Merge branch 'fix-relationship-operations' into 'development'

proper bi-directional orientation relationships

Closes #333 and #322

See merge request damask/DAMASK!841
This commit is contained in:
Martin Diehl 2023-11-07 18:23:57 +00:00
commit 5877eafa61
39 changed files with 697 additions and 506 deletions

View File

@ -6,7 +6,8 @@ from ._typehints import FloatSequence, CrystalFamily, BravaisLattice, CrystalKin
from . import util
from . import Rotation
lattice_symmetries: Dict[BravaisLattice, CrystalFamily] = {
lattice_symmetries: Dict[Optional[BravaisLattice], CrystalFamily] = {
'aP': 'triclinic',
'mP': 'monoclinic',
@ -27,276 +28,406 @@ lattice_symmetries: Dict[BravaisLattice, CrystalFamily] = {
'cF': 'cubic',
}
orientation_relationships: Dict[str, Dict[BravaisLattice,np.ndarray]] = {
'KS': {
'cF': np.array([
[[-1, 0, 1],[ 1, 1, 1]],
[[-1, 0, 1],[ 1, 1, 1]],
[[ 0, 1,-1],[ 1, 1, 1]],
[[ 0, 1,-1],[ 1, 1, 1]],
[[ 1,-1, 0],[ 1, 1, 1]],
[[ 1,-1, 0],[ 1, 1, 1]],
[[ 1, 0,-1],[ 1,-1, 1]],
[[ 1, 0,-1],[ 1,-1, 1]],
[[-1,-1, 0],[ 1,-1, 1]],
[[-1,-1, 0],[ 1,-1, 1]],
[[ 0, 1, 1],[ 1,-1, 1]],
[[ 0, 1, 1],[ 1,-1, 1]],
[[ 0,-1, 1],[-1, 1, 1]],
[[ 0,-1, 1],[-1, 1, 1]],
[[-1, 0,-1],[-1, 1, 1]],
[[-1, 0,-1],[-1, 1, 1]],
[[ 1, 1, 0],[-1, 1, 1]],
[[ 1, 1, 0],[-1, 1, 1]],
[[-1, 1, 0],[ 1, 1,-1]],
[[-1, 1, 0],[ 1, 1,-1]],
[[ 0,-1,-1],[ 1, 1,-1]],
[[ 0,-1,-1],[ 1, 1,-1]],
[[ 1, 0, 1],[ 1, 1,-1]],
[[ 1, 0, 1],[ 1, 1,-1]],
],dtype=float),
'cI': np.array([
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
],dtype=float),
},
'GT': {
'cF': np.array([
[[ -5,-12, 17],[ 1, 1, 1]],
[[ 17, -5,-12],[ 1, 1, 1]],
[[-12, 17, -5],[ 1, 1, 1]],
[[ 5, 12, 17],[ -1, -1, 1]],
[[-17, 5,-12],[ -1, -1, 1]],
[[ 12,-17, -5],[ -1, -1, 1]],
[[ -5, 12,-17],[ -1, 1, 1]],
[[ 17, 5, 12],[ -1, 1, 1]],
[[-12,-17, 5],[ -1, 1, 1]],
[[ 5,-12,-17],[ 1, -1, 1]],
[[-17, -5, 12],[ 1, -1, 1]],
[[ 12, 17, 5],[ 1, -1, 1]],
[[ -5, 17,-12],[ 1, 1, 1]],
[[-12, -5, 17],[ 1, 1, 1]],
[[ 17,-12, -5],[ 1, 1, 1]],
[[ 5,-17,-12],[ -1, -1, 1]],
[[ 12, 5, 17],[ -1, -1, 1]],
[[-17, 12, -5],[ -1, -1, 1]],
[[ -5,-17, 12],[ -1, 1, 1]],
[[-12, 5,-17],[ -1, 1, 1]],
[[ 17, 12, 5],[ -1, 1, 1]],
[[ 5, 17, 12],[ 1, -1, 1]],
[[ 12, -5,-17],[ 1, -1, 1]],
[[-17,-12, 5],[ 1, -1, 1]],
],dtype=float),
'cI': np.array([
[[-17, -7, 17],[ 1, 0, 1]],
[[ 17,-17, -7],[ 1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]],
[[ 17, 7, 17],[ -1, 0, 1]],
[[-17, 17, -7],[ -1, -1, 0]],
[[ 7,-17,-17],[ 0, -1, 1]],
[[-17, 7,-17],[ -1, 0, 1]],
[[ 17, 17, 7],[ -1, 1, 0]],
[[ -7,-17, 17],[ 0, 1, 1]],
[[ 17, -7,-17],[ 1, 0, 1]],
[[-17,-17, 7],[ 1, -1, 0]],
[[ 7, 17, 17],[ 0, -1, 1]],
[[-17, 17, -7],[ 1, 1, 0]],
[[ -7,-17, 17],[ 0, 1, 1]],
[[ 17, -7,-17],[ 1, 0, 1]],
[[ 17,-17, -7],[ -1, -1, 0]],
[[ 7, 17, 17],[ 0, -1, 1]],
[[-17, 7,-17],[ -1, 0, 1]],
[[-17,-17, 7],[ -1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]],
[[ 17, 7, 17],[ -1, 0, 1]],
[[ 17, 17, 7],[ 1, -1, 0]],
[[ 7,-17,-17],[ 0, -1, 1]],
[[-17, -7, 17],[ 1, 0, 1]],
],dtype=float),
},
'GT_prime': {
'cF' : np.array([
[[ 0, 1, -1],[ 7, 17, 17]],
[[ -1, 0, 1],[ 17, 7, 17]],
[[ 1, -1, 0],[ 17, 17, 7]],
[[ 0, -1, -1],[ -7,-17, 17]],
[[ 1, 0, 1],[-17, -7, 17]],
[[ 1, -1, 0],[-17,-17, 7]],
[[ 0, 1, -1],[ 7,-17,-17]],
[[ 1, 0, 1],[ 17, -7,-17]],
[[ -1, -1, 0],[ 17,-17, -7]],
[[ 0, -1, -1],[ -7, 17,-17]],
[[ -1, 0, 1],[-17, 7,-17]],
[[ -1, -1, 0],[-17, 17, -7]],
[[ 0, -1, 1],[ 7, 17, 17]],
[[ 1, 0, -1],[ 17, 7, 17]],
[[ -1, 1, 0],[ 17, 17, 7]],
[[ 0, 1, 1],[ -7,-17, 17]],
[[ -1, 0, -1],[-17, -7, 17]],
[[ -1, 1, 0],[-17,-17, 7]],
[[ 0, -1, 1],[ 7,-17,-17]],
[[ -1, 0, -1],[ 17, -7,-17]],
[[ 1, 1, 0],[ 17,-17, -7]],
[[ 0, 1, 1],[ -7, 17,-17]],
[[ 1, 0, -1],[-17, 7,-17]],
[[ 1, 1, 0],[-17, 17, -7]],
],dtype=float),
'cI' : np.array([
[[ 1, 1, -1],[ 12, 5, 17]],
[[ -1, 1, 1],[ 17, 12, 5]],
[[ 1, -1, 1],[ 5, 17, 12]],
[[ -1, -1, -1],[-12, -5, 17]],
[[ 1, -1, 1],[-17,-12, 5]],
[[ 1, -1, -1],[ -5,-17, 12]],
[[ -1, 1, -1],[ 12, -5,-17]],
[[ 1, 1, 1],[ 17,-12, -5]],
[[ -1, -1, 1],[ 5,-17,-12]],
[[ 1, -1, -1],[-12, 5,-17]],
[[ -1, -1, 1],[-17, 12, -5]],
[[ -1, -1, -1],[ -5, 17,-12]],
[[ 1, -1, 1],[ 12, 17, 5]],
[[ 1, 1, -1],[ 5, 12, 17]],
[[ -1, 1, 1],[ 17, 5, 12]],
[[ -1, 1, 1],[-12,-17, 5]],
[[ -1, -1, -1],[ -5,-12, 17]],
[[ -1, 1, -1],[-17, -5, 12]],
[[ -1, -1, 1],[ 12,-17, -5]],
[[ -1, 1, -1],[ 5,-12,-17]],
[[ 1, 1, 1],[ 17, -5,-12]],
[[ 1, 1, 1],[-12, 17, -5]],
[[ 1, -1, -1],[ -5, 12,-17]],
[[ 1, 1, -1],[-17, 5,-12]],
],dtype=float),
},
'NW': {
'cF' : np.array([
[[ 2, -1, -1],[ 1, 1, 1]],
[[ -1, 2, -1],[ 1, 1, 1]],
[[ -1, -1, 2],[ 1, 1, 1]],
[[ -2, -1, -1],[ -1, 1, 1]],
[[ 1, 2, -1],[ -1, 1, 1]],
[[ 1, -1, 2],[ -1, 1, 1]],
[[ 2, 1, -1],[ 1, -1, 1]],
[[ -1, -2, -1],[ 1, -1, 1]],
[[ -1, 1, 2],[ 1, -1, 1]],
[[ 2, -1, 1],[ -1, -1, 1]],
[[ -1, 2, 1],[ -1, -1, 1]],
[[ -1, -1, -2],[ -1, -1, 1]],
],dtype=float),
'cI' : np.array([
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
],dtype=float),
},
'Pitsch': {
'cF' : np.array([
[[ 1, 0, 1],[ 0, 1, 0]],
[[ 1, 1, 0],[ 0, 0, 1]],
[[ 0, 1, 1],[ 1, 0, 0]],
[[ 0, 1, -1],[ 1, 0, 0]],
[[ -1, 0, 1],[ 0, 1, 0]],
[[ 1, -1, 0],[ 0, 0, 1]],
[[ 1, 0, -1],[ 0, 1, 0]],
[[ -1, 1, 0],[ 0, 0, 1]],
[[ 0, -1, 1],[ 1, 0, 0]],
[[ 0, 1, 1],[ 1, 0, 0]],
[[ 1, 0, 1],[ 0, 1, 0]],
[[ 1, 1, 0],[ 0, 0, 1]],
],dtype=float),
'cI' : np.array([
[[ 1, -1, 1],[ -1, 0, 1]],
[[ 1, 1, -1],[ 1, -1, 0]],
[[ -1, 1, 1],[ 0, 1, -1]],
[[ -1, 1, -1],[ 0, -1, -1]],
[[ -1, -1, 1],[ -1, 0, -1]],
