no need for two loops

This commit is contained in:
Martin Diehl 2020-09-29 13:13:53 +02:00
parent f1e96489cc
commit 587d5ee445
1 changed files with 25 additions and 72 deletions

View File

@ -460,6 +460,7 @@ function crystallite_stress()
math_inv33(crystallite_Fi(1:3,1:3,c,i,e))) math_inv33(crystallite_Fi(1:3,1:3,c,i,e)))
crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e) crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e)
crystallite_converged(c,i,e) = .false. crystallite_converged(c,i,e) = .false.
call integrateState(c,i,e)
endif endif
enddo enddo
@ -467,9 +468,10 @@ function crystallite_stress()
enddo elementLooping3 enddo elementLooping3
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
call nonlocalConvergenceCheck
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! integrate --- requires fully defined state array (basic + dependent state) ! integrate --- requires fully defined state array (basic + dependent state)
if (any(todo)) call integrateState(todo) ! TODO: unroll into proper elementloop to avoid N^2 for single point evaluation
where(.not. crystallite_converged .and. crystallite_subStep > num%subStepMinCryst) & ! do not try non-converged but fully cutbacked any further where(.not. crystallite_converged .and. crystallite_subStep > num%subStepMinCryst) & ! do not try non-converged but fully cutbacked any further
todo = .true. ! TODO: again unroll this into proper elementloop to avoid N^2 for single point evaluation todo = .true. ! TODO: again unroll this into proper elementloop to avoid N^2 for single point evaluation
@ -1125,9 +1127,8 @@ end function integrateStress
!> @brief integrate stress, state with adaptive 1st order explicit Euler method !> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize !> using Fixed Point Iteration to adapt the stepsize
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateFPI(todo) subroutine integrateStateFPI(g,i,e)
logical, dimension(:,:,:), intent(in) :: todo
integer :: & integer :: &
NiterationState, & !< number of iterations in state loop NiterationState, & !< number of iterations in state loop
e, & !< element index in element loop e, & !< element index in element loop
@ -1150,11 +1151,6 @@ subroutine integrateStateFPI(todo)
broken broken
!$OMP PARALLEL DO PRIVATE(size_pl,size_so,r,zeta,p,c,plastic_dotState,source_dotState,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(todo(g,i,e)) then
p = material_phaseAt(g,e) p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e) c = material_phaseMemberAt(g,i,e)
@ -1163,7 +1159,7 @@ subroutine integrateStateFPI(todo)
crystallite_Fi(1:3,1:3,g,i,e), & crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, & crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c) crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle if(broken) return
size_pl = plasticState(p)%sizeDotState size_pl = plasticState(p)%sizeDotState
plasticState(p)%state(1:size_pl,c) = plasticState(p)%subState0(1:size_pl,c) & plasticState(p)%state(1:size_pl,c) = plasticState(p)%subState0(1:size_pl,c) &
@ -1234,11 +1230,7 @@ subroutine integrateStateFPI(todo)
endif endif
enddo iteration enddo iteration
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call nonlocalConvergenceCheck
contains contains
@ -1268,9 +1260,7 @@ end subroutine integrateStateFPI
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief integrate state with 1st order explicit Euler method !> @brief integrate state with 1st order explicit Euler method
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateEuler(todo) subroutine integrateStateEuler(g,i,e)
logical, dimension(:,:,:), intent(in) :: todo
integer :: & integer :: &
e, & !< element index in element loop e, & !< element index in element loop
@ -1283,11 +1273,6 @@ subroutine integrateStateEuler(todo)
logical :: & logical :: &
broken broken
!$OMP PARALLEL DO PRIVATE (sizeDotState,p,c,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(todo(g,i,e)) then
p = material_phaseAt(g,e) p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e) c = material_phaseMemberAt(g,i,e)
@ -1297,7 +1282,7 @@ subroutine integrateStateEuler(todo)
crystallite_Fi(1:3,1:3,g,i,e), & crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, & crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c) crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle if(broken) return
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) & plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
@ -1313,15 +1298,10 @@ subroutine integrateStateEuler(todo)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), & broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c) crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) cycle if(broken) return
broken = integrateStress(g,i,e) broken = integrateStress(g,i,e)
crystallite_converged(g,i,e) = .not. broken crystallite_converged(g,i,e) = .not. broken
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call nonlocalConvergenceCheck
end subroutine integrateStateEuler end subroutine integrateStateEuler
@ -1329,9 +1309,7 @@ end subroutine integrateStateEuler
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size !> @brief integrate stress, state with 1st order Euler method with adaptive step size
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateAdaptiveEuler(todo) subroutine integrateStateAdaptiveEuler(g,i,e)
logical, dimension(:,:,:), intent(in) :: todo
integer :: & integer :: &
e, & ! element index in element loop e, & ! element index in element loop
@ -1347,13 +1325,7 @@ subroutine integrateStateAdaptiveEuler(todo)
real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: residuum_plastic real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: residuum_plastic
real(pReal), dimension(constitutive_source_maxSizeDotState,maxval(phase_Nsources)) :: residuum_source real(pReal), dimension(constitutive_source_maxSizeDotState,maxval(phase_Nsources)) :: residuum_source
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,residuum_plastic,residuum_source,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
broken = .false.
if(todo(g,i,e)) then
