introduce new structure

This commit is contained in:
Martin Diehl 2020-12-20 20:20:39 +01:00
parent d0b267b240
commit 58f800cf30
1 changed files with 88 additions and 48 deletions

View File

@ -21,7 +21,7 @@ module constitutive
implicit none
private
real(pReal), dimension(:,:,:), allocatable, public :: &
real(pReal), dimension(:,:,:), allocatable, public :: &
crystallite_dt !< requested time increment of each grain
real(pReal), dimension(:,:,:), allocatable :: &
crystallite_subdt, & !< substepped time increment of each grain
@ -40,9 +40,6 @@ module constitutive
crystallite_partitionedFp0,& !< plastic def grad at start of homog inc
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
!
crystallite_Fi, & !< current intermediate def grad (end of converged time step)
crystallite_Fi0, & !< intermediate def grad at start of FE inc
crystallite_partitionedFi0,& !< intermediate def grad at start of homog inc
crystallite_subFi0,& !< intermediate def grad at start of crystallite inc
!
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
@ -73,6 +70,15 @@ module constitutive
end type tOutput
type(tOutput), allocatable, dimension(:) :: output_constituent
type :: tTensorContainer
real(pReal), dimension(:,:,:), allocatable :: data
end type
type(tTensorContainer), dimension(:), allocatable :: &
constitutive_mech_Fi, &
constitutive_mech_Fi0, &
constitutive_mech_partionedFi0
type :: tNumerics
integer :: &
iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp
@ -833,7 +839,9 @@ end subroutine constitutive_results
subroutine crystallite_init
integer :: &
Nconstituents, &
p, &
m, &
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
@ -861,13 +869,13 @@ subroutine crystallite_init
allocate(crystallite_partitionedF(3,3,cMax,iMax,eMax),source=0.0_pReal)
allocate(crystallite_S0, &
crystallite_F0, crystallite_Fi0,crystallite_Fp0, &
crystallite_F0,crystallite_Fp0, &
crystallite_Li0,crystallite_Lp0, &
crystallite_partitionedS0, &
crystallite_partitionedF0,crystallite_partitionedFp0,crystallite_partitionedFi0, &
crystallite_partitionedF0,crystallite_partitionedFp0,&
crystallite_partitionedLp0,crystallite_partitionedLi0, &
crystallite_S,crystallite_P, &
crystallite_Fe,crystallite_Fi,crystallite_Fp, &
crystallite_Fe,crystallite_Fp, &
crystallite_Li,crystallite_Lp, &
crystallite_subF,crystallite_subF0, &
crystallite_subFp0,crystallite_subFi0, &
@ -930,7 +938,11 @@ subroutine crystallite_init
phases => config_material%get('phase')
allocate(output_constituent(phases%length))
allocate(constitutive_mech_Fi(phases%length))
allocate(constitutive_mech_Fi0(phases%length))
allocate(constitutive_mech_partionedFi0(phases%length))
do p = 1, phases%length
Nconstituents = count(material_phaseAt == p) * discretization_nIPs
phase => phases%get(p)
mech => phase%get('mechanics',defaultVal = emptyDict)
#if defined(__GFORTRAN__)
@ -938,6 +950,9 @@ subroutine crystallite_init
#else
output_constituent(p)%label = mech%get_asStrings('output',defaultVal=emptyStringArray)
#endif
allocate(constitutive_mech_Fi(p)%data(3,3,Nconstituents))
allocate(constitutive_mech_Fi0(p)%data(3,3,Nconstituents))
allocate(constitutive_mech_partionedFi0(p)%data(3,3,Nconstituents))
enddo
print'(a42,1x,i10)', ' # of elements: ', eMax
@ -945,18 +960,27 @@ subroutine crystallite_init
print'(a42,1x,i10)', 'max # of constituents/integration point: ', cMax
flush(IO_STDOUT)
!$OMP PARALLEL DO PRIVATE(i,c)
!$OMP PARALLEL DO PRIVATE(p,m)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1), FEsolving_execIP(2); do c = 1, homogenization_Nconstituents(material_homogenizationAt(e))
p = material_phaseAt(i,e)
m = material_phaseMemberAt(c,i,e)
crystallite_Fp0(1:3,1:3,c,i,e) = material_orientation0(c,i,e)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005)
crystallite_Fp0(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e) &
/ math_det33(crystallite_Fp0(1:3,1:3,c,i,e))**(1.0_pReal/3.0_pReal)
crystallite_Fi0(1:3,1:3,c,i,e) = math_I3
constitutive_mech_Fi0(p)%data(1:3,1:3,m) = math_I3
crystallite_F0(1:3,1:3,c,i,e) = math_I3
crystallite_Fe(1:3,1:3,c,i,e) = math_inv33(matmul(crystallite_Fi0(1:3,1:3,c,i,e), &
crystallite_Fe(1:3,1:3,c,i,e) = math_inv33(matmul(constitutive_mech_Fi0(p)%data(1:3,1:3,m), &
crystallite_Fp0(1:3,1:3,c,i,e))) ! assuming that euler angles are given in internal strain free configuration
crystallite_Fp(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e)
crystallite_Fi(1:3,1:3,c,i,e) = crystallite_Fi0(1:3,1:3,c,i,e)
constitutive_mech_Fi(p)%data(1:3,1:3,m) = constitutive_mech_Fi0(p)%data(1:3,1:3,m)
constitutive_mech_partionedFi0(p)%data(1:3,1:3,m) = constitutive_mech_Fi0(p)%data(1:3,1:3,m)
crystallite_requested(c,i,e) = .true.