[[ 1, -1, -1],[ -1, -1, 0]],
[[ 1, -1, -1],[ -1, 0, -1]],
[[ -1, 1, -1],[ -1, -1, 0]],
[[ -1, -1, 1],[ 0, -1, -1]],
[[ -1, 1, 1],[ 0, -1, 1]],
[[ 1, -1, 1],[ 1, 0, -1]],
[[ 1, 1, -1],[ -1, 1, 0]],
],dtype=float),
},
'Bain': {
'cF' : np.array([
[[ 0, 1, 0],[ 1, 0, 0]],
[[ 0, 0, 1],[ 0, 1, 0]],
[[ 1, 0, 0],[ 0, 0, 1]],
],dtype=float),
'cI' : np.array([
[[ 0, 1, 1],[ 1, 0, 0]],
[[ 1, 0, 1],[ 0, 1, 0]],
[[ 1, 1, 0],[ 0, 0, 1]],
],dtype=float),
},
'Burgers' : {
'cI' : np.array([
[[ -1, 1, 1],[ 1, 1, 0]],
[[ -1, 1, -1],[ 1, 1, 0]],
[[ 1, 1, 1],[ 1, -1, 0]],
[[ 1, 1, -1],[ 1, -1, 0]],
orientation_relationships: Dict[str, Dict[str,List[np.ndarray]]] = {
'KS': { # https://doi.org/10.1016/j.jallcom.2012.02.004
'cF-->cI' : [
np.repeat(np.array([
[[-1, 0, 1],[ 1, 1, 1]],
[[ 0, 1,-1],[ 1, 1, 1]],
[[ 1,-1, 0],[ 1, 1, 1]],
[[ 1, 1, -1],[ 1, 0, 1]],
[[ -1, 1, 1],[ 1, 0, 1]],
[[ 1, 1, 1],[ -1, 0, 1]],
[[ 1, -1, 1],[ -1, 0, 1]],
[[ 1, 0,-1],[ 1,-1, 1]],
[[-1,-1, 0],[ 1,-1, 1]],
[[ 0, 1, 1],[ 1,-1, 1]],
[[ -1, 1, -1],[ 0, 1, 1]],
[[ 1, 1, -1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, -1, 1]],
[[ 1, 1, 1],[ 0, -1, 1]],
],dtype=float),
'hP' : np.array([
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ 0,-1, 1],[-1, 1, 1]],
[[-1, 0,-1],[-1, 1, 1]],
[[ 1, 1, 0],[-1, 1, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[-1, 1, 0],[ 1, 1,-1]],
[[ 0,-1,-1],[ 1, 1,-1]],
[[ 1, 0, 1],[ 1, 1,-1]],
],dtype=float),
2,axis=0),
np.tile(np.array([[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]]],dtype=float),
(12,1,1)),
],
'cI-->cF' : [
np.repeat(np.array([
[[ 1, 1,-1],[ 0, 1, 1]],
[[ 1,-1, 1],[ 0, 1, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
],dtype=float),
},
}
[[ 1, 1, 1],[ 0, 1,-1]],
[[-1, 1, 1],[ 0, 1,-1]],
[[ 1, 1,-1],[ 1, 0, 1]],
[[ 1,-1,-1],[ 1, 0, 1]],
[[ 1, 1, 1],[ 1, 0,-1]],
[[ 1,-1, 1],[ 1, 0,-1]],
[[ 1,-1, 1],[ 1, 1, 0]],
[[ 1,-1,-1],[ 1, 1, 0]],
[[ 1, 1, 1],[ 1,-1, 0]],
[[ 1, 1,-1],[ 1,-1, 0]],
],dtype=float),
2,axis=0),
np.tile(np.array([[[ 0, 1,-1],[ 1, 1, 1]],
[[ 0,-1, 1],[ 1, 1, 1]]],dtype=float),
(12,1,1)),
],
},
'GT': { # https://doi.org/10.1107/S0021889805038276
'cF-->cI' : [
np.array([
[[ -5,-12, 17],[ 1, 1, 1]],
[[ 17, -5,-12],[ 1, 1, 1]],
[[-12, 17, -5],[ 1, 1, 1]],
[[ 5, 12, 17],[ -1, -1, 1]],
[[-17, 5,-12],[ -1, -1, 1]],
[[ 12,-17, -5],[ -1, -1, 1]],
[[ -5, 12,-17],[ -1, 1, 1]],
[[ 17, 5, 12],[ -1, 1, 1]],
[[-12,-17, 5],[ -1, 1, 1]],
[[ 5,-12,-17],[ 1, -1, 1]],
[[-17, -5, 12],[ 1, -1, 1]],
[[ 12, 17, 5],[ 1, -1, 1]],
[[ -5, 17,-12],[ 1, 1, 1]],
[[-12, -5, 17],[ 1, 1, 1]],
[[ 17,-12, -5],[ 1, 1, 1]],
[[ 5,-17,-12],[ -1, -1, 1]],
[[ 12, 5, 17],[ -1, -1, 1]],
[[-17, 12, -5],[ -1, -1, 1]],
[[ -5,-17, 12],[ -1, 1, 1]],
[[-12, 5,-17],[ -1, 1, 1]],
[[ 17, 12, 5],[ -1, 1, 1]],
[[ 5, 17, 12],[ 1, -1, 1]],
[[ 12, -5,-17],[ 1, -1, 1]],
[[-17,-12, 5],[ 1, -1, 1]],
],dtype=float),
np.array([
[[-17, -7, 17],[ 1, 0, 1]],
[[ 17,-17, -7],[ 1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]],
[[ 17, 7, 17],[ -1, 0, 1]],
[[-17, 17, -7],[ -1, -1, 0]],
[[ 7,-17,-17],[ 0, -1, 1]],
[[-17, 7,-17],[ -1, 0, 1]],
[[ 17, 17, 7],[ -1, 1, 0]],
[[ -7,-17, 17],[ 0, 1, 1]],
[[ 17, -7,-17],[ 1, 0, 1]],
[[-17,-17, 7],[ 1, -1, 0]],
[[ 7, 17, 17],[ 0, -1, 1]],
[[-17, 17, -7],[ 1, 1, 0]],
[[ -7,-17, 17],[ 0, 1, 1]],
[[ 17, -7,-17],[ 1, 0, 1]],
[[ 17,-17, -7],[ -1, -1, 0]],
[[ 7, 17, 17],[ 0, -1, 1]],
[[-17, 7,-17],[ -1, 0, 1]],
[[-17,-17, 7],[ -1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]],
[[ 17, 7, 17],[ -1, 0, 1]],
[[ 17, 17, 7],[ 1, -1, 0]],
[[ 7,-17,-17],[ 0, -1, 1]],
[[-17, -7, 17],[ 1, 0, 1]],
],dtype=float),
],
'cI-->cF' : [
np.array([
[[-17, -7, 17],[ 1, 0, 1]],
[[ 17,-17, -7],[ 1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]],
[[ 17, 7, 17],[ -1, 0, 1]],
[[-17, 17, -7],[ -1, -1, 0]],
[[ 7,-17,-17],[ 0, -1, 1]],
[[-17, 7,-17],[ -1, 0, 1]],
[[ 17, 17, 7],[ -1, 1, 0]],
[[ -7,-17, 17],[ 0, 1, 1]],
[[ 17, -7,-17],[ 1, 0, 1]],
[[-17,-17, 7],[ 1, -1, 0]],
[[ 7, 17, 17],[ 0, -1, 1]],
[[-17, 17, -7],[ 1, 1, 0]],
[[ -7,-17, 17],[ 0, 1, 1]],
[[ 17, -7,-17],[ 1, 0, 1]],
[[ 17,-17, -7],[ -1, -1, 0]],
[[ 7, 17, 17],[ 0, -1, 1]],
[[-17, 7,-17],[ -1, 0, 1]],
[[-17,-17, 7],[ -1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]],
[[ 17, 7, 17],[ -1, 0, 1]],
[[ 17, 17, 7],[ 1, -1, 0]],
[[ 7,-17,-17],[ 0, -1, 1]],
[[-17, -7, 17],[ 1, 0, 1]],
],dtype=float),
np.array([
[[ -5,-12, 17],[ 1, 1, 1]],
[[ 17, -5,-12],[ 1, 1, 1]],
[[-12, 17, -5],[ 1, 1, 1]],
[[ 5, 12, 17],[ -1, -1, 1]],
[[-17, 5,-12],[ -1, -1, 1]],
[[ 12,-17, -5],[ -1, -1, 1]],
[[ -5, 12,-17],[ -1, 1, 1]],
[[ 17, 5, 12],[ -1, 1, 1]],
[[-12,-17, 5],[ -1, 1, 1]],
[[ 5,-12,-17],[ 1, -1, 1]],
[[-17, -5, 12],[ 1, -1, 1]],
[[ 12, 17, 5],[ 1, -1, 1]],
[[ -5, 17,-12],[ 1, 1, 1]],
[[-12, -5, 17],[ 1, 1, 1]],
[[ 17,-12, -5],[ 1, 1, 1]],
[[ 5,-17,-12],[ -1, -1, 1]],
[[ 12, 5, 17],[ -1, -1, 1]],
[[-17, 12, -5],[ -1, -1, 1]],
[[ -5,-17, 12],[ -1, 1, 1]],
[[-12, 5,-17],[ -1, 1, 1]],
[[ 17, 12, 5],[ -1, 1, 1]],
[[ 5, 17, 12],[ 1, -1, 1]],
[[ 12, -5,-17],[ 1, -1, 1]],
[[-17,-12, 5],[ 1, -1, 1]],
],dtype=float),
],
},
'GT_prime': { # https://doi.org/10.1107/S0021889805038276
'cF-->cI' : [
np.array([
[[ 0, 1, -1],[ 7, 17, 17]],
[[ -1, 0, 1],[ 17, 7, 17]],
[[ 1, -1, 0],[ 17, 17, 7]],
[[ 0, -1, -1],[ -7,-17, 17]],
[[ 1, 0, 1],[-17, -7, 17]],
[[ 1, -1, 0],[-17,-17, 7]],
[[ 0, 1, -1],[ 7,-17,-17]],
[[ 1, 0, 1],[ 17, -7,-17]],
[[ -1, -1, 0],[ 17,-17, -7]],
[[ 0, -1, -1],[ -7, 17,-17]],
