Merge branch 'development' into NoCoreModule

This commit is contained in:
Martin Diehl 2016-04-15 00:05:38 +02:00
commit 573d10f1e1
24 changed files with 735 additions and 372 deletions

8
.gitattributes vendored Normal file
View File

@ -0,0 +1,8 @@
# from https://help.github.com/articles/dealing-with-line-endings/
#
# always use LF, even if the files are edited on windows, they need to be compiled/used on unix
* text eol=lf
# Denote all files that are truly binary and should not be modified.
*.png binary
*.jpg binary

View File

@ -2,7 +2,7 @@
# usage: source DAMASK_env.sh
if [ "$OSTYPE" == "linux-gnu" ] || [ "$OSTYPE" == 'linux' ]; then
DAMASK_ROOT=$(readlink -f "`dirname $BASH_SOURCE`")
DAMASK_ROOT=$(python -c "import os,sys; print(os.path.realpath(os.path.expanduser(sys.argv[1])))" "`dirname $BASH_SOURCE`")
else
[[ "${BASH_SOURCE::1}" == "/" ]] && BASE="" || BASE="`pwd`/"
STAT=$(stat "`dirname $BASE$BASH_SOURCE`")
@ -18,11 +18,11 @@ fi
SOLVER=`which DAMASK_spectral 2>/dev/null`
if [ "x$SOLVER" == "x" ]; then
export SOLVER='Not found!'
SOLVER='Not found!'
fi
PROCESSING=`which postResults 2>/dev/null`
if [ "x$PROCESSING" == "x" ]; then
export PROCESSING='Not found!'
PROCESSING='Not found!'
fi
# according to http://software.intel.com/en-us/forums/topic/501500
@ -55,7 +55,8 @@ if [ ! -z "$PS1" ]; then
echo "Multithreading DAMASK_NUM_THREADS=$DAMASK_NUM_THREADS"
if [ "x$PETSC_DIR" != "x" ]; then
echo "PETSc location $PETSC_DIR"
[[ `readlink -f $PETSC_DIR` == $PETSC_DIR ]] || echo " ~~> "`readlink -f $PETSC_DIR`
[[ `python -c "import os,sys; print(os.path.realpath(os.path.expanduser(sys.argv[1])))" "$PETSC_DIR"` == $PETSC_DIR ]] \
|| echo " ~~> "`python -c "import os,sys; print(os.path.realpath(os.path.expanduser(sys.argv[1])))" "$PETSC_DIR"`
fi
[[ "x$PETSC_ARCH" != "x" ]] && echo "PETSc architecture $PETSC_ARCH"
echo "MSC.Marc/Mentat $MSC_ROOT"