enddo; enddo
enddo
@ -964,7 +988,6 @@ subroutine crystallite_init
crystallite_partitionedFp0 = crystallite_Fp0
crystallite_partitionedFi0 = crystallite_Fi0
crystallite_partitionedF0 = crystallite_F0
crystallite_partitionedF = crystallite_F0
@ -999,7 +1022,7 @@ function crystallite_stress()
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
s
s, p, m
logical, dimension(homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems) :: todo !ToDo: need to set some values to false for different Ngrains
real(pReal), dimension(homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems) :: subFrac !ToDo: need to set some values to false for different Ngrains
real(pReal), dimension(:,:,:,:,:), allocatable :: &
@ -1014,10 +1037,12 @@ function crystallite_stress()
!--------------------------------------------------------------------------------------------------
! initialize to starting condition
crystallite_subStep = 0.0_pReal
!$OMP PARALLEL DO
!$OMP PARALLEL DO PRIVATE(p,m)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2); do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
homogenizationRequestsCalculation: if (crystallite_requested(c,i,e)) then
p = material_phaseAt(i,e)
m = material_phaseMemberAt(c,i,e)
plasticState (material_phaseAt(c,e))%subState0( :,material_phaseMemberAt(c,i,e)) = &
plasticState (material_phaseAt(c,e))%partitionedState0(:,material_phaseMemberAt(c,i,e))
@ -1026,7 +1051,7 @@ function crystallite_stress()
sourceState(material_phaseAt(c,e))%p(s)%partitionedState0(:,material_phaseMemberAt(c,i,e))
enddo
crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_partitionedFp0(1:3,1:3,c,i,e)
crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_partitionedFi0(1:3,1:3,c,i,e)
crystallite_subFi0(1:3,1:3,c,i,e) = constitutive_mech_partionedFi0(p)%data(1:3,1:3,m)
crystallite_subF0(1:3,1:3,c,i,e) = crystallite_partitionedF0(1:3,1:3,c,i,e)
subFrac(c,i,e) = 0.0_pReal
crystallite_subStep(c,i,e) = 1.0_pReal/num%subStepSizeCryst
@ -1045,10 +1070,12 @@ function crystallite_stress()
if (debugCrystallite%extensive) &
print'(a,i6)', '<< CRYST stress >> crystallite iteration ',NiterationCrystallite
#endif
!$OMP PARALLEL DO PRIVATE(formerSubStep)
!$OMP PARALLEL DO PRIVATE(formerSubStep,p,m)
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
p = material_phaseAt(i,e)
m = material_phaseMemberAt(c,i,e)
!--------------------------------------------------------------------------------------------------
! wind forward
if (crystallite_converged(c,i,e)) then
@ -1058,12 +1085,13 @@ function crystallite_stress()
num%stepIncreaseCryst * crystallite_subStep(c,i,e))
todo(c,i,e) = crystallite_subStep(c,i,e) > 0.0_pReal ! still time left to integrate on?
