Merge branch 'fix-relationship-operations' into 'development'

proper bi-directional orientation relationships

Closes #333 and #322

See merge request damask/DAMASK!841
This commit is contained in:
Martin Diehl 2023-11-07 18:23:57 +00:00
commit 5877eafa61
39 changed files with 697 additions and 506 deletions

View File

@ -6,7 +6,8 @@ from ._typehints import FloatSequence, CrystalFamily, BravaisLattice, CrystalKin
from . import util from . import util
from . import Rotation from . import Rotation
lattice_symmetries: Dict[BravaisLattice, CrystalFamily] = {
lattice_symmetries: Dict[Optional[BravaisLattice], CrystalFamily] = {
'aP': 'triclinic', 'aP': 'triclinic',
'mP': 'monoclinic', 'mP': 'monoclinic',
@ -27,63 +28,60 @@ lattice_symmetries: Dict[BravaisLattice, CrystalFamily] = {
'cF': 'cubic', 'cF': 'cubic',
} }
orientation_relationships: Dict[str, Dict[BravaisLattice,np.ndarray]] = { orientation_relationships: Dict[str, Dict[str,List[np.ndarray]]] = {
'KS': { 'KS': { # https://doi.org/10.1016/j.jallcom.2012.02.004
'cF': np.array([ 'cF-->cI' : [
[[-1, 0, 1],[ 1, 1, 1]], np.repeat(np.array([
[[-1, 0, 1],[ 1, 1, 1]], [[-1, 0, 1],[ 1, 1, 1]],
[[ 0, 1,-1],[ 1, 1, 1]], [[ 0, 1,-1],[ 1, 1, 1]],
[[ 0, 1,-1],[ 1, 1, 1]],
[[ 1,-1, 0],[ 1, 1, 1]], [[ 1,-1, 0],[ 1, 1, 1]],
[[ 1,-1, 0],[ 1, 1, 1]],
[[ 1, 0,-1],[ 1,-1, 1]],
[[ 1, 0,-1],[ 1,-1, 1]], [[ 1, 0,-1],[ 1,-1, 1]],
[[-1,-1, 0],[ 1,-1, 1]], [[-1,-1, 0],[ 1,-1, 1]],
[[-1,-1, 0],[ 1,-1, 1]],
[[ 0, 1, 1],[ 1,-1, 1]], [[ 0, 1, 1],[ 1,-1, 1]],
[[ 0, 1, 1],[ 1,-1, 1]],
[[ 0,-1, 1],[-1, 1, 1]],
[[ 0,-1, 1],[-1, 1, 1]], [[ 0,-1, 1],[-1, 1, 1]],
[[-1, 0,-1],[-1, 1, 1]], [[-1, 0,-1],[-1, 1, 1]],
[[-1, 0,-1],[-1, 1, 1]],
[[ 1, 1, 0],[-1, 1, 1]], [[ 1, 1, 0],[-1, 1, 1]],
[[ 1, 1, 0],[-1, 1, 1]],
[[-1, 1, 0],[ 1, 1,-1]],
[[-1, 1, 0],[ 1, 1,-1]], [[-1, 1, 0],[ 1, 1,-1]],
[[ 0,-1,-1],[ 1, 1,-1]], [[ 0,-1,-1],[ 1, 1,-1]],
[[ 0,-1,-1],[ 1, 1,-1]],
[[ 1, 0, 1],[ 1, 1,-1]],
[[ 1, 0, 1],[ 1, 1,-1]], [[ 1, 0, 1],[ 1, 1,-1]],
],dtype=float), ],dtype=float),
'cI': np.array([ 2,axis=0),
[[-1,-1, 1],[ 0, 1, 1]], np.tile(np.array([[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]], [[-1, 1,-1],[ 0, 1, 1]]],dtype=float),
[[-1,-1, 1],[ 0, 1, 1]], (12,1,1)),
[[-1, 1,-1],[ 0, 1, 1]], ],
[[-1,-1, 1],[ 0, 1, 1]], 'cI-->cF' : [
[[-1, 1,-1],[ 0, 1, 1]], np.repeat(np.array([
[[-1,-1, 1],[ 0, 1, 1]], [[ 1, 1,-1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]], [[ 1,-1, 1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]], [[ 1, 1, 1],[ 0, 1,-1]],
[[-1,-1, 1],[ 0, 1, 1]], [[-1, 1, 1],[ 0, 1,-1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]], [[ 1, 1,-1],[ 1, 0, 1]],
[[-1, 1,-1],[ 0, 1, 1]], [[ 1,-1,-1],[ 1, 0, 1]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]], [[ 1, 1, 1],[ 1, 0,-1]],
[[-1,-1, 1],[ 0, 1, 1]], [[ 1,-1, 1],[ 1, 0,-1]],
[[-1, 1,-1],[ 0, 1, 1]],
[[-1,-1, 1],[ 0, 1, 1]], [[ 1,-1, 1],[ 1, 1, 0]],
[[-1, 1,-1],[ 0, 1, 1]], [[ 1,-1,-1],[ 1, 1, 0]],
[[-1,-1, 1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]], [[ 1, 1, 1],[ 1,-1, 0]],
[[-1,-1, 1],[ 0, 1, 1]], [[ 1, 1,-1],[ 1,-1, 0]],
[[-1, 1,-1],[ 0, 1, 1]],
],dtype=float), ],dtype=float),
2,axis=0),
np.tile(np.array([[[ 0, 1,-1],[ 1, 1, 1]],
[[ 0,-1, 1],[ 1, 1, 1]]],dtype=float),
(12,1,1)),
],
}, },
'GT': { 'GT': { # https://doi.org/10.1107/S0021889805038276
'cF': np.array([ 'cF-->cI' : [
np.array([
[[ -5,-12, 17],[ 1, 1, 1]], [[ -5,-12, 17],[ 1, 1, 1]],
[[ 17, -5,-12],[ 1, 1, 1]], [[ 17, -5,-12],[ 1, 1, 1]],
[[-12, 17, -5],[ 1, 1, 1]], [[-12, 17, -5],[ 1, 1, 1]],
@ -109,7 +107,7 @@ orientation_relationships: Dict[str, Dict[BravaisLattice,np.ndarray]] = {
[[ 12, -5,-17],[ 1, -1, 1]], [[ 12, -5,-17],[ 1, -1, 1]],
[[-17,-12, 5],[ 1, -1, 1]], [[-17,-12, 5],[ 1, -1, 1]],
],dtype=float), ],dtype=float),
'cI': np.array([ np.array([
[[-17, -7, 17],[ 1, 0, 1]], [[-17, -7, 17],[ 1, 0, 1]],
[[ 17,-17, -7],[ 1, 1, 0]], [[ 17,-17, -7],[ 1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]], [[ -7, 17,-17],[ 0, 1, 1]],
@ -135,9 +133,65 @@ orientation_relationships: Dict[str, Dict[BravaisLattice,np.ndarray]] = {
[[ 7,-17,-17],[ 0, -1, 1]], [[ 7,-17,-17],[ 0, -1, 1]],
[[-17, -7, 17],[ 1, 0, 1]], [[-17, -7, 17],[ 1, 0, 1]],
],dtype=float), ],dtype=float),
],
'cI-->cF' : [
np.array([
[[-17, -7, 17],[ 1, 0, 1]],
[[ 17,-17, -7],[ 1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]],
[[ 17, 7, 17],[ -1, 0, 1]],
[[-17, 17, -7],[ -1, -1, 0]],
[[ 7,-17,-17],[ 0, -1, 1]],
[[-17, 7,-17],[ -1, 0, 1]],
[[ 17, 17, 7],[ -1, 1, 0]],
[[ -7,-17, 17],[ 0, 1, 1]],
[[ 17, -7,-17],[ 1, 0, 1]],
[[-17,-17, 7],[ 1, -1, 0]],
[[ 7, 17, 17],[ 0, -1, 1]],
[[-17, 17, -7],[ 1, 1, 0]],
[[ -7,-17, 17],[ 0, 1, 1]],
[[ 17, -7,-17],[ 1, 0, 1]],
[[ 17,-17, -7],[ -1, -1, 0]],
[[ 7, 17, 17],[ 0, -1, 1]],
[[-17, 7,-17],[ -1, 0, 1]],
[[-17,-17, 7],[ -1, 1, 0]],