View File

@ -1 +1 @@
v2.0.0-43-ge39441f
v2.0.0-97-g8b27de7

View File

@ -13,7 +13,8 @@ program DAMASK_spectral
pInt, &
pLongInt, &
pReal, &
tol_math_check
tol_math_check, &
dNeq
use DAMASK_interface, only: &
DAMASK_interface_init, &
loadCaseFile, &
@ -147,7 +148,9 @@ program DAMASK_spectral
MPI_file_seek, &
MPI_file_get_position, &
MPI_file_write, &
MPI_allreduce
MPI_abort, &
MPI_allreduce, &
PETScFinalize
!--------------------------------------------------------------------------------------------------
! init DAMASK (all modules)
@ -339,7 +342,7 @@ program DAMASK_spectral
reshape(spread(tol_math_check,1,9),[ 3,3]))&
.or. abs(math_det33(loadCases(currentLoadCase)%rotation)) > &
1.0_pReal + tol_math_check) errorID = 846_pInt ! given rotation matrix contains strain
if (any(loadCases(currentLoadCase)%rotation /= math_I3)) &
if (any(dNeq(loadCases(currentLoadCase)%rotation, math_I3))) &
write(6,'(2x,a,/,3(3(3x,f12.7,1x)/))',advance='no') 'rotation of loadframe:',&
math_transpose33(loadCases(currentLoadCase)%rotation)
if (loadCases(currentLoadCase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
@ -423,17 +426,21 @@ program DAMASK_spectral
!--------------------------------------------------------------------------------------------------
! prepare MPI parallel out (including opening of file)
allocate(outputSize(worldsize), source = 0_MPI_OFFSET_KIND)
outputSize(worldrank+1) = int(size(materialpoint_results)*pReal,MPI_OFFSET_KIND)
call MPI_allreduce(MPI_IN_PLACE,outputSize,worldsize,MPI_INT,MPI_SUM,PETSC_COMM_WORLD,ierr) ! get total output size over each process
outputSize(worldrank+1) = size(materialpoint_results,kind=MPI_OFFSET_KIND)*int(pReal,MPI_OFFSET_KIND)
call MPI_allreduce(MPI_IN_PLACE,outputSize,worldsize,MPI_LONG,MPI_SUM,PETSC_COMM_WORLD,ierr) ! get total output size over each process
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_allreduce')
call MPI_file_open(PETSC_COMM_WORLD, &
trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'.spectralOut', &
MPI_MODE_WRONLY + MPI_MODE_APPEND, &
MPI_INFO_NULL, &
resUnit, &
ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_file_open')
call MPI_file_get_position(resUnit,fileOffset,ierr) ! get offset from header
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_file_get_position')
fileOffset = fileOffset + sum(outputSize(1:worldrank)) ! offset of my process in file (header + processes before me)
call MPI_file_seek (resUnit,fileOffset,MPI_SEEK_SET,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_file_seek')
if (.not. appendToOutFile) then ! if not restarting, write 0th increment
do i=1, size(materialpoint_results,3)/(maxByteOut/(materialpoint_sizeResults*pReal))+1 ! slice the output of my process in chunks not exceeding the limit for one output
@ -443,6 +450,7 @@ program DAMASK_spectral
[(outputIndex(2)-outputIndex(1)+1)*materialpoint_sizeResults]), &
(outputIndex(2)-outputIndex(1)+1)*materialpoint_sizeResults,&
MPI_DOUBLE, MPI_STATUS_IGNORE, ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_file_write')
enddo
fileOffset = fileOffset + sum(outputSize) ! forward to current file position
if (worldrank == 0) &
@ -643,6 +651,7 @@ program DAMASK_spectral
write(6,'(1/,a)') ' ... writing results to file ......................................'
call materialpoint_postResults()
call MPI_file_seek (resUnit,fileOffset,MPI_SEEK_SET,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_file_seek')
do i=1, size(materialpoint_results,3)/(maxByteOut/(materialpoint_sizeResults*pReal))+1 ! slice the output of my process in chunks not exceeding the limit for one output
outputIndex=int([(i-1_pInt)*((maxByteOut/pReal)/materialpoint_sizeResults)+1_pInt, &
min(i*((maxByteOut/pReal)/materialpoint_sizeResults),size(materialpoint_results,3))],pLongInt)
@ -650,6 +659,7 @@ program DAMASK_spectral
[(outputIndex(2)-outputIndex(1)+1)*materialpoint_sizeResults]), &
(outputIndex(2)-outputIndex(1)+1)*materialpoint_sizeResults,&
MPI_DOUBLE, MPI_STATUS_IGNORE, ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_file_write')
enddo
fileOffset = fileOffset + sum(outputSize) ! forward to current file position
endif
@ -698,7 +708,7 @@ program DAMASK_spectral
enddo
call utilities_destroy()
call PetscFinalize(ierr); CHKERRQ(ierr)
call PETScFinalize(ierr); CHKERRQ(ierr)
if (notConvergedCounter > 0_pInt) call quit(3_pInt) ! error if some are not converged
call quit(0_pInt) ! no complains ;)

View File

@ -1669,6 +1669,8 @@ subroutine IO_error(error_ID,el,ip,g,ext_msg)
msg = 'unknown filter type selected'
case (893_pInt)
msg = 'PETSc: SNES_DIVERGED_FNORM_NAN'
case (894_pInt)
msg = 'MPI error'
!-------------------------------------------------------------------------------------------------
! error messages related to parsing of Abaqus input file