if (todo(c,i,e)) then
crystallite_subF0 (1:3,1:3,c,i,e) = crystallite_subF(1:3,1:3,c,i,e)
subLp0(1:3,1:3,c,i,e) = crystallite_Lp (1:3,1:3,c,i,e)
subLi0(1:3,1:3,c,i,e) = crystallite_Li (1:3,1:3,c,i,e)
crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_Fp (1:3,1:3,c,i,e)
crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_Fi (1:3,1:3,c,i,e)
crystallite_subFi0(1:3,1:3,c,i,e) = constitutive_mech_Fi(p)%data(1:3,1:3,m)
plasticState( material_phaseAt(c,e))%subState0(:,material_phaseMemberAt(c,i,e)) &
= plasticState(material_phaseAt(c,e))%state( :,material_phaseMemberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
@ -1077,7 +1105,7 @@ function crystallite_stress()
else
crystallite_subStep(c,i,e) = num%subStepSizeCryst * crystallite_subStep(c,i,e)
crystallite_Fp (1:3,1:3,c,i,e) = crystallite_subFp0(1:3,1:3,c,i,e)
crystallite_Fi (1:3,1:3,c,i,e) = crystallite_subFi0(1:3,1:3,c,i,e)
constitutive_mech_Fi(p)%data(1:3,1:3,m) = crystallite_subFi0(1:3,1:3,c,i,e)
crystallite_S (1:3,1:3,c,i,e) = crystallite_S0 (1:3,1:3,c,i,e)
if (crystallite_subStep(c,i,e) < 1.0_pReal) then ! actual (not initial) cutback
crystallite_Lp (1:3,1:3,c,i,e) = subLp0(1:3,1:3,c,i,e)
@ -1101,7 +1129,7 @@ function crystallite_stress()
+ crystallite_subStep(c,i,e) *( crystallite_partitionedF (1:3,1:3,c,i,e) &
-crystallite_partitionedF0(1:3,1:3,c,i,e))
crystallite_Fe(1:3,1:3,c,i,e) = matmul(crystallite_subF(1:3,1:3,c,i,e), &
math_inv33(matmul(crystallite_Fi(1:3,1:3,c,i,e), &
math_inv33(matmul(constitutive_mech_Fi(p)%data(1:3,1:3,m), &
crystallite_Fp(1:3,1:3,c,i,e))))
crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e)
crystallite_converged(c,i,e) = .false.
@ -1141,12 +1169,14 @@ subroutine crystallite_initializeRestorationPoints(i,e)
e !< element number
integer :: &
c, & !< constituent number
s
s,p, m
p = material_phaseAt(i,e)
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
m = material_phaseMemberAt(c,i,e)
crystallite_partitionedFp0(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e)
crystallite_partitionedLp0(1:3,1:3,c,i,e) = crystallite_Lp0(1:3,1:3,c,i,e)
crystallite_partitionedFi0(1:3,1:3,c,i,e) = crystallite_Fi0(1:3,1:3,c,i,e)
constitutive_mech_partionedFi0(p)%data(1:3,1:3,m) = constitutive_mech_Fi0(p)%data(1:3,1:3,m)
crystallite_partitionedLi0(1:3,1:3,c,i,e) = crystallite_Li0(1:3,1:3,c,i,e)
crystallite_partitionedF0(1:3,1:3,c,i,e) = crystallite_F0(1:3,1:3,c,i,e)
crystallite_partitionedS0(1:3,1:3,c,i,e) = crystallite_S0(1:3,1:3,c,i,e)
@ -1172,13 +1202,14 @@ subroutine crystallite_windForward(i,e)
e !< element number
integer :: &
c, & !< constituent number
s
s, p, m
p = material_phaseAt(i,e)
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
m = material_phaseMemberAt(c,i,e)
crystallite_partitionedF0 (1:3,1:3,c,i,e) = crystallite_partitionedF(1:3,1:3,c,i,e)
crystallite_partitionedFp0(1:3,1:3,c,i,e) = crystallite_Fp (1:3,1:3,c,i,e)
crystallite_partitionedLp0(1:3,1:3,c,i,e) = crystallite_Lp (1:3,1:3,c,i,e)
crystallite_partitionedFi0(1:3,1:3,c,i,e) = crystallite_Fi (1:3,1:3,c,i,e)
constitutive_mech_partionedFi0(p)%data(1:3,1:3,m) = constitutive_mech_Fi(p)%data(1:3,1:3,m)
crystallite_partitionedLi0(1:3,1:3,c,i,e) = crystallite_Li (1:3,1:3,c,i,e)
crystallite_partitionedS0 (1:3,1:3,c,i,e) = crystallite_S (1:3,1:3,c,i,e)
@ -1204,15 +1235,17 @@ subroutine crystallite_restore(i,e,includeL)
logical, intent(in) :: &
includeL !< protect agains fake cutback
integer :: &
c !< constituent number
c, p, m !< constituent number
p = material_phaseAt(i,e)
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
if (includeL) then