[[ -7, 17,-17],[ 0, 1, 1]],
[[ 17, 7, 17],[ -1, 0, 1]],
[[ 17, 17, 7],[ 1, -1, 0]],
[[ 7,-17,-17],[ 0, -1, 1]],
[[-17, -7, 17],[ 1, 0, 1]],
],dtype=float),
np.array([
[[ -5,-12, 17],[ 1, 1, 1]],
[[ 17, -5,-12],[ 1, 1, 1]],
[[-12, 17, -5],[ 1, 1, 1]],
[[ 5, 12, 17],[ -1, -1, 1]],
[[-17, 5,-12],[ -1, -1, 1]],
[[ 12,-17, -5],[ -1, -1, 1]],
[[ -5, 12,-17],[ -1, 1, 1]],
[[ 17, 5, 12],[ -1, 1, 1]],
[[-12,-17, 5],[ -1, 1, 1]],
[[ 5,-12,-17],[ 1, -1, 1]],
[[-17, -5, 12],[ 1, -1, 1]],
[[ 12, 17, 5],[ 1, -1, 1]],
[[ -5, 17,-12],[ 1, 1, 1]],
[[-12, -5, 17],[ 1, 1, 1]],
[[ 17,-12, -5],[ 1, 1, 1]],
[[ 5,-17,-12],[ -1, -1, 1]],
[[ 12, 5, 17],[ -1, -1, 1]],
[[-17, 12, -5],[ -1, -1, 1]],
[[ -5,-17, 12],[ -1, 1, 1]],
[[-12, 5,-17],[ -1, 1, 1]],
[[ 17, 12, 5],[ -1, 1, 1]],
[[ 5, 17, 12],[ 1, -1, 1]],
[[ 12, -5,-17],[ 1, -1, 1]],
[[-17,-12, 5],[ 1, -1, 1]],
],dtype=float),
],
}, },
'GT_prime': { 'GT_prime': { # https://doi.org/10.1107/S0021889805038276
'cF' : np.array([ 'cF-->cI' : [
np.array([
[[ 0, 1, -1],[ 7, 17, 17]], [[ 0, 1, -1],[ 7, 17, 17]],
[[ -1, 0, 1],[ 17, 7, 17]], [[ -1, 0, 1],[ 17, 7, 17]],
[[ 1, -1, 0],[ 17, 17, 7]], [[ 1, -1, 0],[ 17, 17, 7]],
@ -163,7 +217,7 @@ orientation_relationships: Dict[str, Dict[BravaisLattice,np.ndarray]] = {
[[ 1, 0, -1],[-17, 7,-17]], [[ 1, 0, -1],[-17, 7,-17]],
[[ 1, 1, 0],[-17, 17, -7]], [[ 1, 1, 0],[-17, 17, -7]],
],dtype=float), ],dtype=float),
'cI' : np.array([ np.array([
[[ 1, 1, -1],[ 12, 5, 17]], [[ 1, 1, -1],[ 12, 5, 17]],
[[ -1, 1, 1],[ 17, 12, 5]], [[ -1, 1, 1],[ 17, 12, 5]],
[[ 1, -1, 1],[ 5, 17, 12]], [[ 1, -1, 1],[ 5, 17, 12]],
@ -189,112 +243,189 @@ orientation_relationships: Dict[str, Dict[BravaisLattice,np.ndarray]] = {
[[ 1, -1, -1],[ -5, 12,-17]], [[ 1, -1, -1],[ -5, 12,-17]],
[[ 1, 1, -1],[-17, 5,-12]], [[ 1, 1, -1],[-17, 5,-12]],
],dtype=float), ],dtype=float),
],
'cI-->cF' : [
np.array([
[[ 1, 1, -1],[ 12, 5, 17]],
[[ -1, 1, 1],[ 17, 12, 5]],
[[ 1, -1, 1],[ 5, 17, 12]],
[[ -1, -1, -1],[-12, -5, 17]],
[[ 1, -1, 1],[-17,-12, 5]],
[[ 1, -1, -1],[ -5,-17, 12]],
[[ -1, 1, -1],[ 12, -5,-17]],
[[ 1, 1, 1],[ 17,-12, -5]],
[[ -1, -1, 1],[ 5,-17,-12]],
[[ 1, -1, -1],[-12, 5,-17]],
[[ -1, -1, 1],[-17, 12, -5]],
[[ -1, -1, -1],[ -5, 17,-12]],
[[ 1, -1, 1],[ 12, 17, 5]],
[[ 1, 1, -1],[ 5, 12, 17]],
[[ -1, 1, 1],[ 17, 5, 12]],
[[ -1, 1, 1],[-12,-17, 5]],
[[ -1, -1, -1],[ -5,-12, 17]],
[[ -1, 1, -1],[-17, -5, 12]],
[[ -1, -1, 1],[ 12,-17, -5]],
[[ -1, 1, -1],[ 5,-12,-17]],
[[ 1, 1, 1],[ 17, -5,-12]],
[[ 1, 1, 1],[-12, 17, -5]],
[[ 1, -1, -1],[ -5, 12,-17]],
[[ 1, 1, -1],[-17, 5,-12]],
],dtype=float),
np.array([
[[ 0, 1, -1],[ 7, 17, 17]],
[[ -1, 0, 1],[ 17, 7, 17]],
[[ 1, -1, 0],[ 17, 17, 7]],
[[ 0, -1, -1],[ -7,-17, 17]],
[[ 1, 0, 1],[-17, -7, 17]],
[[ 1, -1, 0],[-17,-17, 7]],
[[ 0, 1, -1],[ 7,-17,-17]],
[[ 1, 0, 1],[ 17, -7,-17]],
[[ -1, -1, 0],[ 17,-17, -7]],
[[ 0, -1, -1],[ -7, 17,-17]],
[[ -1, 0, 1],[-17, 7,-17]],
[[ -1, -1, 0],[-17, 17, -7]],
[[ 0, -1, 1],[ 7, 17, 17]],
[[ 1, 0, -1],[ 17, 7, 17]],
[[ -1, 1, 0],[ 17, 17, 7]],
[[ 0, 1, 1],[ -7,-17, 17]],
[[ -1, 0, -1],[-17, -7, 17]],
[[ -1, 1, 0],[-17,-17, 7]],
[[ 0, -1, 1],[ 7,-17,-17]],
[[ -1, 0, -1],[ 17, -7,-17]],
[[ 1, 1, 0],[ 17,-17, -7]],
[[ 0, 1, 1],[ -7, 17,-17]],
[[ 1, 0, -1],[-17, 7,-17]],
[[ 1, 1, 0],[-17, 17, -7]],
],dtype=float),
],
}, },
'NW': { 'NW': { # https://doi.org/10.1016/j.matchar.2004.12.015
'cF' : np.array([ 'cF-->cI' : [
np.array([
[[ 2,-1,-1],[ 1, 1, 1]], [[ 2,-1,-1],[ 1, 1, 1]],
[[-1, 2,-1],[ 1, 1, 1]], [[-1, 2,-1],[ 1, 1, 1]],
[[-1,-1, 2],[ 1, 1, 1]], [[-1,-1, 2],[ 1, 1, 1]],
[[-2,-1,-1],[-1, 1, 1]], [[-2,-1,-1],[-1, 1, 1]],
[[ 1, 2,-1],[-1, 1, 1]], [[ 1, 2,-1],[-1, 1, 1]],
[[ 1,-1, 2],[-1, 1, 1]], [[ 1,-1, 2],[-1, 1, 1]],
[[ 2, 1,-1],[ 1,-1, 1]], [[ 2, 1,-1],[ 1,-1, 1]],
[[-1,-2,-1],[ 1,-1, 1]], [[-1,-2,-1],[ 1,-1, 1]],
[[-1, 1, 2],[ 1,-1, 1]], [[-1, 1, 2],[ 1,-1, 1]],
[[ 2, -1, 1],[ -1, -1, 1]],
[[ -1, 2, 1],[ -1, -1, 1]], [[ 2,-1, 1],[ 1, 1,-1]],
[[ -1, -1, -2],[ -1, -1, 1]], [[-1, 2, 1],[ 1, 1,-1]],
[[-1,-1,-2],[ 1, 1,-1]],
],dtype=float), ],dtype=float),
'cI' : np.array([ np.broadcast_to(np.array([[ 0,-1, 1],[ 0, 1, 1]],dtype=float),
[[ 0, -1, 1],[ 0, 1, 1]], (12,2,3)),
[[ 0, -1, 1],[ 0, 1, 1]], ],
[[ 0, -1, 1],[ 0, 1, 1]], 'cI-->cF' : [
[[ 0, -1, 1],[ 0, 1, 1]], np.repeat(np.array([
[[ 0, -1, 1],[ 0, 1, 1]], [[ 0, 1,-1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]], [[ 0, 1, 1],[ 0, 1,-1]],
[[ 0, -1, 1],[ 0, 1, 1]], [[ 1, 0,-1],[ 1, 0, 1]],
[[ 0, -1, 1],[ 0, 1, 1]], [[ 1, 0, 1],[ 1, 0,-1]],
[[ 0, -1, 1],[ 0, 1, 1]], [[ 1,-1, 0],[ 1, 1, 0]],
[[ 0, -1, 1],[ 0, 1, 1]], [[ 1, 1, 0],[ 1,-1, 0]],
[[ 0, -1, 1],[ 0, 1, 1]],
[[ 0, -1, 1],[ 0, 1, 1]],
],dtype=float), ],dtype=float),
2,axis=0),
np.tile(np.array([
[[ 2,-1,-1],[ 1, 1, 1]],
[[-2, 1, 1],[ 1, 1, 1]],
],dtype=float),
(6,1,1)),
],
}, },