View File

@ -1280,7 +1280,7 @@ subroutine material_populateGrains
integer(pInt) :: t,e,i,g,j,m,c,r,homog,micro,sgn,hme, myDebug, &
phaseID,textureID,dGrains,myNgrains,myNorientations,myNconstituents, &
grain,constituentGrain,ipGrain,symExtension, ip
real(pReal) :: extreme,rnd
real(pReal) :: deviation,extreme,rnd
integer(pInt), dimension (:,:), allocatable :: Nelems ! counts number of elements in homog, micro array
type(p_intvec), dimension (:,:), allocatable :: elemsOfHomogMicro ! lists element number in homog, micro array
@ -1407,8 +1407,11 @@ subroutine material_populateGrains
extreme = 0.0_pReal
t = 0_pInt
do i = 1_pInt,myNconstituents ! find largest deviator
if (real(sgn,pReal)*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro)) > extreme) then
extreme = real(sgn,pReal)*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro))
deviation = real(sgn,pReal)*log( microstructure_fraction(i,micro) / &
!-------------------------------- &
(real(NgrainsOfConstituent(i),pReal)/real(myNgrains,pReal) ) )
if (deviation > extreme) then
extreme = deviation
t = i
endif
enddo

View File

@ -7,14 +7,11 @@
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
module plastic_isotropic
#ifdef HDF
use hdf5, only: &
HID_T
#endif
use prec, only: &
pReal,&
pInt
pInt, &
DAMASK_NaN
implicit none
private
@ -40,20 +37,20 @@ module plastic_isotropic
integer(kind(undefined_ID)), allocatable, dimension(:) :: &
outputID
real(pReal) :: &
fTaylor, &
tau0, &
gdot0, &
n, &
h0, &
h0_slopeLnRate, &
tausat, &
a, &
aTolFlowstress, &
aTolShear , &
tausat_SinhFitA=0.0_pReal, &
tausat_SinhFitB=0.0_pReal, &
tausat_SinhFitC=0.0_pReal, &
tausat_SinhFitD=0.0_pReal
fTaylor = DAMASK_NaN, &
tau0 = DAMASK_NaN, &
gdot0 = DAMASK_NaN, &
n = DAMASK_NaN, &
h0 = DAMASK_NaN, &
h0_slopeLnRate = 0.0_pReal, &
tausat = DAMASK_NaN, &
a = DAMASK_NaN, &
aTolFlowstress = 1.0_pReal, &
aTolShear = 1.0e-6_pReal, &
tausat_SinhFitA= 0.0_pReal, &
tausat_SinhFitB= 0.0_pReal, &
tausat_SinhFitC= 0.0_pReal, &
tausat_SinhFitD= 0.0_pReal
logical :: &
dilatation = .false.
end type
@ -474,7 +471,8 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,e
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Li !< plastic velocity gradient
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dTstar_3333 !< derivative of Li with respect to Tstar as 4th order tensor
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
@ -484,9 +482,7 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,e
real(pReal), dimension(3,3) :: &
Tstar_sph_33 !< sphiatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dTstar_3333 !< derivative of Li with respect to Tstar as 4th order tensor
real(pReal) :: &
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_sph, & !< euclidean norm of Tstar_sph
squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph
@ -523,6 +519,9 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,e
dLi_dTstar_3333 = gamma_dot / param(instance)%fTaylor * &
dLi_dTstar_3333 / norm_Tstar_sph
endif
else
Li = 0.0_pReal
dLi_dTstar_3333 = 0.0_pReal
endif
end subroutine plastic_isotropic_LiAndItsTangent

View File

@ -207,9 +207,6 @@ subroutine plastic_j2_init(fileUnit)
phase = phase + 1_pInt ! advance section counter
if (phase_plasticity(phase) == PLASTICITY_J2_ID) then
instance = phase_plasticityInstance(phase)
#ifdef HDF
outID(instance)=HDF5_addGroup(str1,tempResults)
#endif
endif
cycle ! skip to next line
endif
@ -226,21 +223,11 @@ subroutine plastic_j2_init(fileUnit)
plastic_j2_outputID(plastic_j2_Noutput(instance),instance) = flowstress_ID
plastic_j2_output(plastic_j2_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'flowstress','MPa')
allocate(plastic_j2_Output2(instance)%flowstress(myConstituents))
plastic_j2_Output2(instance)%flowstressActive = .true.
#endif
case ('strainrate')
plastic_j2_Noutput(instance) = plastic_j2_Noutput(instance) + 1_pInt
plastic_j2_outputID(plastic_j2_Noutput(instance),instance) = strainrate_ID
plastic_j2_output(plastic_j2_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'strainrate','1/s')
allocate(plastic_j2_Output2(instance)%strainrate(myConstituents))
plastic_j2_Output2(instance)%strainrateActive = .true.
#endif
case default
end select

