl * sum(stt%gamma_sl(:,en))**prm%c_3 &
|
||||
! * matmul(prm%h_tw_sl,dot_gamma_sl) &
|
||||
! + prm%h_0_tw_tw * sumF**prm%c_4 * matmul(prm%h_tw_tw,dot_gamma_tw)
|
||||
|
||||
dot_xi_tw = prm%h_0_tw_sl * sum(stt%gamma_sl(:,en))**prm%c_3 &
|
||||
* matmul(prm%h_tw_sl,dot_gamma_sl) &
|
||||
+ prm%h_0_tw_tw * sumF**prm%c_4 * matmul(prm%h_tw_tw,dot_gamma_tw)
|
||||
dot_xi_tw_nucl = prm%h_0_tw_sl * sum(stt%gamma_sl(:,en))**prm%c_3 &
|
||||
* matmul(prm%h_tw_sl,dot_gamma_sl) &
|
||||
+ prm%h_0_tw_tw_nucl * sumF_nucl**prm%c_4 * matmul(prm%h_tw_tw_nucl,dot_gamma_tw)
|
||||
|
||||
dot_xi_tw_grow = prm%h_0_tw_sl * sum(stt%gamma_sl(:,en))**prm%c_3 &
|
||||
* matmul(prm%h_tw_sl,dot_gamma_sl) &
|
||||
+ prm%h_0_tw_tw_grow * sumF_grow**prm%c_4 * matmul(prm%h_tw_tw_grow,dot_gamma_tw)
|
||||
|
||||
end associate
|
||||
|
||||
end function phenopowerlaw_dotState
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates instantaneous incremental change of kinematics and associated jump state
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! module subroutine plastic_kinematic_deltaFp(twin)
|
||||
! use prec, only: &
|
||||
! dNeq, &
|
||||
! dEq0
|
||||
! #ifdef DEBUG
|
||||
! use debug, only: &
|
||||
! debug_level, &
|
||||
! debug_constitutive,&
|
||||
! debug_levelExtensive, &
|
||||
! debug_levelSelective
|
||||
! #endif
|
||||
|
||||
! use mesh, only: &
|
||||
! mesh_element, &
|
||||
! mesh_ipNeighborhood, &
|
||||
! mesh_ipCoordinates, &
|
||||
! mesh_ipVolume, &
|
||||
! mesh_ipAreaNormal, &
|
||||
! mesh_ipArea, &
|
||||
! FE_NipNeighbors, &
|
||||
! mesh_maxNipNeighbors, &
|
||||
! FE_geomtype, &
|
||||
! FE_celltype
|
||||
|
||||
! use lattice
|
||||
! use math, only: &
|
||||
! math_I3
|
||||
|
||||
! use material, only: &
|
||||
! phaseAt, phasememberAt, &
|
||||
! phase_plasticityInstance
|
||||
|
||||
! implicit none
|
||||
! integer(pInt) :: &
|
||||
! ph, of, instance, &
|
||||
! neighbor_el, & !< element number of neighboring material point
|
||||
! neighbor_ip, & !< integration point of neighboring material point
|
||||
! np, & !< neighbor phase
|
||||
! no, n !< nieghbor offset and index for loop at neighbor
|
||||
|
||||
! integer(pInt), intent(in) :: &
|
||||
! el, & !< element index
|
||||
! ip, & !< integration point index
|
||||
! ipc !< grain index
|
||||
! real(pReal), dimension(3,3), intent(out) :: &
|
||||
! deltaFp
|
||||
! logical , intent(out) :: &
|
||||
! twinJump
|
||||
! ! real(pReal), dimension(3,3,param(instance)%totalNslip) :: &
|
||||
! ! CorrespondanceMatrix
|
||||
! integer(pInt), dimension(52) :: &
|
||||
! twin_el_incl
|
||||
! real(pReal), dimension(6) :: &
|
||||
! neighbor_stt
|
||||
! real(pReal) :: &
|
||||
! random, random1
|
||||
! integer(pInt) :: &
|
||||
! i,j,var_growth,var_nucl
|
||||
! var_growth = 0_pInt
|
||||
! var_nucl = 0_pInt
|
||||
! ph = phaseAt(ipc, ip, el)
|
||||
! of = phasememberAt(ipc, ip, el)
|
||||
! instance = phase_plasticityInstance(ph)
|
||||
|
||||
! associate(prm => param(instance), stt => state(instance), dlt => deltaState(instance))
|
||||
|
||||
! twinJump = .false.