'Pitsch': { 'Pitsch': { # https://doi.org/10.1080/14786435908238253
'cF' : np.array([ 'cF-->cI' : [
[[ 1, 0, 1],[ 0, 1, 0]], np.repeat(np.array([
[[ 1, 1, 0],[ 0, 0, 1]],
[[ 0, 1, 1],[ 1, 0, 0]], [[ 0, 1, 1],[ 1, 0, 0]],
[[ 0, 1,-1],[ 1, 0, 0]], [[ 0, 1,-1],[ 1, 0, 0]],
[[ -1, 0, 1],[ 0, 1, 0]],
[[ 1, -1, 0],[ 0, 0, 1]],
[[ 1, 0, -1],[ 0, 1, 0]],
[[ -1, 1, 0],[ 0, 0, 1]],
[[ 0, -1, 1],[ 1, 0, 0]],
[[ 0, 1, 1],[ 1, 0, 0]],
[[ 1, 0, 1],[ 0, 1, 0]], [[ 1, 0, 1],[ 0, 1, 0]],
[[ 1, 0,-1],[ 0, 1, 0]],
[[ 1, 1, 0],[ 0, 0, 1]], [[ 1, 1, 0],[ 0, 0, 1]],
[[ 1,-1, 0],[ 0, 0, 1]],
],dtype=float), ],dtype=float),
'cI' : np.array([ 2,axis=0),
[[ 1, -1, 1],[ -1, 0, 1]], np.tile(np.array([
[[ 1, 1, -1],[ 1, -1, 0]], [[ 1, 1,-1],[ 0, 1, 1]],
[[-1, 1,-1],[ 0, 1, 1]],
],dtype=float),
(6,1,1)),
],
'cI-->cF' : [
np.array([
[[ 1, 1,-1],[ 0, 1, 1]],
[[ 1,-1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1,-1]],
[[-1, 1, 1],[ 0, 1,-1]], [[-1, 1, 1],[ 0, 1,-1]],
[[ -1, 1, -1],[ 0, -1, -1]], [[ 1, 1,-1],[ 1, 0, 1]],
[[ -1, -1, 1],[ -1, 0, -1]], [[ 1,-1,-1],[ 1, 0, 1]],
[[ 1, -1, -1],[ -1, -1, 0]], [[ 1, 1, 1],[ 1, 0,-1]],
[[ 1, -1, -1],[ -1, 0, -1]],
[[ -1, 1, -1],[ -1, -1, 0]],
[[ -1, -1, 1],[ 0, -1, -1]],
[[ -1, 1, 1],[ 0, -1, 1]],
[[ 1,-1, 1],[ 1, 0,-1]], [[ 1,-1, 1],[ 1, 0,-1]],
[[ 1, 1, -1],[ -1, 1, 0]], [[ 1,-1, 1],[ 1, 1, 0]],
[[ 1,-1,-1],[ 1, 1, 0]],
[[ 1, 1, 1],[ 1,-1, 0]],
[[ 1, 1,-1],[ 1,-1, 0]],
],dtype=float), ],dtype=float),
np.broadcast_to(np.array([[ 1, 1, 0],[ 0, 0, 1]],dtype=float),
(12,2,3)),
],
}, },
'Bain': { 'Bain': { # https://doi.org/10.1107/S0021889805038276
'cF' : np.array([ 'cF-->cI' : [
np.array([
[[ 0, 1, 0],[ 1, 0, 0]], [[ 0, 1, 0],[ 1, 0, 0]],
[[ 0, 0, 1],[ 0, 1, 0]], [[ 0, 0, 1],[ 0, 1, 0]],
[[ 1, 0, 0],[ 0, 0, 1]], [[ 1, 0, 0],[ 0, 0, 1]],
],dtype=float), ],dtype=float),
'cI' : np.array([ np.broadcast_to(np.array([[ 1, 1, 0],[ 0, 0, 1]],dtype=float),
(3,2,3)),
],
'cI-->cF' : [
np.array([
[[ 0, 1, 1],[ 1, 0, 0]], [[ 0, 1, 1],[ 1, 0, 0]],
[[ 1, 0, 1],[ 0, 1, 0]], [[ 1, 0, 1],[ 0, 1, 0]],
[[ 1, 1, 0],[ 0, 0, 1]], [[ 1, 1, 0],[ 0, 0, 1]],
],dtype=float), ],dtype=float),
np.broadcast_to(np.array([[ 1, 0, 0],[ 0, 0, 1]],dtype=float),
(3,2,3)),
]
}, },
'Burgers' : { 'Burgers' : { # https://doi.org/10.1016/S0031-8914(34)80244-3
'cI' : np.array([ 'cI-->hP' : [
[[ -1, 1, 1],[ 1, 1, 0]], np.array([
[[ -1, 1, -1],[ 1, 1, 0]], [[ 1, 1,-1],[ 0, 1, 1]],
[[ 1,-1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1,-1]],
[[-1, 1, 1],[ 0, 1,-1]],
[[ 1, 1,-1],[ 1, 0, 1]],
[[ 1,-1,-1],[ 1, 0, 1]],
[[ 1, 1, 1],[ 1, 0,-1]],
[[ 1,-1, 1],[ 1, 0,-1]],
[[ 1,-1, 1],[ 1, 1, 0]],
[[ 1,-1,-1],[ 1, 1, 0]],
[[ 1, 1, 1],[ 1,-1, 0]], [[ 1, 1, 1],[ 1,-1, 0]],
[[ 1, 1,-1],[ 1,-1, 0]], [[ 1, 1,-1],[ 1,-1, 0]],
],dtype=float),
[[ 1, 1, -1],[ 1, 0, 1]], np.broadcast_to(np.array([[ 2,-1,-1, 0],[ 0, 0, 0, 1]],dtype=float),
[[ -1, 1, 1],[ 1, 0, 1]], (12,2,4)),
[[ 1, 1, 1],[ -1, 0, 1]], ],
[[ 1, -1, 1],[ -1, 0, 1]], 'hP-->cI' : [
np.repeat(np.array([
[[ -1, 1, -1],[ 0, 1, 1]], [[ 2,-1,-1, 0],[ 0, 0, 0, 1]],
[[-1, 2,-1, 0],[ 0, 0, 0, 1]],
[[-1,-1, 2, 0],[ 0, 0, 0, 1]],
],dtype=float),
2,axis=0),
np.tile(np.array([
[[ 1, 1,-1],[ 0, 1, 1]], [[ 1, 1,-1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, -1, 1]], [[-1, 1,-1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, -1, 1]],
],dtype=float),
'hP' : np.array([
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
[[ -1, 2, -1, 0],[ 0, 0, 0, 1]],
[[ -1, -1, 2, 0],[ 0, 0, 0, 1]],
],dtype=float), ],dtype=float),
(3,1,1)),
]
}, },
} }
@ -428,20 +559,20 @@ class Crystal():
Crystal to check for equality. Crystal to check for equality.
""" """
return NotImplemented if not isinstance(other, Crystal) else \ return (NotImplemented if not isinstance(other, Crystal) else
self.lattice == other.lattice and \ self.lattice == other.lattice and
self.parameters == other.parameters and \ self.parameters == other.parameters and
self.family == other.family self.family == other.family) # type: ignore
@property @property
def parameters(self): def parameters(self) -> Optional[Tuple]:
"""Return lattice parameters a, b, c, alpha, beta, gamma.""" """Return lattice parameters a, b, c, alpha, beta, gamma."""
if hasattr(self,'a'): return (self.a,self.b,self.c,self.alpha,self.beta,self.gamma) return (self.a,self.b,self.c,self.alpha,self.beta,self.gamma) if hasattr(self,'a') else None
@property @property
def immutable(self): def immutable(self) -> Dict[str, float]:
"""Return immutable lattice parameters.""" """Return immutable lattice parameters."""
_immutable = { _immutable: Dict[CrystalFamily, Dict[str,float]] = {
'cubic': { 'cubic': {
'b': 1.0, 'b': 1.0,
'c': 1.0, 'c': 1.0,
@ -476,9 +607,9 @@ class Crystal():
@property @property
def orientation_relationships(self): def orientation_relationships(self) -> List[str]:
"""Return labels of orientation relationships.""" """Return labels of orientation relationships."""
return [k for k,v in orientation_relationships.items() if self.lattice in v] return [k for k,v in orientation_relationships.items() if np.any([m.startswith(str(self.lattice)) for m in v])]
@property @property
@ -671,9 +802,9 @@ class Crystal():
@property @property
def lattice_points(self): def lattice_points(self) -> np.ndarray:
"""Return lattice points.""" """Return lattice points."""
_lattice_points = { _lattice_points: Dict[str, List] = {
'P': [ 'P': [
], ],
'S': [ 'S': [
@ -694,8 +825,8 @@ class Crystal():
if self.lattice is None: raise KeyError('no lattice type specified') if self.lattice is None: raise KeyError('no lattice type specified')
return np.array([[0,0,0]] return np.array([[0,0,0]]
+ _lattice_points.get(self.lattice if self.lattice == 'hP' else \ + _lattice_points.get(self.lattice if self.lattice == 'hP' else
self.lattice[-1],None),dtype=float) self.lattice[-1],[]),dtype=float)
def to_lattice(self, *, def to_lattice(self, *,
direction: Optional[FloatSequence] = None, direction: Optional[FloatSequence] = None,
@ -753,7 +884,7 @@ class Crystal():
Crystal frame vector (reciprocal space) of Titanium along (1,0,0) plane normal: Crystal frame vector (reciprocal space) of Titanium along (1,0,0) plane normal:
>>> import damask >>> import damask
>>> Ti = damask.Crystal(lattice='hP', a=0.295e-9, c=0.469e-9) >>> Ti = damask.Crystal(lattice='hP', a=295e-12, c=469e-12)
>>> Ti.to_frame(hkl=(1, 0, 0)) >>> Ti.to_frame(hkl=(1, 0, 0))
array([ 3.38983051e+09, 1.95711956e+09, -4.15134508e-07]) array([ 3.38983051e+09, 1.95711956e+09, -4.15134508e-07])
@ -782,7 +913,7 @@ class Crystal():
Directions and planes of deformation mode families. Directions and planes of deformation mode families.
""" """
_kinematics: Dict[BravaisLattice, Dict[CrystalKinematics, List[np.ndarray]]] = { _kinematics: Dict[Optional[BravaisLattice], Dict[CrystalKinematics, List[np.ndarray]]] = {
'cF': { 'cF': {
'slip': [np.array([ 'slip': [np.array([
[ 0,+1,-1, +1,+1,+1], [ 0,+1,-1, +1,+1,+1],
@ -1025,7 +1156,8 @@ class Crystal():
def relation_operations(self, def relation_operations(self,
model: str) -> Tuple[BravaisLattice, Rotation]: model: str,
target = None) -> Tuple[BravaisLattice, Rotation]:
""" """
Crystallographic orientation relationships for phase transformations. Crystallographic orientation relationships for phase transformations.
@ -1033,6 +1165,10 @@ class Crystal():
---------- ----------
model : str model : str
Name of orientation relationship. Name of orientation relationship.
target : Crystal, optional
Crystal to transform to.
Providing this parameter allows specification of non-standard lattice parameters.
Default is inferred from selected model and uses standard lattice parameters.
Returns Returns
------- -------
@ -1057,20 +1193,27 @@ class Crystal():
https://doi.org/10.1016/j.actamat.2004.11.021 https://doi.org/10.1016/j.actamat.2004.11.021
""" """
my_relationships = {k:v for k,v in orientation_relationships.items() if self.lattice in v} m_l: BravaisLattice
if model not in my_relationships: o_l: BravaisLattice
if model not in self.orientation_relationships:
raise KeyError(f'unknown orientation relationship "{model}"') raise KeyError(f'unknown orientation relationship "{model}"')
r = my_relationships[model]
sl = self.lattice sep = '-->'
ol = (set(r)-{sl}).pop() search = self.lattice+sep+('' if target is None else target.lattice) # type: ignore
m = r[sl] transform = [t for t in orientation_relationships[model].keys() if t.startswith(search)] # type: ignore
o = r[ol]
p_,_p = np.zeros(m.shape[:-1]+(3,)),np.zeros(o.shape[:-1]+(3,)) if len(transform) != 1:
p_[...,0,:] = m[...,0,:] if m.shape[-1] == 3 else util.Bravais_to_Miller(uvtw=m[...,0,0:4]) raise ValueError(f'invalid target lattice "{search.split(sep)[1]}"')
p_[...,1,:] = m[...,1,:] if m.shape[-1] == 3 else util.Bravais_to_Miller(hkil=m[...,1,0:4])
_p[...,0,:] = o[...,0,:] if o.shape[-1] == 3 else util.Bravais_to_Miller(uvtw=o[...,0,0:4])
_p[...,1,:] = o[...,1,:] if o.shape[-1] == 3 else util.Bravais_to_Miller(hkil=o[...,1,0:4])
return (ol,Rotation.from_parallel(p_,_p)) m_l,o_l = transform[0].split(sep) # type: ignore
m_p,o_p = orientation_relationships[model][m_l+sep+o_l]
other = Crystal(lattice=o_l) if target is None else target
m_p = np.stack((self.to_frame(uvw=m_p[:,0] if len(m_p[0,0])==3 else util.Bravais_to_Miller(uvtw=m_p[:,0])),
self.to_frame(hkl=m_p[:,1] if len(m_p[0,1])==3 else util.Bravais_to_Miller(hkil=m_p[:,1]))),
axis=1)
o_p = np.stack((other.to_frame(uvw=o_p[:,0] if len(o_p[0,0])==3 else util.Bravais_to_Miller(uvtw=o_p[:,0])),
other.to_frame(hkl=o_p[:,1] if len(o_p[0,1])==3 else util.Bravais_to_Miller(hkil=o_p[:,1]))),
axis=1)
return (o_l,Rotation.from_parallel(a=m_p,b=o_p))

