no need for two loops
This commit is contained in:
parent
f1e96489cc
commit
587d5ee445
|
@ -460,16 +460,18 @@ function crystallite_stress()
|
|||
math_inv33(crystallite_Fi(1:3,1:3,c,i,e)))
|
||||
crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e)
|
||||
crystallite_converged(c,i,e) = .false.
|
||||
call integrateState(c,i,e)
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo elementLooping3
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call nonlocalConvergenceCheck
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! integrate --- requires fully defined state array (basic + dependent state)
|
||||
if (any(todo)) call integrateState(todo) ! TODO: unroll into proper elementloop to avoid N^2 for single point evaluation
|
||||
where(.not. crystallite_converged .and. crystallite_subStep > num%subStepMinCryst) & ! do not try non-converged but fully cutbacked any further
|
||||
todo = .true. ! TODO: again unroll this into proper elementloop to avoid N^2 for single point evaluation
|
||||
|
||||
|
@ -1125,9 +1127,8 @@ end function integrateStress
|
|||
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
|
||||
!> using Fixed Point Iteration to adapt the stepsize
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine integrateStateFPI(todo)
|
||||
subroutine integrateStateFPI(g,i,e)
|
||||
|
||||
logical, dimension(:,:,:), intent(in) :: todo
|
||||
integer :: &
|
||||
NiterationState, & !< number of iterations in state loop
|
||||
e, & !< element index in element loop
|
||||
|
@ -1150,11 +1151,6 @@ subroutine integrateStateFPI(todo)
|
|||
broken
|
||||
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(size_pl,size_so,r,zeta,p,c,plastic_dotState,source_dotState,broken)
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
do i = FEsolving_execIP(1),FEsolving_execIP(2)
|
||||
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
|
||||
if(todo(g,i,e)) then
|
||||
p = material_phaseAt(g,e)
|
||||
c = material_phaseMemberAt(g,i,e)
|
||||
|
||||
|
@ -1163,7 +1159,7 @@ subroutine integrateStateFPI(todo)
|
|||
crystallite_Fi(1:3,1:3,g,i,e), &
|
||||
crystallite_partionedFp0, &
|
||||
crystallite_subdt(g,i,e), g,i,e,p,c)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
size_pl = plasticState(p)%sizeDotState
|
||||
plasticState(p)%state(1:size_pl,c) = plasticState(p)%subState0(1:size_pl,c) &
|
||||
|
@ -1234,11 +1230,7 @@ subroutine integrateStateFPI(todo)
|
|||
endif
|
||||
|
||||
enddo iteration
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call nonlocalConvergenceCheck
|
||||
|
||||
contains
|
||||
|
||||
|
@ -1268,9 +1260,7 @@ end subroutine integrateStateFPI
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief integrate state with 1st order explicit Euler method
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine integrateStateEuler(todo)
|
||||
|
||||
logical, dimension(:,:,:), intent(in) :: todo
|
||||
subroutine integrateStateEuler(g,i,e)
|
||||
|
||||
integer :: &
|
||||
e, & !< element index in element loop
|
||||
|
@ -1283,11 +1273,6 @@ subroutine integrateStateEuler(todo)
|
|||
logical :: &
|
||||
broken
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE (sizeDotState,p,c,broken)
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
do i = FEsolving_execIP(1),FEsolving_execIP(2)
|
||||
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
|
||||
if(todo(g,i,e)) then
|
||||
|
||||
p = material_phaseAt(g,e)
|
||||
c = material_phaseMemberAt(g,i,e)
|
||||
|
@ -1297,7 +1282,7 @@ subroutine integrateStateEuler(todo)
|
|||
crystallite_Fi(1:3,1:3,g,i,e), &
|
||||
crystallite_partionedFp0, &
|
||||
crystallite_subdt(g,i,e), g,i,e,p,c)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
sizeDotState = plasticState(p)%sizeDotState
|
||||
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
|
||||
|
@ -1313,15 +1298,10 @@ subroutine integrateStateEuler(todo)
|
|||
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
|
||||
crystallite_Fe(1:3,1:3,g,i,e), &
|
||||
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
broken = integrateStress(g,i,e)
|
||||
crystallite_converged(g,i,e) = .not. broken
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call nonlocalConvergenceCheck
|
||||
|
||||
end subroutine integrateStateEuler
|
||||
|
||||
|
@ -1329,9 +1309,7 @@ end subroutine integrateStateEuler
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine integrateStateAdaptiveEuler(todo)
|
||||
|
||||
logical, dimension(:,:,:), intent(in) :: todo
|
||||
subroutine integrateStateAdaptiveEuler(g,i,e)
|
||||
|
||||
integer :: &
|
||||
e, & ! element index in element loop
|
||||
|
@ -1347,13 +1325,7 @@ subroutine integrateStateAdaptiveEuler(todo)
|
|||
real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: residuum_plastic
|
||||
real(pReal), dimension(constitutive_source_maxSizeDotState,maxval(phase_Nsources)) :: residuum_source
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,residuum_plastic,residuum_source,broken)
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
do i = FEsolving_execIP(1),FEsolving_execIP(2)
|
||||
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
|
||||
broken = .false.