crystallite_Lp(1:3,1:3,c,i,e) = crystallite_partitionedLp0(1:3,1:3,c,i,e)
crystallite_Li(1:3,1:3,c,i,e) = crystallite_partitionedLi0(1:3,1:3,c,i,e)
endif ! maybe protecting everything from overwriting makes more sense
m = material_phaseMemberAt(c,i,e)
crystallite_Fp(1:3,1:3,c,i,e) = crystallite_partitionedFp0(1:3,1:3,c,i,e)
crystallite_Fi(1:3,1:3,c,i,e) = crystallite_partitionedFi0(1:3,1:3,c,i,e)
constitutive_mech_Fi(p)%data(1:3,1:3,m) = constitutive_mech_partionedFi0(p)%data(1:3,1:3,m)
crystallite_S (1:3,1:3,c,i,e) = crystallite_partitionedS0 (1:3,1:3,c,i,e)
plasticState (material_phaseAt(c,e))%state( :,material_phasememberAt(c,i,e)) = &
@ -1234,7 +1267,7 @@ function crystallite_stressTangent(c,i,e) result(dPdF)
e !< counter in element loop
integer :: &
o, &
p
p, pp, m
real(pReal), dimension(3,3) :: devNull, &
invSubFp0,invSubFi0,invFp,invFi, &
@ -1254,17 +1287,19 @@ function crystallite_stressTangent(c,i,e) result(dPdF)
real(pReal), dimension(9,9):: temp_99
logical :: error
pp = material_phaseAt(i,e)
m = material_phaseMemberAt(c,i,e)
call constitutive_SandItsTangents(devNull,dSdFe,dSdFi, &
crystallite_Fe(1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e),c,i,e)
constitutive_mech_Fi(pp)%data(1:3,1:3,m),c,i,e)
call constitutive_LiAndItsTangents(devNull,dLidS,dLidFi, &
crystallite_S (1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e), &
constitutive_mech_Fi(pp)%data(1:3,1:3,m), &
c,i,e)
invFp = math_inv33(crystallite_Fp(1:3,1:3,c,i,e))
invFi = math_inv33(crystallite_Fi(1:3,1:3,c,i,e))
invFi = math_inv33(constitutive_mech_Fi(pp)%data(1:3,1:3,m))
invSubFp0 = math_inv33(crystallite_subFp0(1:3,1:3,c,i,e))
invSubFi0 = math_inv33(crystallite_subFi0(1:3,1:3,c,i,e))
@ -1293,7 +1328,7 @@ function crystallite_stressTangent(c,i,e) result(dPdF)
call constitutive_LpAndItsTangents(devNull,dLpdS,dLpdFi, &
crystallite_S (1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate Lp tangent in lattice configuration
constitutive_mech_Fi(pp)%data(1:3,1:3,m),c,i,e)
dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS
!--------------------------------------------------------------------------------------------------
@ -1434,8 +1469,7 @@ subroutine crystallite_results
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'plastic deformation gradient','1')
case('F_i')
selected_tensors = select_tensors(crystallite_Fi,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
call results_writeDataset(group,constitutive_mech_Fi(p)%data,output_constituent(p)%label(o),&
'inelastic deformation gradient','1')
case('L_p')
selected_tensors = select_tensors(crystallite_Lp,p)
@ -1593,6 +1627,7 @@ function integrateStress(ipc,ip,el,timeFraction) result(broken)
ierr, & ! error indicator for LAPACK
o, &
p, &
m, &
jacoCounterLp, &
jacoCounterLi ! counters to check for Jacobian update
logical :: error,broken
@ -1741,12 +1776,15 @@ function integrateStress(ipc,ip,el,timeFraction) result(broken)
call math_invert33(Fp_new,devNull,error,invFp_new)
if (error) return ! error
p = material_phaseAt(ipc,el)
m = material_phaseMemberAt(ipc,ip,el)
crystallite_P (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new)))
crystallite_S (1:3,1:3,ipc,ip,el) = S
crystallite_Lp (1:3,1:3,ipc,ip,el) = Lpguess
crystallite_Li (1:3,1:3,ipc,ip,el) = Liguess
crystallite_Fp (1:3,1:3,ipc,ip,el) = Fp_new / math_det33(Fp_new)**(1.0_pReal/3.0_pReal) ! regularize
crystallite_Fi (1:3,1:3,ipc,ip,el) = Fi_new
constitutive_mech_Fi(p)%data(1:3,1:3,m) = Fi_new
crystallite_Fe (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),invFi_new)
broken = .false.