View File

@ -240,13 +240,6 @@ class Orientation(Rotation,Crystal):
return self.copy(Rotation(self.quaternion)*Rotation(other.quaternion)) return self.copy(Rotation(self.quaternion)*Rotation(other.quaternion))
@classmethod
@util.extend_docstring(Rotation.from_random,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_random, wrapped=__init__)
def from_random(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod @classmethod
@util.extend_docstring(Rotation.from_quaternion, @util.extend_docstring(Rotation.from_quaternion,
adopted_parameters=Crystal.__init__) adopted_parameters=Crystal.__init__)
@ -282,6 +275,13 @@ class Orientation(Rotation,Crystal):
def from_matrix(cls, **kwargs) -> 'Orientation': def from_matrix(cls, **kwargs) -> 'Orientation':
return cls(**kwargs) return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_parallel,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_parallel, wrapped=__init__)
def from_parallel(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod @classmethod
@util.extend_docstring(Rotation.from_Rodrigues_vector, @util.extend_docstring(Rotation.from_Rodrigues_vector,
adopted_parameters=Crystal.__init__) adopted_parameters=Crystal.__init__)
@ -303,6 +303,20 @@ class Orientation(Rotation,Crystal):
def from_cubochoric(cls, **kwargs) -> 'Orientation': def from_cubochoric(cls, **kwargs) -> 'Orientation':
return cls(**kwargs) return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_random,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_random, wrapped=__init__)
def from_random(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod
@util.extend_docstring(Rotation.from_ODF,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_ODF, wrapped=__init__)
def from_ODF(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
@classmethod @classmethod
@util.extend_docstring(Rotation.from_spherical_component, @util.extend_docstring(Rotation.from_spherical_component,
adopted_parameters=Crystal.__init__) adopted_parameters=Crystal.__init__)
@ -325,7 +339,7 @@ class Orientation(Rotation,Crystal):
hkl: FloatSequence, hkl: FloatSequence,
**kwargs) -> 'Orientation': **kwargs) -> 'Orientation':
""" """
Initialize orientation object from two crystallographic directions. Initialize orientation object from the crystallographic direction and plane parallel to lab x and z, respectively.
Parameters Parameters
---------- ----------
@ -855,7 +869,8 @@ class Orientation(Rotation,Crystal):
def related(self: MyType, def related(self: MyType,
model: str) -> MyType: model: str,
target = None) -> MyType:
""" """
All orientations related to self by given relationship model. All orientations related to self by given relationship model.
@ -863,6 +878,10 @@ class Orientation(Rotation,Crystal):
---------- ----------
model : str model : str
Orientation relationship model selected from self.orientation_relationships. Orientation relationship model selected from self.orientation_relationships.
target : Crystal, optional
Crystal to transform to.
Providing this parameter allows specification of non-standard lattice parameters.
Default is inferred from selected model and uses standard lattice parameters.
Returns Returns
------- -------
@ -890,11 +909,10 @@ class Orientation(Rotation,Crystal):
[0.924 0.000 0.000 0.383]] [0.924 0.000 0.000 0.383]]
""" """
lattice,o = self.relation_operations(model) lattice,o = self.relation_operations(model,target)
target = Crystal(lattice=lattice) target = Crystal(lattice=lattice) if target is None else target
o = o.broadcast_to(o.shape+self.shape,mode='right')
return Orientation(rotation=o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'), return Orientation(rotation=o*Rotation(self.quaternion)[np.newaxis,...], # type: ignore
lattice=lattice, lattice=lattice,
b = self.b if target.ratio['b'] is None else self.a*target.ratio['b'], b = self.b if target.ratio['b'] is None else self.a*target.ratio['b'],
c = self.c if target.ratio['c'] is None else self.a*target.ratio['c'], c = self.c if target.ratio['c'] is None else self.a*target.ratio['c'],

View File

@ -57,6 +57,11 @@ class Table:
Test equality of other. Test equality of other.
Parameters
----------
other : Table
Table to check for equality.
""" """
return NotImplemented if not isinstance(other,Table) else \ return NotImplemented if not isinstance(other,Table) else \
self.shapes == other.shapes and self.data.equals(other.data) self.shapes == other.shapes and self.data.equals(other.data)

View File

@ -10,8 +10,8 @@ FloatSequence = Union[np.ndarray,Sequence[float]]
IntSequence = Union[np.ndarray,Sequence[int]] IntSequence = Union[np.ndarray,Sequence[int]]
StrSequence = Union[np.ndarray,Sequence[str]] StrSequence = Union[np.ndarray,Sequence[str]]
FileHandle = Union[TextIO, str, Path] FileHandle = Union[TextIO, str, Path]
CrystalFamily = Union[None,Literal['triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 'hexagonal', 'cubic']] CrystalFamily = Literal['triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 'hexagonal', 'cubic']
BravaisLattice = Union[None,Literal['aP', 'mP', 'mS', 'oP', 'oS', 'oI', 'oF', 'tP', 'tI', 'hP', 'cP', 'cI', 'cF']] BravaisLattice = Literal['aP', 'mP', 'mS', 'oP', 'oS', 'oI', 'oF', 'tP', 'tI', 'hP', 'cP', 'cI', 'cF']
CrystalKinematics = Literal['slip', 'twin'] CrystalKinematics = Literal['slip', 'twin']
NumpyRngSeed = Union[int, IntSequence, np.random.SeedSequence, np.random.Generator] NumpyRngSeed = Union[int, IntSequence, np.random.SeedSequence, np.random.Generator]
# BitGenerator does not exists in older numpy versions # BitGenerator does not exists in older numpy versions

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

View File

@ -1,4 +1,4 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
180.0 45.00000000000001 180.0 1 1 90.0 90.0 315.0 1 1
270.0 45.00000000000001 90.0 1 2 180.0 90.00000000000001 45.000000000000014 1 2
315.0 0.0 0.0 1 3 315.0 0.0 0.0 1 3

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
146.75362934444064 9.976439066337804 256.395594327347 1 1 146.75362934444055 9.976439066337804 256.39559432734706 1 1
356.59977719102034 43.39784965440254 12.173896584899929 1 2 356.59977719102034 43.39784965440254 12.173896584899923 1 2
75.92521636876346 43.82007387041961 277.8843642946069 1 3 75.92521636876346 43.820073870419634 277.8843642946069 1 3
326.75362934444064 9.976439066337806 76.39559432734703 1 4 326.7536293444406 9.976439066337804 76.39559432734708 1 4
176.59977719102034 43.397849654402556 192.17389658489986 1 5 176.59977719102034 43.39784965440254 192.1738965848999 1 5
255.92521636876344 43.82007387041961 97.88436429460687 1 6 255.92521636876344 43.82007387041961 97.88436429460688 1 6
213.24637065555936 9.976439066337804 103.604405672653 1 7 213.2463706555594 9.976439066337804 103.60440567265299 1 7
3.400222808979685 43.39784965440255 347.8261034151001 1 8 3.4002228089796636 43.39784965440254 347.8261034151001 1 8
284.0747836312365 43.82007387041961 82.11563570539313 1 9 284.0747836312365 43.82007387041961 82.11563570539313 1 9
33.24637065555936 9.976439066337804 283.60440567265294 1 10 33.246370655559474 9.976439066337804 283.6044056726529 1 10
183.40022280897963 43.397849654402556 167.8261034151001 1 11 183.40022280897966 43.39784965440254 167.8261034151001 1 11
104.07478363123654 43.82007387041961 262.1156357053931 1 12 104.07478363123657 43.82007387041961 262.1156357053931 1 12
273.4002228089796 43.397849654402556 77.82610341510008 1 13 273.4002228089796 43.39784965440254 77.82610341510009 1 13
123.24637065555939 9.976439066337806 193.60440567265297 1 14 123.24637065555936 9.976439066337804 193.60440567265303 1 14
194.07478363123653 43.82007387041961 172.11563570539317 1 15 194.07478363123653 43.82007387041961 172.11563570539315 1 15
93.40022280897969 43.39784965440255 257.8261034151001 1 16 93.40022280897966 43.39784965440256 257.82610341510014 1 16
303.24637065555936 9.976439066337804 13.604405672652977 1 17 303.2463706555593 9.976439066337804 13.604405672653055 1 17
14.074783631236542 43.82007387041961 352.1156357053931 1 18 14.07478363123655 43.82007387041961 352.1156357053931 1 18
86.59977719102032 43.39784965440254 282.17389658489986 1 19 86.59977719102034 43.39784965440254 282.17389658489986 1 19
236.75362934444058 9.976439066337804 166.39559432734703 1 20 236.75362934444064 9.976439066337804 166.39559432734697 1 20
165.92521636876344 43.82007387041961 187.88436429460683 1 21 165.92521636876347 43.82007387041961 187.88436429460683 1 21
266.59977719102034 43.39784965440254 102.17389658489992 1 22 266.59977719102034 43.39784965440254 102.17389658489991 1 22
56.75362934444064 9.976439066337804 346.395594327347 1 23 56.75362934444067 9.976439066337804 346.395594327347 1 23
345.9252163687635 43.82007387041961 7.884364294606862 1 24 345.9252163687635 43.82007387041961 7.8843642946068595 1 24