[[ -1, 0, 1],[-17, 7,-17]],
[[ -1, -1, 0],[-17, 17, -7]],
[[ 0, -1, 1],[ 7, 17, 17]],
[[ 1, 0, -1],[ 17, 7, 17]],
[[ -1, 1, 0],[ 17, 17, 7]],
[[ 0, 1, 1],[ -7,-17, 17]],
[[ -1, 0, -1],[-17, -7, 17]],
[[ -1, 1, 0],[-17,-17, 7]],
[[ 0, -1, 1],[ 7,-17,-17]],
[[ -1, 0, -1],[ 17, -7,-17]],
[[ 1, 1, 0],[ 17,-17, -7]],
[[ 0, 1, 1],[ -7, 17,-17]],
[[ 1, 0, -1],[-17, 7,-17]],
[[ 1, 1, 0],[-17, 17, -7]],
],dtype=float),
np.array([
[[ 1, 1, -1],[ 12, 5, 17]],
[[ -1, 1, 1],[ 17, 12, 5]],
[[ 1, -1, 1],[ 5, 17, 12]],
[[ -1, -1, -1],[-12, -5, 17]],
[[ 1, -1, 1],[-17,-12, 5]],
[[ 1, -1, -1],[ -5,-17, 12]],
[[ -1, 1, -1],[ 12, -5,-17]],
[[ 1, 1, 1],[ 17,-12, -5]],
[[ -1, -1, 1],[ 5,-17,-12]],
[[ 1, -1, -1],[-12, 5,-17]],
[[ -1, -1, 1],[-17, 12, -5]],
[[ -1, -1, -1],[ -5, 17,-12]],
[[ 1, -1, 1],[ 12, 17, 5]],
[[ 1, 1, -1],[ 5, 12, 17]],
[[ -1, 1, 1],[ 17, 5, 12]],
[[ -1, 1, 1],[-12,-17, 5]],
[[ -1, -1, -1],[ -5,-12, 17]],
[[ -1, 1, -1],[-17, -5, 12]],
[[ -1, -1, 1],[ 12,-17, -5]],
[[ -1, 1, -1],[ 5,-12,-17]],
[[ 1, 1, 1],[ 17, -5,-12]],
[[ 1, 1, 1],[-12, 17, -5]],
[[ 1, -1, -1],[ -5, 12,-17]],
[[ 1, 1, -1],[-17, 5,-12]],
],dtype=float),
],
'cI-->cF' : [
np.array([
[[ 1, 1, -1],[ 12, 5, 17]],
[[ -1, 1, 1],[ 17, 12, 5]],
[[ 1, -1, 1],[ 5, 17, 12]],
[[ -1, -1, -1],[-12, -5, 17]],
[[ 1, -1, 1],[-17,-12, 5]],
[[ 1, -1, -1],[ -5,-17, 12]],
[[ -1, 1, -1],[ 12, -5,-17]],
[[ 1, 1, 1],[ 17,-12, -5]],
[[ -1, -1, 1],[ 5,-17,-12]],
[[ 1, -1, -1],[-12, 5,-17]],
[[ -1, -1, 1],[-17, 12, -5]],
[[ -1, -1, -1],[ -5, 17,-12]],
[[ 1, -1, 1],[ 12, 17, 5]],
[[ 1, 1, -1],[ 5, 12, 17]],
[[ -1, 1, 1],[ 17, 5, 12]],
[[ -1, 1, 1],[-12,-17, 5]],
[[ -1, -1, -1],[ -5,-12, 17]],
[[ -1, 1, -1],[-17, -5, 12]],
[[ -1, -1, 1],[ 12,-17, -5]],
[[ -1, 1, -1],[ 5,-12,-17]],
[[ 1, 1, 1],[ 17, -5,-12]],
[[ 1, 1, 1],[-12, 17, -5]],
[[ 1, -1, -1],[ -5, 12,-17]],
[[ 1, 1, -1],[-17, 5,-12]],
],dtype=float),
np.array([
[[ 0, 1, -1],[ 7, 17, 17]],
[[ -1, 0, 1],[ 17, 7, 17]],
[[ 1, -1, 0],[ 17, 17, 7]],
[[ 0, -1, -1],[ -7,-17, 17]],
[[ 1, 0, 1],[-17, -7, 17]],
[[ 1, -1, 0],[-17,-17, 7]],
[[ 0, 1, -1],[ 7,-17,-17]],
[[ 1, 0, 1],[ 17, -7,-17]],
[[ -1, -1, 0],[ 17,-17, -7]],
[[ 0, -1, -1],[ -7, 17,-17]],
[[ -1, 0, 1],[-17, 7,-17]],
[[ -1, -1, 0],[-17, 17, -7]],
[[ 0, -1, 1],[ 7, 17, 17]],
[[ 1, 0, -1],[ 17, 7, 17]],
[[ -1, 1, 0],[ 17, 17, 7]],
[[ 0, 1, 1],[ -7,-17, 17]],
[[ -1, 0, -1],[-17, -7, 17]],
[[ -1, 1, 0],[-17,-17, 7]],
[[ 0, -1, 1],[ 7,-17,-17]],
[[ -1, 0, -1],[ 17, -7,-17]],
[[ 1, 1, 0],[ 17,-17, -7]],
[[ 0, 1, 1],[ -7, 17,-17]],
[[ 1, 0, -1],[-17, 7,-17]],
[[ 1, 1, 0],[-17, 17, -7]],
],dtype=float),
],
},
'NW': { # https://doi.org/10.1016/j.matchar.2004.12.015
'cF-->cI' : [
np.array([
[[ 2,-1,-1],[ 1, 1, 1]],
[[-1, 2,-1],[ 1, 1, 1]],
[[-1,-1, 2],[ 1, 1, 1]],
[[-2,-1,-1],[-1, 1, 1]],
[[ 1, 2,-1],[-1, 1, 1]],
[[ 1,-1, 2],[-1, 1, 1]],
[[ 2, 1,-1],[ 1,-1, 1]],
[[-1,-2,-1],[ 1,-1, 1]],
[[-1, 1, 2],[ 1,-1, 1]],
[[ 2,-1, 1],[ 1, 1,-1]],
[[-1, 2, 1],[ 1, 1,-1]],
[[-1,-1,-2],[ 1, 1,-1]],
],dtype=float),
np.broadcast_to(np.array([[ 0,-1, 1],[ 0, 1, 1]],dtype=float),
(12,2,3)),
],
'cI-->cF' : [
np.repeat(np.array([
[[ 0, 1,-1],[ 0, 1, 1]],
[[ 0, 1, 1],[ 0, 1,-1]],
[[ 1, 0,-1],[ 1, 0, 1]],
[[ 1, 0, 1],[ 1, 0,-1]],
[[ 1,-1, 0],[ 1, 1, 0]],
[[ 1, 1, 0],[ 1,-1, 0]],
],dtype=float),
2,axis=0),
np.tile(np.array([
[[ 2,-1,-1],[ 1, 1, 1]],
[[-2, 1, 1],[ 1, 1, 1]],
],dtype=float),
(6,1,1)),
],
},
'Pitsch': { # https://doi.org/10.1080/14786435908238253
'cF-->cI' : [
np.repeat(np.array([
[[ 0, 1, 1],[ 1, 0, 0]],
[[ 0, 1,-1],[ 1, 0, 0]],
[[ 1, 0, 1],[ 0, 1, 0]],
[[ 1, 0,-1],[ 0, 1, 0]],
[[ 1, 1, 0],[ 0, 0, 1]],
[[ 1,-1, 0],[ 0, 0, 1]],
],dtype=float),
2,axis=0),
np.tile(np.array([
[[ 1, 1,-1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
],dtype=float),
(6,1,1)),
],
'cI-->cF' : [
np.array([
[[ 1, 1,-1],[ 0, 1, 1]],
[[ 1,-1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1,-1]],
[[-1, 1, 1],[ 0, 1,-1]],
[[ 1, 1,-1],[ 1, 0, 1]],
[[ 1,-1,-1],[ 1, 0, 1]],
[[ 1, 1, 1],[ 1, 0,-1]],
[[ 1,-1, 1],[ 1, 0,-1]],
[[ 1,-1, 1],[ 1, 1, 0]],
[[ 1,-1,-1],[ 1, 1, 0]],
[[ 1, 1, 1],[ 1,-1, 0]],
[[ 1, 1,-1],[ 1,-1, 0]],
],dtype=float),
np.broadcast_to(np.array([[ 1, 1, 0],[ 0, 0, 1]],dtype=float),
(12,2,3)),
],
},
'Bain': { # https://doi.org/10.1107/S0021889805038276
'cF-->cI' : [
np.array([
[[ 0, 1, 0],[ 1, 0, 0]],
[[ 0, 0, 1],[ 0, 1, 0]],
[[ 1, 0, 0],[ 0, 0, 1]],
],dtype=float),
np.broadcast_to(np.array([[ 1, 1, 0],[ 0, 0, 1]],dtype=float),
(3,2,3)),
],
'cI-->cF' : [
np.array([
[[ 0, 1, 1],[ 1, 0, 0]],
[[ 1, 0, 1],[ 0, 1, 0]],
[[ 1, 1, 0],[ 0, 0, 1]],
],dtype=float),
np.broadcast_to(np.array([[ 1, 0, 0],[ 0, 0, 1]],dtype=float),
(3,2,3)),
]
},
'Burgers' : { # https://doi.org/10.1016/S0031-8914(34)80244-3
'cI-->hP' : [
np.array([
[[ 1, 1,-1],[ 0, 1, 1]],
[[ 1,-1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1,-1]],
[[-1, 1, 1],[ 0, 1,-1]],
[[ 1, 1,-1],[ 1, 0, 1]],
[[ 1,-1,-1],[ 1, 0, 1]],
[[ 1, 1, 1],[ 1, 0,-1]],
[[ 1,-1, 1],[ 1, 0,-1]],
[[ 1,-1, 1],[ 1, 1, 0]],
[[ 1,-1,-1],[ 1, 1, 0]],
[[ 1, 1, 1],[ 1,-1, 0]],
[[ 1, 1,-1],[ 1,-1, 0]],
],dtype=float),
np.broadcast_to(np.array([[ 2,-1,-1, 0],[ 0, 0, 0, 1]],dtype=float),
(12,2,4)),
],
'hP-->cI' : [
np.repeat(np.array([
[[ 2,-1,-1, 0],[ 0, 0, 0, 1]],
[[-1, 2,-1, 0],[ 0, 0, 0, 1]],
[[-1,-1, 2, 0],[ 0, 0, 0, 1]],
],dtype=float),
2,axis=0),
np.tile(np.array([
[[ 1, 1,-1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
],dtype=float),
(3,1,1)),
]
},
}
class Crystal():