|
||||
! deltaFp = math_I3
|
||||
|
||||
! ! for eshelby circular inclusion
|
||||
! twin_el_incl = (/ 10913,10914,10915,10916,10917,10918,10919,10920,10921,10922,10923,10924,10925, &
|
||||
! 10993,10994,10995,10996,10997,10998,10999,11000,11001,11002,11074,11075,11076, &
|
||||
! 11077,11078,11079,10751,10752,10753,10754,10755,10756,10757,10758,10759,10760, &
|
||||
! 10670,10671,10672,10673,10674,10675,10676,10677,10678,10679,10680,10681,10682 /)
|
||||
! ! TwinLooptest: do i=1_pInt, prm%totalNtwin
|
||||
! ! write(6,*)'CorrespondenceMatrix for system',i, prm%CorrespondanceMatrix(:,:,i)
|
||||
! ! enddo TwinLooptest
|
||||
|
||||
|
||||
! !Saving the neighbor information in an array
|
||||
! NeighborLoop1: do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el)))) ! only 4 neighbors for quasi 2D (1 element in z direction)
|
||||
! neighbor_el = mesh_ipNeighborhood(1,n,ip,el)
|
||||
! neighbor_ip = mesh_ipNeighborhood(2,n,ip,el)
|
||||
! np = phaseAt(1,neighbor_ip,neighbor_el)
|
||||
! no = phasememberAt(1,neighbor_ip,neighbor_el)
|
||||
! neighbor_stt(n) = state(phase_plasticityInstance(np))%variant_twin(no)
|
||||
! enddo NeighborLoop1
|
||||
|
||||
! !checking if any of my neighbor is twinned if yes recognize the variant and exit
|
||||
! ! NeighborLoop2: do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el)))) ! only 4 neighbors for quasi 2D (1 element in z direction)
|
||||
! ! neighbor_el = mesh_ipNeighborhood(1,n,ip,el)
|
||||
! ! neighbor_ip = mesh_ipNeighborhood(2,n,ip,el)
|
||||
! ! np = phaseAt(1,neighbor_ip,neighbor_el)
|
||||
! ! ! if(of == 1) write(6,*)'phaseAt neighbor_ip of neighbor_el', np
|
||||
! ! no = phasememberAt(1,neighbor_ip,neighbor_el)
|
||||
! ! ! if(of == 1) write(6,*)'phasememberAt at neighbor_ip of neighbor_el', no
|
||||
! ! if (state(phase_plasticityInstance(np))%variant_twin(no) > 0_pInt) then
|
||||
! ! var_growth = state(phase_plasticityInstance(np))%variant_twin(no)
|
||||
! !
|
||||
! ! exit NeighborLoop2
|
||||
! ! endif
|
||||
! ! enddo NeighborLoop2
|
||||
|
||||
! call RANDOM_NUMBER(random)
|
||||
! call RANDOM_NUMBER(random1)
|
||||
! ! Sampling: if (var_growth > 0_pInt) then
|
||||
! ! ! write(6,*)'I am sampling for growth with variant',var_growth
|
||||
! ! Ability_Growth: if (stt%f_twin_grow(var_growth,of) > stt%fmc_twin_grow(var_growth,of) &
|
||||
! ! + prm%checkstep_grow) then
|
||||
! ! stt%fmc_twin_grow(var_growth,of) = stt%fmc_twin_grow(var_growth,of) &
|
||||
! ! + prm%checkstep_grow
|
||||
! ! Success_Growth: if (random <= stt%f_twin_grow(var_growth,of) .or. ALL(neighbor_stt > 0_pReal)) then
|
||||
! ! write(6,*)'growth sampling is successful for elem',el
|
||||
! ! twinJump = .true.