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
166.39559432734697 9.976439066337804 236.75362934444058 1 1 166.39559432734703 9.976439066337804 236.75362934444064 1 1
352.1156357053931 43.82007387041961 14.074783631236542 1 2 352.1156357053931 43.82007387041961 14.07478363123654 1 2
77.82610341510008 43.397849654402556 273.4002228089796 1 3 77.82610341510009 43.39784965440254 273.4002228089796 1 3
346.395594327347 9.976439066337804 56.75362934444064 1 4 346.3955943273471 9.976439066337804 56.75362934444052 1 4
172.11563570539317 43.82007387041961 194.07478363123653 1 5 172.11563570539315 43.82007387041959 194.07478363123653 1 5
257.8261034151001 43.39784965440255 93.40022280897969 1 6 257.8261034151001 43.39784965440256 93.40022280897968 1 6
193.604405672653 9.976439066337804 123.24637065555939 1 7 193.60440567265294 9.976439066337804 123.24637065555943 1 7
7.884364294606862 43.82007387041961 345.9252163687635 1 8 7.884364294606861 43.82007387041961 345.9252163687635 1 8
282.17389658489986 43.39784965440254 86.59977719102032 1 9 282.17389658489986 43.39784965440254 86.59977719102034 1 9
13.604405672652977 9.976439066337804 303.24637065555936 1 10 13.60440567265293 9.976439066337804 303.2463706555594 1 10
187.88436429460683 43.82007387041961 165.92521636876344 1 11 187.88436429460683 43.82007387041961 165.92521636876347 1 11
102.17389658489992 43.39784965440254 266.59977719102034 1 12 102.17389658489991 43.39784965440254 266.59977719102034 1 12
277.8843642946069 43.82007387041961 75.92521636876346 1 13 277.8843642946069 43.82007387041961 75.92521636876347 1 13
103.604405672653 9.976439066337804 213.24637065555936 1 14 103.60440567265306 9.976439066337804 213.2463706555593 1 14
192.17389658489986 43.397849654402556 176.59977719102034 1 15 192.1738965848999 43.39784965440254 176.59977719102034 1 15
97.88436429460687 43.82007387041961 255.92521636876344 1 16 97.88436429460687 43.82007387041961 255.92521636876344 1 16
283.60440567265294 9.976439066337804 33.24637065555936 1 17 283.60440567265294 9.976439066337804 33.24637065555943 1 17
12.173896584899929 43.39784965440254 356.59977719102034 1 18 12.173896584899891 43.39784965440254 356.59977719102034 1 18
82.11563570539313 43.82007387041961 284.0747836312365 1 19 82.11563570539315 43.82007387041961 284.0747836312365 1 19
256.395594327347 9.976439066337804 146.75362934444064 1 20 256.395594327347 9.976439066337804 146.75362934444064 1 20
167.8261034151001 43.397849654402556 183.40022280897963 1 21 167.8261034151001 43.39784965440254 183.40022280897966 1 21
262.1156357053931 43.82007387041961 104.07478363123654 1 22 262.1156357053931 43.82007387041958 104.07478363123656 1 22
76.39559432734703 9.976439066337806 326.75362934444064 1 23 76.39559432734696 9.976439066337804 326.7536293444407 1 23
347.8261034151001 43.39784965440255 3.400222808979685 1 24 347.8261034151001 43.39784965440256 3.4002228089796644 1 24

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
114.20342833932975 10.52877936550932 204.20342833932972 1 1 114.2034283393298 10.528779365509285 204.2034283393297 1 1
94.3573968784815 80.40593177313954 311.22729452432543 1 2 94.35739687848151 80.40593177313954 311.2272945243255 1 2
175.6426031215185 80.40593177313954 48.77270547567447 1 3 175.64260312151848 80.40593177313957 48.77270547567447 1 3
155.79657166067025 10.52877936550932 155.79657166067025 1 4 155.79657166067022 10.528779365509285 155.79657166067028 1 4
99.62136089109411 85.70366403943004 318.04510841542015 1 5 99.62136089109413 85.70366403943005 318.04510841542015 1 5
170.37863910890587 85.70366403943002 41.954891584579855 1 6 170.37863910890584 85.70366403943002 41.95489158457988 1 6
85.64260312151852 80.40593177313954 48.77270547567448 1 7 85.64260312151852 80.40593177313954 48.77270547567447 1 7
65.79657166067024 10.52877936550932 155.79657166067025 1 8 65.79657166067024 10.528779365509285 155.79657166067025 1 8
9.621360891094124 85.70366403943004 318.04510841542015 1 9 9.62136089109412 85.70366403943004 318.04510841542015 1 9
80.37863910890587 85.70366403943004 41.95489158457987 1 10 80.37863910890589 85.70366403943004 41.95489158457986 1 10
24.203428339329758 10.52877936550932 204.20342833932975 1 11 24.203428339329754 10.528779365509356 204.20342833932975 1 11
4.357396878481486 80.40593177313954 311.2272945243255 1 12 4.357396878481504 80.40593177313954 311.22729452432554 1 12
204.20342833932972 10.52877936550932 204.20342833932972 1 13 204.2034283393298 10.528779365509356 204.2034283393297 1 13
184.35739687848147 80.40593177313954 311.2272945243255 1 14 184.35739687848152 80.40593177313954 311.2272945243255 1 14
265.64260312151845 80.40593177313953 48.77270547567449 1 15 265.6426031215185 80.40593177313954 48.772705475674464 1 15
245.79657166067025 10.528779365509317 155.79657166067025 1 16 245.79657166067025 10.528779365509285 155.79657166067025 1 16
189.62136089109413 85.70366403943004 318.04510841542015 1 17 189.62136089109413 85.70366403943002 318.04510841542015 1 17
260.3786391089059 85.70366403943002 41.954891584579855 1 18 260.3786391089059 85.70366403943002 41.95489158457986 1 18
170.37863910890587 94.29633596056996 138.04510841542015 1 19 170.37863910890587 94.29633596056996 138.04510841542015 1 19
99.62136089109411 94.29633596056998 221.95489158457983 1 20 99.62136089109411 94.29633596056996 221.95489158457985 1 20
155.79657166067025 169.4712206344907 24.203428339329754 1 21 155.79657166067025 169.47122063449072 24.203428339329754 1 21
175.64260312151848 99.59406822686046 131.22729452432552 1 22 175.64260312151848 99.59406822686046 131.22729452432552 1 22
94.35739687848151 99.59406822686046 228.77270547567446 1 23 94.35739687848148 99.59406822686044 228.77270547567446 1 23
114.20342833932975 169.4712206344907 335.7965716606702 1 24 114.20342833932965 169.4712206344907 335.79657166067017 1 24

View File

@ -1,13 +1,13 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
96.91733794010702 83.13253115922213 314.5844440567886 1 1 96.917337940107 83.13253115922213 314.5844440567886 1 1
173.082662059893 83.13253115922211 45.41555594321143 1 2 173.08266205989295 83.13253115922213 45.415555943211444 1 2
135.0 9.735610317245317 180.0 1 3 135.00000000000003 9.735610317245321 179.99999999999997 1 3
263.082662059893 83.13253115922213 45.415555943211444 1 4 263.082662059893 83.13253115922213 45.41555594321144 1 4
186.91733794010702 83.13253115922211 314.5844440567886 1 5 186.91733794010705 83.13253115922211 314.5844440567886 1 5
224.99999999999997 9.735610317245317 180.0 1 6 224.99999999999997 9.735610317245396 180.00000000000003 1 6
83.082662059893 83.13253115922213 45.415555943211444 1 7 83.082662059893 83.13253115922213 45.41555594321142 1 7
6.917337940106983 83.13253115922211 314.5844440567886 1 8 6.917337940107001 83.13253115922213 314.5844440567886 1 8
45.0 9.73561031724532 180.0 1 9 45.000000000000036 9.735610317245321 179.99999999999994 1 9
13.638707279476469 45.81931182053557 80.40196970123216 1 10 96.917337940107 96.86746884077787 225.41555594321142 1 10
256.36129272052347 45.81931182053556 279.59803029876775 1 11 173.08266205989298 96.86746884077787 134.58444405678858 1 11
315.0 99.73561031724536 0.0 1 12 135.0 170.26438968275468 0.0 1 12

View File

@ -1,13 +1,13 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
135.41555594321144 83.13253115922213 173.082662059893 1 1 80.40196970123212 134.18068817946445 346.3612927205235 1 1
260.26438968275465 90.0 135.0 1 2 45.41555594321142 96.86746884077787 276.91733794010696 1 2
260.40196970123213 45.81931182053557 13.638707279476478 1 3 45.41555594321142 83.1325311592221 263.082662059893 1 3
314.5844440567886 83.13253115922213 96.91733794010702 1 4 80.40196970123215 45.81931182053556 193.63870727947645 1 4
350.40196970123213 45.81931182053557 283.6387072794765 1 5 224.58444405678856 96.86746884077789 83.08266205989298 1 5
170.26438968275465 90.0 224.99999999999997 1 6 189.59803029876787 134.18068817946445 13.638707279476478 1 6
315.4155559432114 83.13253115922213 353.08266205989304 1 7 189.59803029876787 45.81931182053558 166.36129272052355 1 7
99.73561031724536 90.0 225.0 1 8 224.58444405678856 83.1325311592221 96.91733794010702 1 8
279.59803029876787 45.819311820535574 166.36129272052352 1 9 350.26438968275465 44.999999999999986 0.0 1 9
134.58444405678856 83.13253115922213 276.91733794010696 1 10 279.7356103172453 45.00000000000001 0.0 1 10
9.598030298767851 45.819311820535574 76.36129272052355 1 11 260.26438968275465 44.999999999999986 0.0 1 11
9.735610317245369 90.0 315.0 1 12 189.73561031724535 44.999999999999986 0.0 1 12