"""
@ -358,7 +489,7 @@ class Crystal():
if lattice is not None and family is not None and family != lattice_symmetries[lattice]:
raise KeyError(f'incompatible family "{family}" for lattice "{lattice}"')
self.family = lattice_symmetries[lattice] if family is None else family
self.family = lattice_symmetries[lattice] if family is None else family
self.lattice = lattice
if self.lattice is not None:
@ -428,20 +559,20 @@ class Crystal():
Crystal to check for equality.
"""
return NotImplemented if not isinstance(other, Crystal) else \
self.lattice == other.lattice and \
self.parameters == other.parameters and \
self.family == other.family
return (NotImplemented if not isinstance(other, Crystal) else
self.lattice == other.lattice and
self.parameters == other.parameters and
self.family == other.family) # type: ignore
@property
def parameters(self):
def parameters(self) -> Optional[Tuple]:
"""Return lattice parameters a, b, c, alpha, beta, gamma."""
if hasattr(self,'a'): return (self.a,self.b,self.c,self.alpha,self.beta,self.gamma)
return (self.a,self.b,self.c,self.alpha,self.beta,self.gamma) if hasattr(self,'a') else None
@property
def immutable(self):
def immutable(self) -> Dict[str, float]:
"""Return immutable lattice parameters."""
_immutable = {
_immutable: Dict[CrystalFamily, Dict[str,float]] = {
'cubic': {
'b': 1.0,
'c': 1.0,
@ -476,9 +607,9 @@ class Crystal():
@property
def orientation_relationships(self):
def orientation_relationships(self) -> List[str]:
"""Return labels of orientation relationships."""
return [k for k,v in orientation_relationships.items() if self.lattice in v]
return [k for k,v in orientation_relationships.items() if np.any([m.startswith(str(self.lattice)) for m in v])]
@property
@ -671,9 +802,9 @@ class Crystal():
@property
def lattice_points(self):
def lattice_points(self) -> np.ndarray:
"""Return lattice points."""
_lattice_points = {
_lattice_points: Dict[str, List] = {
'P': [
],
'S': [
@ -694,8 +825,8 @@ class Crystal():
if self.lattice is None: raise KeyError('no lattice type specified')
return np.array([[0,0,0]]
+ _lattice_points.get(self.lattice if self.lattice == 'hP' else \
self.lattice[-1],None),dtype=float)
+ _lattice_points.get(self.lattice if self.lattice == 'hP' else
self.lattice[-1],[]),dtype=float)
def to_lattice(self, *,
direction: Optional[FloatSequence] = None,
@ -753,7 +884,7 @@ class Crystal():
Crystal frame vector (reciprocal space) of Titanium along (1,0,0) plane normal:
>>> import damask
>>> Ti = damask.Crystal(lattice='hP', a=0.295e-9, c=0.469e-9)
>>> Ti = damask.Crystal(lattice='hP', a=295e-12, c=469e-12)
>>> Ti.to_frame(hkl=(1, 0, 0))
array([ 3.38983051e+09, 1.95711956e+09, -4.15134508e-07])
@ -782,7 +913,7 @@ class Crystal():
Directions and planes of deformation mode families.
"""
_kinematics: Dict[BravaisLattice, Dict[CrystalKinematics, List[np.ndarray]]] = {
_kinematics: Dict[Optional[BravaisLattice], Dict[CrystalKinematics, List[np.ndarray]]] = {
'cF': {
'slip': [np.array([
[ 0,+1,-1, +1,+1,+1],
@ -1025,7 +1156,8 @@ class Crystal():
def relation_operations(self,
model: str) -> Tuple[BravaisLattice, Rotation]:
model: str,
target = None) -> Tuple[BravaisLattice, Rotation]:
"""
Crystallographic orientation relationships for phase transformations.
@ -1033,6 +1165,10 @@ class Crystal():
----------
model : str
Name of orientation relationship.
target : Crystal, optional
Crystal to transform to.
Providing this parameter allows specification of non-standard lattice parameters.
Default is inferred from selected model and uses standard lattice parameters.
Returns
-------
@ -1057,20 +1193,27 @@ class Crystal():
https://doi.org/10.1016/j.actamat.2004.11.021
"""
my_relationships = {k:v for k,v in orientation_relationships.items() if self.lattice in v}
if model not in my_relationships:
m_l: BravaisLattice
o_l: BravaisLattice
if model not in self.orientation_relationships:
raise KeyError(f'unknown orientation relationship "{model}"')
r = my_relationships[model]
sl = self.lattice
ol = (set(r)-{sl}).pop()
m = r[sl]
o = r[ol]
sep = '-->'
search = self.lattice+sep+('' if target is None else target.lattice) # type: ignore
transform = [t for t in orientation_relationships[model].keys() if t.startswith(search)] # type: ignore
p_,_p = np.zeros(m.shape[:-1]+(3,)),np.zeros(o.shape[:-1]+(3,))
p_[...,0,:] = m[...,0,:] if m.shape[-1] == 3 else util.Bravais_to_Miller(uvtw=m[...,0,0:4])
p_[...,1,:] = m[...,1,:] if m.shape[-1] == 3 else util.Bravais_to_Miller(hkil=m[...,1,0:4])
_p[...,0,:] = o[...,0,:] if o.shape[-1] == 3 else util.Bravais_to_Miller(uvtw=o[...,0,0:4])
_p[...,1,:] = o[...,1,:] if o.shape[-1] == 3 else util.Bravais_to_Miller(hkil=o[...,1,0:4])
if len(transform) != 1:
raise ValueError(f'invalid target lattice "{search.split(sep)[1]}"')
return (ol,Rotation.from_parallel(p_,_p))
m_l,o_l = transform[0].split(sep) # type: ignore
m_p,o_p = orientation_relationships[model][m_l+sep+o_l]
other = Crystal(lattice=o_l) if target is None else target
m_p = np.stack((self.to_frame(uvw=m_p[:,0] if len(m_p[0,0])==3 else util.Bravais_to_Miller(uvtw=m_p[:,0])),
self.to_frame(hkl=m_p[:,1] if len(m_p[0,1])==3 else util.Bravais_to_Miller(hkil=m_p[:,1]))),
axis=1)
o_p = np.stack((other.to_frame(uvw=o_p[:,0] if len(o_p[0,0])==3 else util.Bravais_to_Miller(uvtw=o_p[:,0])),
other.to_frame(hkl=o_p[:,1] if len(o_p[0,1])==3 else util.Bravais_to_Miller(hkil=o_p[:,1]))),
axis=1)
return (o_l,Rotation.from_parallel(a=m_p,b=o_p))