View File

@ -113,7 +113,9 @@ module prec
public :: &
prec_init, &
prec_isNaN
prec_isNaN, &
dEq, &
dNeq
contains

View File

@ -1,37 +0,0 @@
### $Id$ ###
[Tungsten]
elasticity hooke
plasticity dislokmc
### Material parameters ###
lattice_structure bcc
C11 523.0e9 # From Marinica et al. Journal of Physics: Condensed Matter(2013)
C12 202.0e9
C44 161.0e9
grainsize 2.0e-5 # Average grain size [m] 2.0e-5
SolidSolutionStrength 0.0 # Strength due to elements in solid solution
### Dislocation glide parameters ###
#per family
Nslip 12 0
slipburgers 2.72e-10 # Burgers vector of slip system [m]
rhoedge0 1.0e12 # Initial edge dislocation density [m/m**3]
rhoedgedip0 1.0 # Initial edged dipole dislocation density [m/m**3]
Qedge 2.725e-19 # Activation energy for dislocation glide [J]
v0 3560.3 # Initial glide velocity [m/s](kmC)
p_slip 0.16 # p-exponent in glide velocity
q_slip 1.00 # q-exponent in glide velocity
u_slip 2.47 # u-exponent of stress pre-factor (kmC)
s_slip 0.97 # self hardening in glide velocity (kmC)
tau_peierls 2.03e9 # peierls stress [Pa]
#hardening
dipoleformationfactor 0 # to have hardening due to dipole formation off
CLambdaSlip 10.0 # Adj. parameter controlling dislocation mean free path
D0 4.0e-5 # Vacancy diffusion prefactor [m**2/s]
Qsd 4.5e-19 # Activation energy for climb [J]
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b]
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
interaction_slipslip 0.2 0.11 0.19 0.15 0.11 0.17

View File

@ -40,12 +40,12 @@ class ASCIItable():
self.__IO__['in'] = name
try:
self.__IO__['out'] = (open(outname,'w') if (not os.path.isfile(outname) \
or os.access( outname, os.W_OK) \
) \
and (not self.__IO__['inPlace'] \
or not os.path.isfile(name) \
or os.access( name, os.W_OK) \
self.__IO__['out'] = (open(outname,'w') if (not os.path.isfile(outname) or
os.access( outname, os.W_OK)
) and
(not self.__IO__['inPlace'] or
not os.path.isfile(name) or
os.access( name, os.W_OK)
) else None) if outname else sys.stdout
except TypeError:
self.__IO__['out'] = outname
@ -272,7 +272,7 @@ class ASCIItable():
for label in labels:
if label is not None:
try:
idx.append(int(label)) # column given as integer number?
idx.append(int(label)-1) # column given as integer number?
except ValueError:
try:
idx.append(self.labels.index(label)) # locate string in label list
@ -283,7 +283,7 @@ class ASCIItable():
idx.append(-1) # not found...
else:
try:
idx = int(labels)
idx = int(labels)-1 # offset for python array indexing
except ValueError:
try:
idx = self.labels.index(labels)
@ -293,7 +293,7 @@ class ASCIItable():
except ValueError:
idx = None if labels is None else -1
return np.array(idx) if isinstance(idx,list) else idx
return np.array(idx) if isinstance(idx,Iterable) else idx
# ------------------------------------------------------------------
def label_dimension(self,
@ -312,7 +312,7 @@ class ASCIItable():
if label is not None:
myDim = -1
try: # column given as number?
idx = int(label)
idx = int(label)-1
myDim = 1 # if found has at least dimension 1
if self.labels[idx].startswith('1_'): # column has multidim indicator?
while idx+myDim < len(self.labels) and self.labels[idx+myDim].startswith("%i_"%(myDim+1)):
@ -331,7 +331,7 @@ class ASCIItable():
dim = -1 # assume invalid label
idx = -1
try: # column given as number?
idx = int(labels)
idx = int(labels)-1
dim = 1 # if found has at least dimension 1
if self.labels[idx].startswith('1_'): # column has multidim indicator?
while idx+dim < len(self.labels) and self.labels[idx+dim].startswith("%i_"%(dim+1)):
@ -345,7 +345,7 @@ class ASCIItable():
while idx+dim < len(self.labels) and self.labels[idx+dim].startswith("%i_"%(dim+1)):
dim += 1 # keep adding while going through object
return np.array(dim) if isinstance(dim,list) else dim
return np.array(dim) if isinstance(dim,Iterable) else dim
# ------------------------------------------------------------------
def label_indexrange(self,