@ -1786,7 +1824,7 @@ subroutine integrateStateFPI(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
@ -1807,7 +1845,7 @@ subroutine integrateStateFPI(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) exit iteration
@ -1827,7 +1865,7 @@ subroutine integrateStateFPI(g,i,e)
if(crystallite_converged(g,i,e)) then
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
constitutive_mech_Fi(p)%data(1:3,1:3,c),g,i,e,p,c)
exit iteration
endif
@ -1979,7 +2017,7 @@ subroutine integrateStateEuler(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
@ -1990,7 +2028,7 @@ subroutine integrateStateEuler(g,i,e)
* crystallite_subdt(g,i,e)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
constitutive_mech_Fi(p)%data(1:3,1:3,c),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
@ -2023,7 +2061,7 @@ subroutine integrateStateAdaptiveEuler(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
@ -2035,7 +2073,7 @@ subroutine integrateStateAdaptiveEuler(g,i,e)
+ plasticState(p)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
constitutive_mech_Fi(p)%data(1:3,1:3,c),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
@ -2043,7 +2081,7 @@ subroutine integrateStateAdaptiveEuler(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
@ -2141,7 +2179,7 @@ subroutine integrateStateRK(g,i,e,A,B,CC,DB)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
@ -2167,7 +2205,7 @@ subroutine integrateStateRK(g,i,e,A,B,CC,DB)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e)*CC(stage), g,i,e,p,c)
if(broken) exit
@ -2191,7 +2229,7 @@ subroutine integrateStateRK(g,i,e,A,B,CC,DB)
if(broken) return
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
constitutive_mech_Fi(p)%data(1:3,1:3,c),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
@ -2235,7 +2273,6 @@ subroutine crystallite_restartWrite
call HDF5_write(fileHandle,crystallite_partitionedF,'F')
call HDF5_write(fileHandle,crystallite_Fp, 'F_p')
call HDF5_write(fileHandle,crystallite_Fi, 'F_i')
call HDF5_write(fileHandle,crystallite_Lp, 'L_p')
call HDF5_write(fileHandle,crystallite_Li, 'L_i')
call HDF5_write(fileHandle,crystallite_S, 'S')
@ -2244,6 +2281,8 @@ subroutine crystallite_restartWrite
do i = 1,size(material_name_phase)
write(datasetName,'(i0,a)') i,'_omega'
call HDF5_write(groupHandle,plasticState(i)%state,datasetName)
write(datasetName,'(i0,a)') i,'_F_i'
call HDF5_write(groupHandle,constitutive_mech_Fi(i)%data,datasetName)
enddo
call HDF5_closeGroup(groupHandle)
@ -2276,7 +2315,6 @@ subroutine crystallite_restartRead
call HDF5_read(fileHandle,crystallite_F0, 'F')
call HDF5_read(fileHandle,crystallite_Fp0,'F_p')
call HDF5_read(fileHandle,crystallite_Fi0,'F_i')
call HDF5_read(fileHandle,crystallite_Lp0,'L_p')
call HDF5_read(fileHandle,crystallite_Li0,'L_i')
call HDF5_read(fileHandle,crystallite_S0, 'S')
@ -2285,6 +2323,8 @@ subroutine crystallite_restartRead
do i = 1,size(material_name_phase)
write(datasetName,'(i0,a)') i,'_omega'
call HDF5_read(groupHandle,plasticState(i)%state0,datasetName)
write(datasetName,'(i0,a)') i,'_F_i'
call HDF5_read(groupHandle,constitutive_mech_Fi0(i)%data,datasetName)
enddo
call HDF5_closeGroup(groupHandle)
@ -2311,12 +2351,12 @@ subroutine crystallite_forward
crystallite_F0 = crystallite_partitionedF
crystallite_Fp0 = crystallite_Fp
crystallite_Lp0 = crystallite_Lp
crystallite_Fi0 = crystallite_Fi
crystallite_Li0 = crystallite_Li
crystallite_S0 = crystallite_S
do i = 1, size(plasticState)
plasticState(i)%state0 = plasticState(i)%state
constitutive_mech_Fi0(i) = constitutive_mech_Fi(i)
enddo
do i = 1,size(material_name_homogenization)
homogState (i)%state0 = homogState (i)%state