p = material_phaseAt(g,e) p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e) c = material_phaseMemberAt(g,i,e)
@ -1362,7 +1334,7 @@ subroutine integrateStateAdaptiveEuler(todo)
crystallite_Fi(1:3,1:3,g,i,e), & crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, & crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c) crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle if(broken) return
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
@ -1381,17 +1353,17 @@ subroutine integrateStateAdaptiveEuler(todo)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), & broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c) crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) cycle if(broken) return
broken = integrateStress(g,i,e) broken = integrateStress(g,i,e)
if(broken) cycle if(broken) return
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), & broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, & crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), & crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, & crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c) crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle if(broken) return
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
@ -1409,21 +1381,15 @@ subroutine integrateStateAdaptiveEuler(todo)
sourceState(p)%p(s)%atol(1:sizeDotState)) sourceState(p)%p(s)%atol(1:sizeDotState))
enddo enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call nonlocalConvergenceCheck
end subroutine integrateStateAdaptiveEuler end subroutine integrateStateAdaptiveEuler
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method !> @brief Integrate state (including stress integration) with the classic Runge Kutta method
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
subroutine integrateStateRK4(todo) subroutine integrateStateRK4(g,i,e)
logical, dimension(:,:,:), intent(in) :: todo integer :: g,i,e
real(pReal), dimension(3,3), parameter :: & real(pReal), dimension(3,3), parameter :: &
A = reshape([& A = reshape([&
@ -1436,7 +1402,7 @@ subroutine integrateStateRK4(todo)
real(pReal), dimension(4), parameter :: & real(pReal), dimension(4), parameter :: &
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal] B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal]
call integrateStateRK(todo,A,B,C) call integrateStateRK(g,i,e,A,B,C)
end subroutine integrateStateRK4 end subroutine integrateStateRK4
@ -1444,9 +1410,9 @@ end subroutine integrateStateRK4
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the Cash-Carp method !> @brief Integrate state (including stress integration) with the Cash-Carp method
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
subroutine integrateStateRKCK45(todo) subroutine integrateStateRKCK45(g,i,e)
logical, dimension(:,:,:), intent(in) :: todo integer :: g,i,e
real(pReal), dimension(5,5), parameter :: & real(pReal), dimension(5,5), parameter :: &
A = reshape([& A = reshape([&
@ -1466,7 +1432,7 @@ subroutine integrateStateRKCK45(todo)
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,& [2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal] 13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal]
call integrateStateRK(todo,A,B,C,DB) call integrateStateRK(g,i,e,A,B,C,DB)
end subroutine integrateStateRKCK45 end subroutine integrateStateRKCK45
@ -1475,9 +1441,8 @@ end subroutine integrateStateRKCK45
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an !> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
!! embedded explicit Runge-Kutta method !! embedded explicit Runge-Kutta method
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateRK(todo,A,B,CC,DB) subroutine integrateStateRK(g,i,e,A,B,CC,DB)
logical, dimension(:,:,:), intent(in) :: todo
real(pReal), dimension(:,:), intent(in) :: A real(pReal), dimension(:,:), intent(in) :: A
real(pReal), dimension(:), intent(in) :: B, CC real(pReal), dimension(:), intent(in) :: B, CC
@ -1498,13 +1463,6 @@ subroutine integrateStateRK(todo,A,B,CC,DB)
real(pReal), dimension(constitutive_source_maxSizeDotState,size(B),maxval(phase_Nsources)) :: source_RKdotState real(pReal), dimension(constitutive_source_maxSizeDotState,size(B),maxval(phase_Nsources)) :: source_RKdotState
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,size(B)) :: plastic_RKdotState real(pReal), dimension(constitutive_plasticity_maxSizeDotState,size(B)) :: plastic_RKdotState
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,plastic_RKdotState,source_RKdotState,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
broken = .false.
if(todo(g,i,e)) then
p = material_phaseAt(g,e) p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e) c = material_phaseMemberAt(g,i,e)
@ -1513,7 +1471,7 @@ subroutine integrateStateRK(todo,A,B,CC,DB)
crystallite_Fi(1:3,1:3,g,i,e), & crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, & crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c) crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle if(broken) return
do stage = 1,size(A,1) do stage = 1,size(A,1)
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
@ -1558,7 +1516,7 @@ subroutine integrateStateRK(todo,A,B,CC,DB)
if(broken) exit if(broken) exit
enddo enddo
if(broken) cycle if(broken) return
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
@ -1587,21 +1545,16 @@ subroutine integrateStateRK(todo,A,B,CC,DB)
sourceState(p)%p(s)%state(1:sizeDotState,c), & sourceState(p)%p(s)%state(1:sizeDotState,c), &
sourceState(p)%p(s)%atol(1:sizeDotState)) sourceState(p)%p(s)%atol(1:sizeDotState))
enddo enddo
if(broken) cycle if(broken) return
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), & broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c) crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) cycle if(broken) return
broken = integrateStress(g,i,e) broken = integrateStress(g,i,e)
crystallite_converged(g,i,e) = .not. broken crystallite_converged(g,i,e) = .not. broken
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call nonlocalConvergenceCheck
end subroutine integrateStateRK end subroutine integrateStateRK