|
||||
! ! deltaFp = prm%CorrespondanceMatrix(:,:,var_growth)
|
||||
! ! dlt%f_twin_grow(:,of) = 0.0_pReal - stt%f_twin_grow(:,of)
|
||||
! ! dlt%f_twin_nucl(:,of) = 0.0_pReal - stt%f_twin_nucl(:,of)
|
||||
! ! dlt%fmc_twin_grow(:,of) = 0.0_pReal - stt%fmc_twin_grow(:,of)
|
||||
! ! dlt%fmc_twin_nucl(:,of) = 0.0_pReal - stt%fmc_twin_nucl(:,of)
|
||||
! ! dlt%frozen(of) = 1.0_pReal - stt%frozen(of)
|
||||
! ! dlt%variant_twin(of) = var_growth - stt%variant_twin(of)
|
||||
! ! endif Success_Growth
|
||||
! ! endif Ability_Growth
|
||||
|
||||
! ! elseif (var_growth == 0_pInt .and. prm%checkgrowth_twin > 0_pReal ) then
|
||||
! if (var_growth == 0_pInt .and. prm%checkgrowth_twin > 0_pReal ) then
|
||||
! var_nucl = maxloc(stt%f_twin_nucl(:,of), dim=1)
|
||||
! ! write(6,*)'I am sampling for nucleation with variant',var_nucl,stt%f_twin_nucl(var_nucl,of)
|
||||
! Ability_Nucleation: if (stt%f_twin_nucl(var_nucl,of) > stt%fmc_twin_nucl(var_nucl,of) &
|
||||
! + prm%checkstep_nucl) then
|
||||
! stt%fmc_twin_nucl(var_nucl,of) = stt%fmc_twin_nucl(var_nucl,of) &
|
||||
! + prm%checkstep_nucl
|
||||
! Success_Nucleation: if (random <= stt%f_twin_nucl(var_nucl,of) &
|
||||
! .and. random1 <= 0.20) then
|
||||
! write(6,*)'nucleation sampling is successful for elem',el
|
||||
! twinJump = .true.
|
||||
! deltaFp = prm%CorrespondanceMatrix(:,:,var_nucl)
|
||||
! dlt%f_twin_nucl(:,of) = 0.0_pReal - stt%f_twin_nucl(:,of)
|
||||
! dlt%f_twin_grow(:,of) = 0.0_pReal - stt%f_twin_grow(:,of)
|
||||
! dlt%fmc_twin_nucl(:,of) = 0.0_pReal - stt%fmc_twin_nucl(:,of)
|
||||
! dlt%fmc_twin_grow(:,of) = 0.0_pReal - stt%fmc_twin_grow(:,of)
|
||||
! dlt%frozen(of) = 1.0_pReal - stt%frozen(of)
|
||||
! dlt%variant_twin(of) = var_nucl - stt%variant_twin(of)
|
||||
! endif Success_Nucleation
|
||||
! endif Ability_Nucleation
|
||||
! endif
|
||||
! ! endif Sampling
|
||||
! end associate
|
||||
|
||||
! end subroutine plastic_kinematic_deltaFp
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates (instantaneous) incremental change of microstructure
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!subroutine plastic_phenopowerlaw_deltaState(instance,of)
|
||||
! use prec, only: &
|
||||
! dNeq, &
|
||||
! dEq0
|
||||
! #ifdef DEBUG
|
||||
! use debug, only: &
|
||||
! debug_level, &
|
||||
! debug_constitutive,&
|
||||
! debug_levelExtensive, &
|
||||
! debug_levelSelective
|
||||
! #endif
|
||||
|
||||
! implicit none
|
||||
! integer(pInt), intent(in) :: &
|
||||
! instance, &
|
||||
! of
|
||||
!