|
||||
|
||||
if(todo(g,i,e)) then
|
||||
p = material_phaseAt(g,e)
|
||||
c = material_phaseMemberAt(g,i,e)
|
||||
|
||||
|
@ -1362,7 +1334,7 @@ subroutine integrateStateAdaptiveEuler(todo)
|
|||
crystallite_Fi(1:3,1:3,g,i,e), &
|
||||
crystallite_partionedFp0, &
|
||||
crystallite_subdt(g,i,e), g,i,e,p,c)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
sizeDotState = plasticState(p)%sizeDotState
|
||||
|
||||
|
@ -1381,17 +1353,17 @@ subroutine integrateStateAdaptiveEuler(todo)
|
|||
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
|
||||
crystallite_Fe(1:3,1:3,g,i,e), &
|
||||
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
broken = integrateStress(g,i,e)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
|
||||
crystallite_partionedF0, &
|
||||
crystallite_Fi(1:3,1:3,g,i,e), &
|
||||
crystallite_partionedFp0, &
|
||||
crystallite_subdt(g,i,e), g,i,e,p,c)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
|
||||
sizeDotState = plasticState(p)%sizeDotState
|
||||
|
@ -1407,13 +1379,7 @@ subroutine integrateStateAdaptiveEuler(todo)
|
|||
+ 0.5_pReal*sourceState(p)%p(s)%dotState(:,c)*crystallite_subdt(g,i,e), &
|
||||
sourceState(p)%p(s)%state(1:sizeDotState,c), &
|
||||
sourceState(p)%p(s)%atol(1:sizeDotState))
|
||||
enddo
|
||||
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call nonlocalConvergenceCheck
|
||||
enddo
|
||||
|
||||
end subroutine integrateStateAdaptiveEuler
|
||||
|
||||
|
@ -1421,9 +1387,9 @@ end subroutine integrateStateAdaptiveEuler
|
|||
!---------------------------------------------------------------------------------------------------
|
||||
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
subroutine integrateStateRK4(todo)
|
||||
subroutine integrateStateRK4(g,i,e)
|
||||
|
||||
logical, dimension(:,:,:), intent(in) :: todo
|
||||
integer :: g,i,e
|
||||
|
||||
real(pReal), dimension(3,3), parameter :: &
|
||||
A = reshape([&
|
||||
|
@ -1436,7 +1402,7 @@ subroutine integrateStateRK4(todo)
|
|||
real(pReal), dimension(4), parameter :: &
|
||||
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal]
|
||||
|
||||
call integrateStateRK(todo,A,B,C)
|
||||
call integrateStateRK(g,i,e,A,B,C)
|
||||
|
||||
end subroutine integrateStateRK4
|
||||
|
||||
|
@ -1444,9 +1410,9 @@ end subroutine integrateStateRK4
|
|||
!---------------------------------------------------------------------------------------------------
|
||||
!> @brief Integrate state (including stress integration) with the Cash-Carp method
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
subroutine integrateStateRKCK45(todo)
|
||||
subroutine integrateStateRKCK45(g,i,e)
|
||||
|
||||
logical, dimension(:,:,:), intent(in) :: todo
|
||||
integer :: g,i,e
|
||||
|
||||
real(pReal), dimension(5,5), parameter :: &
|
||||
A = reshape([&
|
||||
|
@ -1466,7 +1432,7 @@ subroutine integrateStateRKCK45(todo)
|
|||
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
|
||||
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal]
|
||||
|
||||
call integrateStateRK(todo,A,B,C,DB)
|
||||
call integrateStateRK(g,i,e,A,B,C,DB)
|
||||
|
||||
end subroutine integrateStateRKCK45
|
||||
|
||||
|
@ -1475,9 +1441,8 @@ end subroutine integrateStateRKCK45
|
|||
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
|
||||
!! embedded explicit Runge-Kutta method
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine integrateStateRK(todo,A,B,CC,DB)
|
||||
subroutine integrateStateRK(g,i,e,A,B,CC,DB)
|
||||
|
||||
logical, dimension(:,:,:), intent(in) :: todo
|
||||
|
||||
real(pReal), dimension(:,:), intent(in) :: A
|
||||
real(pReal), dimension(:), intent(in) :: B, CC
|
||||
|
@ -1498,13 +1463,6 @@ subroutine integrateStateRK(todo,A,B,CC,DB)
|
|||
real(pReal), dimension(constitutive_source_maxSizeDotState,size(B),maxval(phase_Nsources)) :: source_RKdotState
|
||||
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,size(B)) :: plastic_RKdotState
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,plastic_RKdotState,source_RKdotState,broken)
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
do i = FEsolving_execIP(1),FEsolving_execIP(2)
|
||||
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
|
||||
broken = .false.
|
||||
|
||||
if(todo(g,i,e)) then
|
||||
p = material_phaseAt(g,e)
|
||||
c = material_phaseMemberAt(g,i,e)
|
||||
|
||||
|
@ -1513,7 +1471,7 @@ subroutine integrateStateRK(todo,A,B,CC,DB)
|
|||
crystallite_Fi(1:3,1:3,g,i,e), &
|
||||
crystallite_partionedFp0, &
|
||||
crystallite_subdt(g,i,e), g,i,e,p,c)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
do stage = 1,size(A,1)
|
||||
sizeDotState = plasticState(p)%sizeDotState
|
||||
|
@ -1558,7 +1516,7 @@ subroutine integrateStateRK(todo,A,B,CC,DB)
|
|||
if(broken) exit
|
||||
|
||||
enddo
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
sizeDotState = plasticState(p)%sizeDotState
|
||||
|
||||
|
@ -1587,21 +1545,16 @@ subroutine integrateStateRK(todo,A,B,CC,DB)
|
|||
sourceState(p)%p(s)%state(1:sizeDotState,c), &
|
||||
sourceState(p)%p(s)%atol(1:sizeDotState))
|
||||
enddo
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
|
||||
crystallite_Fe(1:3,1:3,g,i,e), &
|
||||
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
|
||||
if(broken) cycle
|
||||
if(broken) return
|
||||
|
||||
broken = integrateStress(g,i,e)
|
||||
crystallite_converged(g,i,e) = .not. broken
|
||||
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call nonlocalConvergenceCheck
|
||||
|
||||
end subroutine integrateStateRK
|
||||
|
||||
|
|
Loading…
Reference in New Issue