View File

@ -1,4 +1,4 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
0.0 45.00000000000001 0.0 1 1 90.0 90.00000000000003 44.99999999999999 1 1
90.0 45.00000000000001 270.0 1 2 180.0 89.99999999999999 135.0 1 2
45.00000000000001 0.0 0.0 1 3 45.0 0.0 0.0 1 3

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
283.60440567265294 9.976439066337804 33.24637065555936 1 1 283.60440567265294 9.976439066337804 33.246370655559446 1 1
167.8261034151001 43.397849654402556 183.40022280897963 1 2 167.8261034151001 43.39784965440254 183.40022280897966 1 2
262.1156357053931 43.82007387041961 104.07478363123654 1 3 262.1156357053931 43.820073870419634 104.07478363123656 1 3
103.604405672653 9.976439066337804 213.24637065555936 1 4 103.60440567265293 9.976439066337804 213.24637065555945 1 4
347.8261034151001 43.39784965440255 3.400222808979685 1 5 347.8261034151001 43.39784965440254 3.400222808979658 1 5
82.11563570539313 43.82007387041961 284.0747836312365 1 6 82.11563570539313 43.82007387041961 284.0747836312365 1 6
76.39559432734703 9.976439066337806 326.75362934444064 1 7 76.39559432734703 9.976439066337804 326.7536293444406 1 7
192.17389658489986 43.397849654402556 176.59977719102034 1 8 192.1738965848999 43.39784965440254 176.59977719102034 1 8
97.88436429460687 43.82007387041961 255.92521636876344 1 9 97.88436429460687 43.82007387041961 255.92521636876344 1 9
256.395594327347 9.976439066337804 146.75362934444064 1 10 256.39559432734706 9.976439066337804 146.75362934444055 1 10
12.173896584899929 43.39784965440254 356.59977719102034 1 11 12.173896584899904 43.39784965440254 356.59977719102034 1 11
277.8843642946069 43.82007387041961 75.92521636876346 1 12 277.8843642946069 43.82007387041961 75.92521636876344 1 12
102.17389658489992 43.39784965440254 266.59977719102034 1 13 102.17389658489991 43.39784965440254 266.59977719102034 1 13
346.395594327347 9.976439066337804 56.75362934444064 1 14 346.395594327347 9.976439066337804 56.75362934444066 1 14
7.884364294606862 43.82007387041961 345.9252163687635 1 15 7.884364294606855 43.82007387041961 345.9252163687635 1 15
282.17389658489986 43.39784965440254 86.59977719102032 1 16 282.17389658489986 43.39784965440256 86.59977719102035 1 16
166.39559432734703 9.976439066337804 236.75362934444058 1 17 166.39559432734697 9.976439066337804 236.7536293444407 1 17
187.88436429460683 43.82007387041961 165.92521636876344 1 18 187.88436429460685 43.82007387041961 165.92521636876344 1 18
257.8261034151001 43.39784965440255 93.40022280897969 1 19 257.82610341510014 43.39784965440254 93.40022280897966 1 19
13.604405672652977 9.976439066337804 303.24637065555936 1 20 13.60440567265301 9.976439066337804 303.24637065555936 1 20
352.1156357053931 43.82007387041961 14.074783631236542 1 21 352.1156357053931 43.82007387041961 14.074783631236537 1 21
77.82610341510008 43.397849654402556 273.4002228089796 1 22 77.82610341510009 43.39784965440254 273.4002228089796 1 22
193.60440567265297 9.976439066337806 123.24637065555939 1 23 193.604405672653 9.976439066337804 123.24637065555933 1 23
172.11563570539317 43.82007387041961 194.07478363123653 1 24 172.11563570539315 43.82007387041961 194.07478363123653 1 24

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
303.24637065555936 9.976439066337804 13.604405672652977 1 1 303.24637065555936 9.976439066337804 13.604405672652986 1 1
165.92521636876344 43.82007387041961 187.88436429460683 1 2 165.92521636876347 43.82007387041961 187.88436429460683 1 2
266.59977719102034 43.39784965440254 102.17389658489992 1 3 266.59977719102034 43.39784965440254 102.17389658489992 1 3
123.24637065555939 9.976439066337804 193.604405672653 1 4 123.2463706555595 9.976439066337804 193.60440567265286 1 4
345.9252163687635 43.82007387041961 7.884364294606862 1 5 345.9252163687634 43.82007387041959 7.884364294606872 1 5
86.59977719102032 43.39784965440254 282.17389658489986 1 6 86.59977719102034 43.39784965440256 282.17389658489986 1 6
56.75362934444064 9.976439066337804 346.395594327347 1 7 56.75362934444059 9.976439066337804 346.395594327347 1 7
194.07478363123653 43.82007387041961 172.11563570539317 1 8 194.07478363123653 43.82007387041961 172.11563570539315 1 8
93.40022280897969 43.39784965440255 257.8261034151001 1 9 93.40022280897968 43.39784965440254 257.8261034151001 1 9
236.75362934444058 9.976439066337804 166.39559432734697 1 10 236.75362934444058 9.976439066337804 166.39559432734706 1 10
14.074783631236542 43.82007387041961 352.1156357053931 1 11 14.074783631236523 43.82007387041961 352.1156357053931 1 11
273.4002228089796 43.397849654402556 77.82610341510008 1 12 273.4002228089796 43.39784965440254 77.82610341510009 1 12
104.07478363123654 43.82007387041961 262.1156357053931 1 13 104.07478363123654 43.82007387041961 262.1156357053931 1 13
326.75362934444064 9.976439066337806 76.39559432734703 1 14 326.7536293444407 9.976439066337804 76.39559432734696 1 14
3.400222808979685 43.39784965440255 347.8261034151001 1 15 3.4002228089796604 43.39784965440254 347.8261034151001 1 15
284.0747836312365 43.82007387041961 82.11563570539313 1 16 284.0747836312365 43.82007387041961 82.11563570539316 1 16
146.75362934444064 9.976439066337804 256.395594327347 1 17 146.75362934444055 9.976439066337804 256.39559432734706 1 17
183.40022280897963 43.397849654402556 167.8261034151001 1 18 183.40022280897966 43.39784965440254 167.8261034151001 1 18
255.92521636876344 43.82007387041961 97.88436429460687 1 19 255.92521636876344 43.82007387041961 97.88436429460687 1 19
33.24637065555936 9.976439066337804 283.60440567265294 1 20 33.24637065555936 9.976439066337804 283.60440567265294 1 20
356.59977719102034 43.39784965440254 12.173896584899929 1 21 356.59977719102034 43.39784965440254 12.173896584899905 1 21
75.92521636876346 43.82007387041961 277.8843642946069 1 22 75.92521636876346 43.82007387041958 277.8843642946069 1 22
213.24637065555936 9.976439066337804 103.604405672653 1 23 213.2463706555593 9.976439066337804 103.60440567265306 1 23
176.59977719102034 43.397849654402556 192.17389658489986 1 24 176.59977719102034 43.39784965440256 192.1738965848999 1 24