View File

@ -240,13 +240,6 @@ class Orientation(Rotation,Crystal):
return self.copy(Rotation(self.quaternion)*Rotation(other.quaternion))
@classmethod
@util.extend_docstring(Rotation.from_random,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_random, wrapped=__init__)
def from_random(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_quaternion,
adopted_parameters=Crystal.__init__)
@ -282,6 +275,13 @@ class Orientation(Rotation,Crystal):
def from_matrix(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_parallel,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_parallel, wrapped=__init__)
def from_parallel(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_Rodrigues_vector,
adopted_parameters=Crystal.__init__)
@ -303,6 +303,20 @@ class Orientation(Rotation,Crystal):
def from_cubochoric(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_random,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_random, wrapped=__init__)
def from_random(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_ODF,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_ODF, wrapped=__init__)
def from_ODF(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_spherical_component,
adopted_parameters=Crystal.__init__)
@ -325,7 +339,7 @@ class Orientation(Rotation,Crystal):
hkl: FloatSequence,
**kwargs) -> 'Orientation':
"""
Initialize orientation object from two crystallographic directions.
Initialize orientation object from the crystallographic direction and plane parallel to lab x and z, respectively.
Parameters
----------
@ -855,7 +869,8 @@ class Orientation(Rotation,Crystal):
def related(self: MyType,
model: str) -> MyType:
model: str,
target = None) -> MyType:
"""
All orientations related to self by given relationship model.
@ -863,6 +878,10 @@ class Orientation(Rotation,Crystal):
----------
model : str
Orientation relationship model selected from self.orientation_relationships.
target : Crystal, optional
Crystal to transform to.
Providing this parameter allows specification of non-standard lattice parameters.
Default is inferred from selected model and uses standard lattice parameters.
Returns
-------
@ -890,11 +909,10 @@ class Orientation(Rotation,Crystal):
[0.924 0.000 0.000 0.383]]
"""
lattice,o = self.relation_operations(model)
target = Crystal(lattice=lattice)
o = o.broadcast_to(o.shape+self.shape,mode='right')
lattice,o = self.relation_operations(model,target)
target = Crystal(lattice=lattice) if target is None else target
return Orientation(rotation=o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'),
return Orientation(rotation=o*Rotation(self.quaternion)[np.newaxis,...], # type: ignore
lattice=lattice,
b = self.b if target.ratio['b'] is None else self.a*target.ratio['b'],
c = self.c if target.ratio['c'] is None else self.a*target.ratio['c'],

View File

@ -57,6 +57,11 @@ class Table:
Test equality of other.
Parameters
----------
other : Table
Table to check for equality.
"""
return NotImplemented if not isinstance(other,Table) else \
self.shapes == other.shapes and self.data.equals(other.data)

View File

@ -10,8 +10,8 @@ FloatSequence = Union[np.ndarray,Sequence[float]]
IntSequence = Union[np.ndarray,Sequence[int]]
StrSequence = Union[np.ndarray,Sequence[str]]
FileHandle = Union[TextIO, str, Path]
CrystalFamily = Union[None,Literal['triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 'hexagonal', 'cubic']]
BravaisLattice = Union[None,Literal['aP', 'mP', 'mS', 'oP', 'oS', 'oI', 'oF', 'tP', 'tI', 'hP', 'cP', 'cI', 'cF']]
CrystalFamily = Literal['triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 'hexagonal', 'cubic']
BravaisLattice = Literal['aP', 'mP', 'mS', 'oP', 'oS', 'oI', 'oF', 'tP', 'tI', 'hP', 'cP', 'cI', 'cF']
CrystalKinematics = Literal['slip', 'twin']
NumpyRngSeed = Union[int, IntSequence, np.random.SeedSequence, np.random.Generator]
# BitGenerator does not exists in older numpy versions

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

View File

@ -1,4 +1,4 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
180.0 45.00000000000001 180.0 1 1
270.0 45.00000000000001 90.0 1 2
90.0 90.0 315.0 1 1
180.0 90.00000000000001 45.000000000000014 1 2
315.0 0.0 0.0 1 3

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
146.75362934444064 9.976439066337804 256.395594327347 1 1
356.59977719102034 43.39784965440254 12.173896584899929 1 2
75.92521636876346 43.82007387041961 277.8843642946069 1 3
326.75362934444064 9.976439066337806 76.39559432734703 1 4
176.59977719102034 43.397849654402556 192.17389658489986 1 5
255.92521636876344 43.82007387041961 97.88436429460687 1 6
213.24637065555936 9.976439066337804 103.604405672653 1 7
3.400222808979685 43.39784965440255 347.8261034151001 1 8
146.75362934444055 9.976439066337804 256.39559432734706 1 1
356.59977719102034 43.39784965440254 12.173896584899923 1 2
75.92521636876346 43.820073870419634 277.8843642946069 1 3
326.7536293444406 9.976439066337804 76.39559432734708 1 4
176.59977719102034 43.39784965440254 192.1738965848999 1 5
255.92521636876344 43.82007387041961 97.88436429460688 1 6
213.2463706555594 9.976439066337804 103.60440567265299 1 7
3.4002228089796636 43.39784965440254 347.8261034151001 1 8
284.0747836312365 43.82007387041961 82.11563570539313 1 9
33.24637065555936 9.976439066337804 283.60440567265294 1 10
183.40022280897963 43.397849654402556 167.8261034151001 1 11
104.07478363123654 43.82007387041961 262.1156357053931 1 12
273.4002228089796 43.397849654402556 77.82610341510008 1 13
123.24637065555939 9.976439066337806 193.60440567265297 1 14
194.07478363123653 43.82007387041961 172.11563570539317 1 15
93.40022280897969 43.39784965440255 257.8261034151001 1 16
303.24637065555936 9.976439066337804 13.604405672652977 1 17
14.074783631236542 43.82007387041961 352.1156357053931 1 18
86.59977719102032 43.39784965440254 282.17389658489986 1 19
236.75362934444058 9.976439066337804 166.39559432734703 1 20
165.92521636876344 43.82007387041961 187.88436429460683 1 21
266.59977719102034 43.39784965440254 102.17389658489992 1 22
56.75362934444064 9.976439066337804 346.395594327347 1 23
345.9252163687635 43.82007387041961 7.884364294606862 1 24
33.246370655559474 9.976439066337804 283.6044056726529 1 10
183.40022280897966 43.39784965440254 167.8261034151001 1 11
104.07478363123657 43.82007387041961 262.1156357053931 1 12
273.4002228089796 43.39784965440254 77.82610341510009 1 13
123.24637065555936 9.976439066337804 193.60440567265303 1 14
194.07478363123653 43.82007387041961 172.11563570539315 1 15
93.40022280897966 43.39784965440256 257.82610341510014 1 16
303.2463706555593 9.976439066337804 13.604405672653055 1 17
14.07478363123655 43.82007387041961 352.1156357053931 1 18
86.59977719102034 43.39784965440254 282.17389658489986 1 19
236.75362934444064 9.976439066337804 166.39559432734697 1 20
165.92521636876347 43.82007387041961 187.88436429460683 1 21
266.59977719102034 43.39784965440254 102.17389658489991 1 22
56.75362934444067 9.976439066337804 346.395594327347 1 23
345.9252163687635 43.82007387041961 7.8843642946068595 1 24