|
||||
! associate(prm => param(instance), stt => state(instance), dlt => deltaState(instance))
|
||||
|
||||
! #ifdef DEBUG
|
||||
! if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt &
|
||||
! .and. (of == prm%of_debug &
|
||||
! .or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
|
||||
! write(6,'(a)') '======= phenopowerlaw delta state ======='
|
||||
! ! write(6,*) sense,state(instance)%sense(:,of)
|
||||
! endif
|
||||
! #endif
|
||||
|
||||
! !--------------------------------------------------------------------------------------------------
|
||||
! dlt%f_twin_nucl(:,of) = 0.0_pReal
|
||||
! dlt%f_twin_grow(:,of) = 0.0_pReal
|
||||
! dlt%fmc_twin_nucl(:,of) = 0.0_pReal
|
||||
! dlt%fmc_twin_grow(:,of) = 0.0_pReal
|
||||
! dlt%frozen(of) = 0.0_pReal
|
||||
! dlt%variant_twin(of) = 0.0_pInt
|
||||
!
|
||||
! end associate
|
||||
|
||||
!end subroutine plastic_phenopowerlaw_deltaState
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Write results to HDF5 output file.
|
||||
|
@ -494,9 +810,10 @@ end subroutine kinetics_sl
|
|||
!> @details Derivatives are calculated only optionally.
|
||||
! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to
|
||||
! have the optional arguments at the end.
|
||||
! Mp: Mandel Stress, ph: , en: , dot_gamma_tw: , ddot_gamma_dtau_tw:
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine kinetics_tw(Mp,ph,en,&
|
||||
dot_gamma_tw,ddot_gamma_dtau_tw)
|
||||
dot_gamma_tw,ddot_gamma_dtau_tw) !fdot_twin_nucl, fdot_twin_grow)
|
||||
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
|
@ -505,7 +822,7 @@ pure subroutine kinetics_tw(Mp,ph,en,&
|
|||
en
|
||||
|
||||
real(pReal), dimension(param(ph)%sum_N_tw), intent(out) :: &
|
||||
dot_gamma_tw
|
||||
dot_gamma_tw !fdot_twin_nucl, fdot_twin_grow
|
||||
real(pReal), dimension(param(ph)%sum_N_tw), intent(out), optional :: &
|
||||
ddot_gamma_dtau_tw
|
||||
|
||||
|
@ -518,9 +835,11 @@ pure subroutine kinetics_tw(Mp,ph,en,&
|
|||
|
||||
tau_tw = [(math_tensordot(Mp,prm%P_tw(1:3,1:3,i)),i=1,prm%sum_N_tw)]
|
||||
|
||||
where(tau_tw > 0.0_pReal)
|
||||
where(tau_tw > 0.0_pReal) !and stt%frozen(en) < 0.9_pReal)
|
||||
dot_gamma_tw = (1.0_pReal-sum(stt%gamma_tw(:,en)/prm%gamma_char)) & ! only twin in untwinned volume fraction
|
||||
* prm%dot_gamma_0_tw*(abs(tau_tw)/stt%xi_tw(:,en))**prm%n_tw
|
||||
!fdot_twin_nucl =
|
||||
!fdot_twin_nucl =
|
||||
else where
|
||||
dot_gamma_tw = 0.0_pReal
|
||||
end where
|
||||
|
@ -538,3 +857,4 @@ pure subroutine kinetics_tw(Mp,ph,en,&
|
|||
end subroutine kinetics_tw
|
||||
|
||||
end submodule phenopowerlaw
|
||||
|
||||
|
|
Loading…
Reference in New Issue