View File

@ -1,25 +1,25 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
335.7965716606702 10.528779365509317 65.79657166067024 1 1 257.3335306934857 49.47122063449066 102.66646930651427 1 1
228.77270547567446 80.40593177313953 85.64260312151849 1 2 131.22729452432554 80.40593177313957 4.357396878481523 1 2
131.22729452432552 80.40593177313954 4.357396878481506 1 3 184.3573968784815 99.59406822686046 48.772705475674485 1 3
24.20342833932977 10.52877936550932 24.20342833932976 1 4 24.20342833932965 10.528779365509285 24.20342833932986 1 4
221.95489158457983 85.70366403943002 80.37863910890589 1 5 335.7965716606704 169.4712206344907 204.20342833932992 1 5
138.04510841542015 85.70366403943004 9.621360891094124 1 6 175.6426031215185 80.40593177313954 228.77270547567446 1 6
131.22729452432552 80.40593177313953 94.35739687848151 1 7 102.66646930651426 130.52877936550934 282.66646930651433 1 7
24.203428339329765 10.52877936550932 114.20342833932976 1 8 228.77270547567448 99.59406822686046 184.35739687848152 1 8
221.95489158457983 85.70366403943004 170.37863910890587 1 9 294.2034283393298 10.528779365509285 24.2034283393297 1 9
138.04510841542015 85.70366403943004 99.62136089109411 1 10 94.35739687848152 99.59406822686047 48.772705475674485 1 10
335.7965716606702 10.52877936550932 155.79657166067025 1 11 167.3335306934857 49.4712206344907 102.66646930651429 1 11
228.77270547567448 80.40593177313954 175.6426031215185 1 12 41.22729452432552 80.40593177313954 4.3573968784814845 1 12
335.7965716606702 10.52877936550932 335.7965716606702 1 13 12.666469306514255 130.5287793655093 282.6664693065143 1 13
228.77270547567448 80.40593177313954 355.6426031215185 1 14 138.7727054756745 99.59406822686046 184.3573968784815 1 14
131.2272945243255 80.40593177313954 274.35739687848144 1 15 245.79657166067028 169.4712206344907 204.20342833932978 1 15
24.203428339329747 10.52877936550932 294.2034283393298 1 16 85.64260312151852 80.40593177313954 228.77270547567448 1 16
221.95489158457985 85.70366403943004 350.3786391089059 1 17 165.61499741817968 137.86632049415985 83.58843092115008 1 17
138.04510841542015 85.70366403943004 279.6213608910941 1 18 104.38500258182032 42.13367950584017 263.58843092115006 1 18
41.95489158457986 94.29633596056998 9.621360891094133 1 19 189.62136089109413 85.70366403943004 138.04510841542015 1 19
318.04510841542015 94.29633596056996 80.37863910890589 1 20 80.37863910890587 94.29633596056998 318.04510841542015 1 20
155.79657166067025 169.4712206344907 24.203428339329754 1 21 350.3786391089059 94.29633596056996 318.04510841542015 1 21
48.77270547567448 99.59406822686046 4.357396878481504 1 22 99.62136089109414 85.70366403943004 138.04510841542012 1 22
311.2272945243255 99.59406822686046 85.64260312151852 1 23 14.385002581820302 42.13367950584017 263.5884309211501 1 23
204.20342833932975 169.4712206344907 65.79657166067024 1 24 75.61499741817968 137.8663204941598 83.58843092115006 1 24

View File

@ -1,13 +1,13 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
225.41555594321144 83.13253115922213 83.08266205989301 1 1 99.59803029876785 45.81931182053558 346.3612927205235 1 1
134.58444405678856 83.13253115922211 6.917337940107012 1 2 225.41555594321144 83.13253115922213 83.082662059893 1 2
4.702125169424418e-15 9.735610317245317 45.0 1 3 260.40196970123213 134.18068817946443 166.36129272052355 1 3
134.58444405678856 83.13253115922213 276.91733794010696 1 4 134.58444405678856 96.86746884077786 263.08266205989304 1 4
225.4155559432114 83.13253115922213 353.082662059893 1 5 9.598030298767839 45.81931182053556 346.3612927205236 1 5
0.0 9.735610317245317 315.0 1 6 135.41555594321142 83.13253115922213 83.08266205989298 1 6
134.58444405678858 83.13253115922213 96.91733794010702 1 7 170.40196970123213 134.18068817946443 166.36129272052355 1 7
225.41555594321142 83.13253115922213 173.082662059893 1 8 44.58444405678856 96.86746884077789 263.082662059893 1 8
0.0 9.735610317245317 135.0 1 9 170.26438968275465 45.00000000000003 179.99999999999997 1 9
99.59803029876785 45.81931182053557 166.36129272052355 1 10 99.73561031724535 135.0 0.0 1 10
260.40196970123213 45.81931182053556 283.6387072794765 1 11 9.735610317245337 135.00000000000003 0.0 1 11
180.0 99.73561031724535 225.0 1 12 80.26438968275465 45.00000000000001 179.99999999999997 1 12

View File

@ -1,13 +1,13 @@
1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos 1_Eulers 2_Eulers 3_Eulers 1_pos 2_pos
6.9173379401070045 83.13253115922213 44.58444405678856 1 1 180.0 44.999999999999986 189.73561031724537 1 1
45.0 89.99999999999999 279.7356103172453 1 2 180.0 44.999999999999986 80.26438968275463 1 2
166.36129272052352 45.819311820535574 279.59803029876787 1 3 179.99999999999994 135.0 80.26438968275464 1 3
83.08266205989301 83.13253115922213 225.41555594321144 1 4 180.0 135.0 9.735610317245355 1 4
256.3612927205235 45.819311820535574 189.59803029876787 1 5 90.0 44.999999999999986 260.26438968275465 1 5
315.0 90.0 9.735610317245369 1 6 90.00000000000001 45.00000000000001 189.73561031724532 1 6
186.917337940107 83.13253115922213 224.58444405678856 1 7 90.0 135.0 9.735610317245342 1 7
315.0 90.0 80.26438968275463 1 8 90.00000000000001 135.0 80.26438968275467 1 8
13.638707279476478 45.81931182053557 260.40196970123213 1 9 135.0 90.0 99.73561031724536 1 9
263.082662059893 83.13253115922213 45.415555943211444 1 10 135.0 90.0 170.26438968275463 1 10
103.63870727947646 45.819311820535574 170.40196970123213 1 11 45.0 90.0 350.26438968275465 1 11
224.99999999999997 90.0 170.26438968275465 1 12 45.00000000000001 89.99999999999999 279.7356103172453 1 12

View File

@ -110,3 +110,11 @@ class TestCrystal:
for r in crystal.orientation_relationships: for r in crystal.orientation_relationships:
crystal.relation_operations(r) crystal.relation_operations(r)
@pytest.mark.parametrize('crystal', [Crystal(lattice='cF'),
Crystal(lattice='cI'),
Crystal(lattice='hP')])
def test_related_invalid_target(self,crystal):
relationship = np.random.choice(crystal.orientation_relationships)
with pytest.raises(ValueError):
crystal.relation_operations(relationship,crystal)

View File

@ -1,6 +1,8 @@
import pytest import pytest
import numpy as np import numpy as np
from itertools import permutations from itertools import permutations
from matplotlib import pyplot as plt
from PIL import Image
from damask import Rotation from damask import Rotation
from damask import Orientation from damask import Orientation
@ -304,13 +306,6 @@ class TestOrientation:
with pytest.raises(ValueError): with pytest.raises(ValueError):
eval(f'o.{function}(np.ones(4))') eval(f'o.{function}(np.ones(4))')
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
@pytest.mark.parametrize('lattice',['cF','cI'])
def test_relationship_forward_backward(self,model,lattice):
o = Orientation.from_random(lattice=lattice)
for i,r in enumerate(o.related(model)):
assert o.disorientation(r.related(model)[i]).as_axis_angle(degrees=True,pair=True)[1]<1.0e-5
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch']) @pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
@pytest.mark.parametrize('lattice',['cF','cI']) @pytest.mark.parametrize('lattice',['cF','cI'])
def test_relationship_reference(self,update,res_path,model,lattice): def test_relationship_reference(self,update,res_path,model,lattice):
@ -527,3 +522,25 @@ class TestOrientation:
def test_mul_invalid(self): def test_mul_invalid(self):
with pytest.raises(TypeError): with pytest.raises(TypeError):
Orientation.from_random(lattice='cF')*np.ones(3) Orientation.from_random(lattice='cF')*np.ones(3)
@pytest.mark.parametrize('OR',['KS','NW','GT','GT_prime','Bain','Pitsch'])
@pytest.mark.parametrize('pole',[[0,0,1],[0,1,1],[1,1,1]])
def test_OR_plot(self,update,res_path,tmp_path,OR,pole):
# https://doi.org/10.3390/cryst13040663 for comparison
O = Orientation(lattice='cF')
poles = O.related(OR).to_pole(uvw=pole,with_symmetry=True).reshape(-1,3)
points = util.project_equal_area(poles,'z')
fig, ax = plt.subplots()
c = plt.Circle((0,0),1, color='k',fill=False)
ax.add_patch(c)
ax.scatter(points[:,0],points[:,1])
ax.set_aspect('equal', 'box')
fname=f'{OR}-{"".join(map(str,pole))}.png'
plt.axis('off')
plt.savefig(tmp_path/fname)
if update: plt.savefig(res_path/fname)
current = np.array(Image.open(tmp_path/fname))
reference = np.array(Image.open(res_path/fname))
assert np.allclose(current,reference)