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
166.39559432734697 9.976439066337804 236.75362934444058 1 1
352.1156357053931 43.82007387041961 14.074783631236542 1 2
77.82610341510008 43.397849654402556 273.4002228089796 1 3
346.395594327347 9.976439066337804 56.75362934444064 1 4
172.11563570539317 43.82007387041961 194.07478363123653 1 5
257.8261034151001 43.39784965440255 93.40022280897969 1 6
193.604405672653 9.976439066337804 123.24637065555939 1 7
7.884364294606862 43.82007387041961 345.9252163687635 1 8
282.17389658489986 43.39784965440254 86.59977719102032 1 9
13.604405672652977 9.976439066337804 303.24637065555936 1 10
187.88436429460683 43.82007387041961 165.92521636876344 1 11
102.17389658489992 43.39784965440254 266.59977719102034 1 12
277.8843642946069 43.82007387041961 75.92521636876346 1 13
103.604405672653 9.976439066337804 213.24637065555936 1 14
192.17389658489986 43.397849654402556 176.59977719102034 1 15
166.39559432734703 9.976439066337804 236.75362934444064 1 1
352.1156357053931 43.82007387041961 14.07478363123654 1 2
77.82610341510009 43.39784965440254 273.4002228089796 1 3
346.3955943273471 9.976439066337804 56.75362934444052 1 4
172.11563570539315 43.82007387041959 194.07478363123653 1 5
257.8261034151001 43.39784965440256 93.40022280897968 1 6
193.60440567265294 9.976439066337804 123.24637065555943 1 7
7.884364294606861 43.82007387041961 345.9252163687635 1 8
282.17389658489986 43.39784965440254 86.59977719102034 1 9
13.60440567265293 9.976439066337804 303.2463706555594 1 10
187.88436429460683 43.82007387041961 165.92521636876347 1 11
102.17389658489991 43.39784965440254 266.59977719102034 1 12
277.8843642946069 43.82007387041961 75.92521636876347 1 13
103.60440567265306 9.976439066337804 213.2463706555593 1 14
192.1738965848999 43.39784965440254 176.59977719102034 1 15
97.88436429460687 43.82007387041961 255.92521636876344 1 16
283.60440567265294 9.976439066337804 33.24637065555936 1 17
12.173896584899929 43.39784965440254 356.59977719102034 1 18
82.11563570539313 43.82007387041961 284.0747836312365 1 19
283.60440567265294 9.976439066337804 33.24637065555943 1 17
12.173896584899891 43.39784965440254 356.59977719102034 1 18
82.11563570539315 43.82007387041961 284.0747836312365 1 19
256.395594327347 9.976439066337804 146.75362934444064 1 20
167.8261034151001 43.397849654402556 183.40022280897963 1 21
262.1156357053931 43.82007387041961 104.07478363123654 1 22
76.39559432734703 9.976439066337806 326.75362934444064 1 23
347.8261034151001 43.39784965440255 3.400222808979685 1 24
167.8261034151001 43.39784965440254 183.40022280897966 1 21
262.1156357053931 43.82007387041958 104.07478363123656 1 22
76.39559432734696 9.976439066337804 326.7536293444407 1 23
347.8261034151001 43.39784965440256 3.4002228089796644 1 24

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
114.20342833932975 10.52877936550932 204.20342833932972 1 1
94.3573968784815 80.40593177313954 311.22729452432543 1 2
175.6426031215185 80.40593177313954 48.77270547567447 1 3
155.79657166067025 10.52877936550932 155.79657166067025 1 4
99.62136089109411 85.70366403943004 318.04510841542015 1 5
170.37863910890587 85.70366403943002 41.954891584579855 1 6
85.64260312151852 80.40593177313954 48.77270547567448 1 7
65.79657166067024 10.52877936550932 155.79657166067025 1 8
9.621360891094124 85.70366403943004 318.04510841542015 1 9
80.37863910890587 85.70366403943004 41.95489158457987 1 10
24.203428339329758 10.52877936550932 204.20342833932975 1 11
4.357396878481486 80.40593177313954 311.2272945243255 1 12
204.20342833932972 10.52877936550932 204.20342833932972 1 13
184.35739687848147 80.40593177313954 311.2272945243255 1 14
265.64260312151845 80.40593177313953 48.77270547567449 1 15
245.79657166067025 10.528779365509317 155.79657166067025 1 16
189.62136089109413 85.70366403943004 318.04510841542015 1 17
260.3786391089059 85.70366403943002 41.954891584579855 1 18
114.2034283393298 10.528779365509285 204.2034283393297 1 1
94.35739687848151 80.40593177313954 311.2272945243255 1 2
175.64260312151848 80.40593177313957 48.77270547567447 1 3
155.79657166067022 10.528779365509285 155.79657166067028 1 4
99.62136089109413 85.70366403943005 318.04510841542015 1 5
170.37863910890584 85.70366403943002 41.95489158457988 1 6
85.64260312151852 80.40593177313954 48.77270547567447 1 7
65.79657166067024 10.528779365509285 155.79657166067025 1 8
9.62136089109412 85.70366403943004 318.04510841542015 1 9
80.37863910890589 85.70366403943004 41.95489158457986 1 10
24.203428339329754 10.528779365509356 204.20342833932975 1 11
4.357396878481504 80.40593177313954 311.22729452432554 1 12
204.2034283393298 10.528779365509356 204.2034283393297 1 13
184.35739687848152 80.40593177313954 311.2272945243255 1 14
265.6426031215185 80.40593177313954 48.772705475674464 1 15
245.79657166067025 10.528779365509285 155.79657166067025 1 16
189.62136089109413 85.70366403943002 318.04510841542015 1 17
260.3786391089059 85.70366403943002 41.95489158457986 1 18
170.37863910890587 94.29633596056996 138.04510841542015 1 19
99.62136089109411 94.29633596056998 221.95489158457983 1 20
155.79657166067025 169.4712206344907 24.203428339329754 1 21
99.62136089109411 94.29633596056996 221.95489158457985 1 20
155.79657166067025 169.47122063449072 24.203428339329754 1 21
175.64260312151848 99.59406822686046 131.22729452432552 1 22
94.35739687848151 99.59406822686046 228.77270547567446 1 23
114.20342833932975 169.4712206344907 335.7965716606702 1 24
94.35739687848148 99.59406822686044 228.77270547567446 1 23
114.20342833932965 169.4712206344907 335.79657166067017 1 24

View File

@ -1,13 +1,13 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
96.91733794010702 83.13253115922213 314.5844440567886 1 1
173.082662059893 83.13253115922211 45.41555594321143 1 2
135.0 9.735610317245317 180.0 1 3
263.082662059893 83.13253115922213 45.415555943211444 1 4
186.91733794010702 83.13253115922211 314.5844440567886 1 5
224.99999999999997 9.735610317245317 180.0 1 6
83.082662059893 83.13253115922213 45.415555943211444 1 7
6.917337940106983 83.13253115922211 314.5844440567886 1 8
45.0 9.73561031724532 180.0 1 9
13.638707279476469 45.81931182053557 80.40196970123216 1 10
256.36129272052347 45.81931182053556 279.59803029876775 1 11
315.0 99.73561031724536 0.0 1 12
96.917337940107 83.13253115922213 314.5844440567886 1 1
173.08266205989295 83.13253115922213 45.415555943211444 1 2
135.00000000000003 9.735610317245321 179.99999999999997 1 3
263.082662059893 83.13253115922213 45.41555594321144 1 4
186.91733794010705 83.13253115922211 314.5844440567886 1 5
224.99999999999997 9.735610317245396 180.00000000000003 1 6
83.082662059893 83.13253115922213 45.41555594321142 1 7
6.917337940107001 83.13253115922213 314.5844440567886 1 8
45.000000000000036 9.735610317245321 179.99999999999994 1 9
96.917337940107 96.86746884077787 225.41555594321142 1 10
173.08266205989298 96.86746884077787 134.58444405678858 1 11
135.0 170.26438968275468 0.0 1 12

View File

@ -1,13 +1,13 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
135.41555594321144 83.13253115922213 173.082662059893 1 1
260.26438968275465 90.0 135.0 1 2
260.40196970123213 45.81931182053557 13.638707279476478 1 3
314.5844440567886 83.13253115922213 96.91733794010702 1 4
350.40196970123213 45.81931182053557 283.6387072794765 1 5
170.26438968275465 90.0 224.99999999999997 1 6
315.4155559432114 83.13253115922213 353.08266205989304 1 7
99.73561031724536 90.0 225.0 1 8
279.59803029876787 45.819311820535574 166.36129272052352 1 9
134.58444405678856 83.13253115922213 276.91733794010696 1 10
9.598030298767851 45.819311820535574 76.36129272052355 1 11
9.735610317245369 90.0 315.0 1 12
80.40196970123212 134.18068817946445 346.3612927205235 1 1
45.41555594321142 96.86746884077787 276.91733794010696 1 2
45.41555594321142 83.1325311592221 263.082662059893 1 3
80.40196970123215 45.81931182053556 193.63870727947645 1 4
224.58444405678856 96.86746884077789 83.08266205989298 1 5
189.59803029876787 134.18068817946445 13.638707279476478 1 6
189.59803029876787 45.81931182053558 166.36129272052355 1 7
224.58444405678856 83.1325311592221 96.91733794010702 1 8
350.26438968275465 44.999999999999986 0.0 1 9
279.7356103172453 45.00000000000001 0.0 1 10
260.26438968275465 44.999999999999986 0.0 1 11
189.73561031724535 44.999999999999986 0.0 1 12

View File

@ -1,4 +1,4 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
0.0 45.00000000000001 0.0 1 1
90.0 45.00000000000001 270.0 1 2
45.00000000000001 0.0 0.0 1 3
90.0 90.00000000000003 44.99999999999999 1 1
180.0 89.99999999999999 135.0 1 2
45.0 0.0 0.0 1 3

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
283.60440567265294 9.976439066337804 33.24637065555936 1 1
167.8261034151001 43.397849654402556 183.40022280897963 1 2
262.1156357053931 43.82007387041961 104.07478363123654 1 3
103.604405672653 9.976439066337804 213.24637065555936 1 4
347.8261034151001 43.39784965440255 3.400222808979685 1 5
283.60440567265294 9.976439066337804 33.246370655559446 1 1
167.8261034151001 43.39784965440254 183.40022280897966 1 2
262.1156357053931 43.820073870419634 104.07478363123656 1 3
103.60440567265293 9.976439066337804 213.24637065555945 1 4
347.8261034151001 43.39784965440254 3.400222808979658 1 5
82.11563570539313 43.82007387041961 284.0747836312365 1 6
76.39559432734703 9.976439066337806 326.75362934444064 1 7
192.17389658489986 43.397849654402556 176.59977719102034 1 8
76.39559432734703 9.976439066337804 326.7536293444406 1 7
192.1738965848999 43.39784965440254 176.59977719102034 1 8
97.88436429460687 43.82007387041961 255.92521636876344 1 9
256.395594327347 9.976439066337804 146.75362934444064 1 10
12.173896584899929 43.39784965440254 356.59977719102034 1 11
277.8843642946069 43.82007387041961 75.92521636876346 1 12
102.17389658489992 43.39784965440254 266.59977719102034 1 13
346.395594327347 9.976439066337804 56.75362934444064 1 14
7.884364294606862 43.82007387041961 345.9252163687635 1 15
282.17389658489986 43.39784965440254 86.59977719102032 1 16
166.39559432734703 9.976439066337804 236.75362934444058 1 17
187.88436429460683 43.82007387041961 165.92521636876344 1 18
257.8261034151001 43.39784965440255 93.40022280897969 1 19
13.604405672652977 9.976439066337804 303.24637065555936 1 20
352.1156357053931 43.82007387041961 14.074783631236542 1 21
77.82610341510008 43.397849654402556 273.4002228089796 1 22
193.60440567265297 9.976439066337806 123.24637065555939 1 23
172.11563570539317 43.82007387041961 194.07478363123653 1 24
256.39559432734706 9.976439066337804 146.75362934444055 1 10
12.173896584899904 43.39784965440254 356.59977719102034 1 11
277.8843642946069 43.82007387041961 75.92521636876344 1 12
102.17389658489991 43.39784965440254 266.59977719102034 1 13
346.395594327347 9.976439066337804 56.75362934444066 1 14
7.884364294606855 43.82007387041961 345.9252163687635 1 15
282.17389658489986 43.39784965440256 86.59977719102035 1 16
166.39559432734697 9.976439066337804 236.7536293444407 1 17
187.88436429460685 43.82007387041961 165.92521636876344 1 18
257.82610341510014 43.39784965440254 93.40022280897966 1 19
13.60440567265301 9.976439066337804 303.24637065555936 1 20
352.1156357053931 43.82007387041961 14.074783631236537 1 21
77.82610341510009 43.39784965440254 273.4002228089796 1 22
193.604405672653 9.976439066337804 123.24637065555933 1 23
172.11563570539315 43.82007387041961 194.07478363123653 1 24

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
303.24637065555936 9.976439066337804 13.604405672652977 1 1
165.92521636876344 43.82007387041961 187.88436429460683 1 2
303.24637065555936 9.976439066337804 13.604405672652986 1 1
165.92521636876347 43.82007387041961 187.88436429460683 1 2
266.59977719102034 43.39784965440254 102.17389658489992 1 3
123.24637065555939 9.976439066337804 193.604405672653 1 4
345.9252163687635 43.82007387041961 7.884364294606862 1 5
86.59977719102032 43.39784965440254 282.17389658489986 1 6
56.75362934444064 9.976439066337804 346.395594327347 1 7
194.07478363123653 43.82007387041961 172.11563570539317 1 8
93.40022280897969 43.39784965440255 257.8261034151001 1 9
236.75362934444058 9.976439066337804 166.39559432734697 1 10
14.074783631236542 43.82007387041961 352.1156357053931 1 11
273.4002228089796 43.397849654402556 77.82610341510008 1 12
123.2463706555595 9.976439066337804 193.60440567265286 1 4
345.9252163687634 43.82007387041959 7.884364294606872 1 5
86.59977719102034 43.39784965440256 282.17389658489986 1 6
56.75362934444059 9.976439066337804 346.395594327347 1 7
194.07478363123653 43.82007387041961 172.11563570539315 1 8
93.40022280897968 43.39784965440254 257.8261034151001 1 9
236.75362934444058 9.976439066337804 166.39559432734706 1 10
14.074783631236523 43.82007387041961 352.1156357053931 1 11
273.4002228089796 43.39784965440254 77.82610341510009 1 12
104.07478363123654 43.82007387041961 262.1156357053931 1 13
326.75362934444064 9.976439066337806 76.39559432734703 1 14
3.400222808979685 43.39784965440255 347.8261034151001 1 15
284.0747836312365 43.82007387041961 82.11563570539313 1 16
146.75362934444064 9.976439066337804 256.395594327347 1 17
183.40022280897963 43.397849654402556 167.8261034151001 1 18
326.7536293444407 9.976439066337804 76.39559432734696 1 14
3.4002228089796604 43.39784965440254 347.8261034151001 1 15
284.0747836312365 43.82007387041961 82.11563570539316 1 16
146.75362934444055 9.976439066337804 256.39559432734706 1 17
183.40022280897966 43.39784965440254 167.8261034151001 1 18
255.92521636876344 43.82007387041961 97.88436429460687 1 19
33.24637065555936 9.976439066337804 283.60440567265294 1 20
356.59977719102034 43.39784965440254 12.173896584899929 1 21
75.92521636876346 43.82007387041961 277.8843642946069 1 22
213.24637065555936 9.976439066337804 103.604405672653 1 23
176.59977719102034 43.397849654402556 192.17389658489986 1 24
356.59977719102034 43.39784965440254 12.173896584899905 1 21
75.92521636876346 43.82007387041958 277.8843642946069 1 22
213.2463706555593 9.976439066337804 103.60440567265306 1 23
176.59977719102034 43.39784965440256 192.1738965848999 1 24

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
335.7965716606702 10.528779365509317 65.79657166067024 1 1
228.77270547567446 80.40593177313953 85.64260312151849 1 2
131.22729452432552 80.40593177313954 4.357396878481506 1 3
24.20342833932977 10.52877936550932 24.20342833932976 1 4
221.95489158457983 85.70366403943002 80.37863910890589 1 5
138.04510841542015 85.70366403943004 9.621360891094124 1 6
131.22729452432552 80.40593177313953 94.35739687848151 1 7
24.203428339329765 10.52877936550932 114.20342833932976 1 8
221.95489158457983 85.70366403943004 170.37863910890587 1 9
138.04510841542015 85.70366403943004 99.62136089109411 1 10
335.7965716606702 10.52877936550932 155.79657166067025 1 11
228.77270547567448 80.40593177313954 175.6426031215185 1 12
335.7965716606702 10.52877936550932 335.7965716606702 1 13
228.77270547567448 80.40593177313954 355.6426031215185 1 14
131.2272945243255 80.40593177313954 274.35739687848144 1 15
24.203428339329747 10.52877936550932 294.2034283393298 1 16
221.95489158457985 85.70366403943004 350.3786391089059 1 17
138.04510841542015 85.70366403943004 279.6213608910941 1 18
41.95489158457986 94.29633596056998 9.621360891094133 1 19
318.04510841542015 94.29633596056996 80.37863910890589 1 20
155.79657166067025 169.4712206344907 24.203428339329754 1 21
48.77270547567448 99.59406822686046 4.357396878481504 1 22
311.2272945243255 99.59406822686046 85.64260312151852 1 23
204.20342833932975 169.4712206344907 65.79657166067024 1 24
257.3335306934857 49.47122063449066 102.66646930651427 1 1
131.22729452432554 80.40593177313957 4.357396878481523 1 2
184.3573968784815 99.59406822686046 48.772705475674485 1 3
24.20342833932965 10.528779365509285 24.20342833932986 1 4
335.7965716606704 169.4712206344907 204.20342833932992 1 5
175.6426031215185 80.40593177313954 228.77270547567446 1 6
102.66646930651426 130.52877936550934 282.66646930651433 1 7
228.77270547567448 99.59406822686046 184.35739687848152 1 8
294.2034283393298 10.528779365509285 24.2034283393297 1 9
94.35739687848152 99.59406822686047 48.772705475674485 1 10
167.3335306934857 49.4712206344907 102.66646930651429 1 11
41.22729452432552 80.40593177313954 4.3573968784814845 1 12
12.666469306514255 130.5287793655093 282.6664693065143 1 13
138.7727054756745 99.59406822686046 184.3573968784815 1 14
245.79657166067028 169.4712206344907 204.20342833932978 1 15
85.64260312151852 80.40593177313954 228.77270547567448 1 16
165.61499741817968 137.86632049415985 83.58843092115008 1 17
104.38500258182032 42.13367950584017 263.58843092115006 1 18
189.62136089109413 85.70366403943004 138.04510841542015 1 19
80.37863910890587 94.29633596056998 318.04510841542015 1 20
350.3786391089059 94.29633596056996 318.04510841542015 1 21
99.62136089109414 85.70366403943004 138.04510841542012 1 22
14.385002581820302 42.13367950584017 263.5884309211501 1 23
75.61499741817968 137.8663204941598 83.58843092115006 1 24

View File

@ -1,13 +1,13 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
225.41555594321144 83.13253115922213 83.08266205989301 1 1
134.58444405678856 83.13253115922211 6.917337940107012 1 2
4.702125169424418e-15 9.735610317245317 45.0 1 3
134.58444405678856 83.13253115922213 276.91733794010696 1 4
225.4155559432114 83.13253115922213 353.082662059893 1 5
0.0 9.735610317245317 315.0 1 6
134.58444405678858 83.13253115922213 96.91733794010702 1 7
225.41555594321142 83.13253115922213 173.082662059893 1 8
0.0 9.735610317245317 135.0 1 9
99.59803029876785 45.81931182053557 166.36129272052355 1 10
260.40196970123213 45.81931182053556 283.6387072794765 1 11
180.0 99.73561031724535 225.0 1 12
99.59803029876785 45.81931182053558 346.3612927205235 1 1
225.41555594321144 83.13253115922213 83.082662059893 1 2
260.40196970123213 134.18068817946443 166.36129272052355 1 3
134.58444405678856 96.86746884077786 263.08266205989304 1 4
9.598030298767839 45.81931182053556 346.3612927205236 1 5
135.41555594321142 83.13253115922213 83.08266205989298 1 6
170.40196970123213 134.18068817946443 166.36129272052355 1 7
44.58444405678856 96.86746884077789 263.082662059893 1 8
170.26438968275465 45.00000000000003 179.99999999999997 1 9
99.73561031724535 135.0 0.0 1 10
9.735610317245337 135.00000000000003 0.0 1 11
80.26438968275465 45.00000000000001 179.99999999999997 1 12

View File

@ -1,13 +1,13 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
6.9173379401070045 83.13253115922213 44.58444405678856 1 1
45.0 89.99999999999999 279.7356103172453 1 2
166.36129272052352 45.819311820535574 279.59803029876787 1 3
83.08266205989301 83.13253115922213 225.41555594321144 1 4
256.3612927205235 45.819311820535574 189.59803029876787 1 5
315.0 90.0 9.735610317245369 1 6
186.917337940107 83.13253115922213 224.58444405678856 1 7
315.0 90.0 80.26438968275463 1 8
13.638707279476478 45.81931182053557 260.40196970123213 1 9
263.082662059893 83.13253115922213 45.415555943211444 1 10
103.63870727947646 45.819311820535574 170.40196970123213 1 11
224.99999999999997 90.0 170.26438968275465 1 12
180.0 44.999999999999986 189.73561031724537 1 1
180.0 44.999999999999986 80.26438968275463 1 2
179.99999999999994 135.0 80.26438968275464 1 3
180.0 135.0 9.735610317245355 1 4
90.0 44.999999999999986 260.26438968275465 1 5
90.00000000000001 45.00000000000001 189.73561031724532 1 6
90.0 135.0 9.735610317245342 1 7
90.00000000000001 135.0 80.26438968275467 1 8
135.0 90.0 99.73561031724536 1 9
135.0 90.0 170.26438968275463 1 10
45.0 90.0 350.26438968275465 1 11
45.00000000000001 89.99999999999999 279.7356103172453 1 12

View File

@ -110,3 +110,11 @@ class TestCrystal:
for r in crystal.orientation_relationships:
crystal.relation_operations(r)
@pytest.mark.parametrize('crystal', [Crystal(lattice='cF'),
Crystal(lattice='cI'),
Crystal(lattice='hP')])
def test_related_invalid_target(self,crystal):
relationship = np.random.choice(crystal.orientation_relationships)
with pytest.raises(ValueError):
crystal.relation_operations(relationship,crystal)

View File

@ -1,6 +1,8 @@
import pytest
import numpy as np
from itertools import permutations
from matplotlib import pyplot as plt
from PIL import Image
from damask import Rotation
from damask import Orientation
@ -304,13 +306,6 @@ class TestOrientation:
with pytest.raises(ValueError):
eval(f'o.{function}(np.ones(4))')
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
@pytest.mark.parametrize('lattice',['cF','cI'])
def test_relationship_forward_backward(self,model,lattice):
o = Orientation.from_random(lattice=lattice)
for i,r in enumerate(o.related(model)):
assert o.disorientation(r.related(model)[i]).as_axis_angle(degrees=True,pair=True)[1]<1.0e-5
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
@pytest.mark.parametrize('lattice',['cF','cI'])
def test_relationship_reference(self,update,res_path,model,lattice):
@ -527,3 +522,25 @@ class TestOrientation:
def test_mul_invalid(self):
with pytest.raises(TypeError):
Orientation.from_random(lattice='cF')*np.ones(3)
@pytest.mark.parametrize('OR',['KS','NW','GT','GT_prime','Bain','Pitsch'])
@pytest.mark.parametrize('pole',[[0,0,1],[0,1,1],[1,1,1]])
def test_OR_plot(self,update,res_path,tmp_path,OR,pole):
# https://doi.org/10.3390/cryst13040663 for comparison
O = Orientation(lattice='cF')
poles = O.related(OR).to_pole(uvw=pole,with_symmetry=True).reshape(-1,3)
points = util.project_equal_area(poles,'z')
fig, ax = plt.subplots()
c = plt.Circle((0,0),1, color='k',fill=False)
ax.add_patch(c)
ax.scatter(points[:,0],points[:,1])
ax.set_aspect('equal', 'box')
fname=f'{OR}-{"".join(map(str,pole))}.png'
plt.axis('off')
plt.savefig(tmp_path/fname)
if update: plt.savefig(res_path/fname)
current = np.array(Image.open(tmp_path/fname))
reference = np.array(Image.open(res_path/fname))
assert np.allclose(current,reference)