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

After

Width:  |  Height:  |  Size: 34 KiB

View File

@ -0,0 +1,222 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,math
import numpy as np
import scipy.ndimage
from optparse import OptionParser
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
#--------------------------------------------------------------------------------------------------
def cell2node(cellData,grid):
nodeData = 0.0
datalen = np.array(cellData.shape[3:]).prod()
for i in xrange(datalen):
node = scipy.ndimage.convolve(cellData.reshape(tuple(grid)+(datalen,))[...,i],
np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells
mode = 'wrap',
origin = -1, # offset to have cell origin as center
) # now averaged at cell origins
node = np.append(node,node[np.newaxis,0,:,:,...],axis=0) # wrap along z
node = np.append(node,node[:,0,np.newaxis,:,...],axis=1) # wrap along y
node = np.append(node,node[:,:,0,np.newaxis,...],axis=2) # wrap along x
nodeData = node[...,np.newaxis] if i==0 else np.concatenate((nodeData,node[...,np.newaxis]),axis=-1)
return nodeData
#--------------------------------------------------------------------------------------------------
def displacementAvgFFT(F,grid,size,nodal=False,transformed=False):
"""calculate average cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
if nodal:
x, y, z = np.meshgrid(np.linspace(0,size[0],1+grid[0]),
np.linspace(0,size[1],1+grid[1]),
np.linspace(0,size[2],1+grid[2]),
indexing = 'ij')
else:
x, y, z = np.meshgrid(np.linspace(0,size[0],grid[0],endpoint=False),
np.linspace(0,size[1],grid[1],endpoint=False),
np.linspace(0,size[2],grid[2],endpoint=False),
indexing = 'ij')
origCoords = np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
F_fourier = F if transformed else np.fft.rfftn(F,axes=(0,1,2)) # transform or use provided data
Favg = np.real(F_fourier[0,0,0,:,:])/grid.prod() # take zero freq for average
avgDisplacement = np.einsum('ml,ijkl->ijkm',Favg-np.eye(3),origCoords) # dX = Favg.X
return avgDisplacement
#--------------------------------------------------------------------------------------------------
def displacementFluctFFT(F,grid,size,nodal=False,transformed=False):
"""calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
integrator = 0.5j * size / math.pi
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1])),
np.arange(grid[0]//2+1),
indexing = 'ij')
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3)
k_sSquared = np.einsum('...l,...l',k_s,k_s)
k_sSquared[0,0,0] = 1.0 # ignore global average frequency
#--------------------------------------------------------------------------------------------------
# integration in Fourier space
displacement_fourier = -np.einsum('ijkml,ijkl,l->ijkm',
F if transformed else np.fft.rfftn(F,axes=(0,1,2)),
k_s,
integrator,
) / k_sSquared[...,np.newaxis]
#--------------------------------------------------------------------------------------------------
# backtransformation to real space
displacement = np.fft.irfftn(displacement_fourier,grid,axes=(0,1,2))
return cell2node(displacement,grid) if nodal else displacement
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options file[s]', description = """
Add deformed configuration of given initial coordinates.
Operates on periodic three-dimensional x,y,z-ordered data sets.
""", version = scriptID)
parser.add_option('-f', '--defgrad',
dest = 'defgrad',
metavar = 'string',
help = 'column label of deformation gradient [%default]')
parser.add_option('-c', '--coordinates',
dest = 'coords',
metavar = 'string',
help = 'column label of coordinates [%default]')
parser.add_option('--nodal',
dest = 'nodal',
action = 'store_true',
help = 'output nodal (not cell-centered) displacements')
parser.set_defaults(defgrad = 'f',
coords = 'ipinitialcoord',
nodal = False,
)
(options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try: table = damask.ASCIItable(name = name,
outname = (os.path.splitext(name)[0]+
'_nodal'+
os.path.splitext(name)[1]) if (options.nodal and name) else None,
buffered = False)
except: continue
damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
if table.label_dimension(options.defgrad) != 9:
errors.append('deformation gradient "{}" is not a 3x3 tensor.'.format(options.defgrad))
coordDim = table.label_dimension(options.coords)
if not 3 >= coordDim >= 1: errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.coords))
elif coordDim < 3: remarks.append('appending {} dimensions to coordinates "{}"...'.format(3-coordDim,options.coords))
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss=True)
continue
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray([options.defgrad,options.coords])
table.data_rewind()
if len(table.data.shape) < 2: table.data.shape += (1,) # expand to 2D shape
if table.data[:,9:].shape[1] < 3:
table.data = np.hstack((table.data,
np.zeros((table.data.shape[0],
3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# --------------- figure out size and grid ---------------------------------------------------------
coords = [np.unique(table.data[:,9+i]) for i in xrange(3)]
mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 set to smallest among other spacings
N = grid.prod()
if N != len(table.data): errors.append('data count {} does not match grid {}x{}x{}.'.format(N,*grid))
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ process data ------------------------------------------
F_fourier = np.fft.rfftn(table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),axes=(0,1,2)) # perform transform only once...
displacement = displacementFluctFFT(F_fourier,grid,size,options.nodal,transformed=True)
avgDisplacement = displacementAvgFFT (F_fourier,grid,size,options.nodal,transformed=True)
# ------------------------------------------ assemble header ---------------------------------------
if options.nodal:
table.info_clear()
table.labels_clear()
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append((['{}_pos' .format(i+1) for i in xrange(3)] if options.nodal else []) +
['{}_avg({}).{}' .format(i+1,options.defgrad,options.coords) for i in xrange(3)] +
['{}_fluct({}).{}'.format(i+1,options.defgrad,options.coords) for i in xrange(3)] )
table.head_write()
# ------------------------------------------ output data -------------------------------------------
zrange = np.linspace(0,size[2],1+grid[2]) if options.nodal else xrange(grid[2])
yrange = np.linspace(0,size[1],1+grid[1]) if options.nodal else xrange(grid[1])
xrange = np.linspace(0,size[0],1+grid[0]) if options.nodal else xrange(grid[0])
for i,z in enumerate(zrange):
for j,y in enumerate(yrange):
for k,x in enumerate(xrange):
if options.nodal: table.data_clear()
else: table.data_read()
table.data_append([x,y,z] if options.nodal else [])
table.data_append(list(avgDisplacement[i,j,k,:]))
table.data_append(list( displacement[i,j,k,:]))
table.data_write()
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables

View File

@ -5,7 +5,6 @@ import numpy as np
import damask
from optparse import OptionParser
from scipy import spatial
from collections import defaultdict
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
@ -23,7 +22,7 @@ parser.add_option('-r', '--radius',
parser.add_option('-d', '--disorientation',
dest = 'disorientation',
type = 'float', metavar = 'float',
help = 'disorientation threshold per grain [%default] (degrees)')
help = 'disorientation threshold in degrees [%default]')
parser.add_option('-s', '--symmetry',
dest = 'symmetry',
type = 'string', metavar = 'string',
@ -61,7 +60,8 @@ parser.add_option('-p', '--position',
type = 'string', metavar = 'string',
help = 'spatial position of voxel [%default]')
parser.set_defaults(symmetry = 'cubic',
parser.set_defaults(disorientation = 5,
symmetry = 'cubic',
coords = 'pos',
degrees = False,
)
@ -87,15 +87,14 @@ if np.sum(input) != 1: parser.error('needs exactly one input format.')
(options.quaternion,4,'quaternion'),
][np.where(input)[0][0]] # select input label that was requested
toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
cos_disorientation = np.cos(options.disorientation/2.*toRadians)
cos_disorientation = np.cos(np.radians(options.disorientation/2.)) # cos of half the disorientation angle
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
try: table = damask.ASCIItable(name = name,
buffered = False)
except: continue
damask.util.report(scriptName,name)
@ -109,8 +108,10 @@ for name in filenames:
errors = []
remarks = []
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
if not np.all(table.label_dimension(label) == dim): errors.append('input {} does not have dimension {}.'.format(label,dim))
if not 3 >= table.label_dimension(options.coords) >= 1:
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.coords))
if not np.all(table.label_dimension(label) == dim):
errors.append('input {} does not have dimension {}.'.format(label,dim))
else: column = table.label_index(label)
if remarks != []: damask.util.croak(remarks)
@ -122,8 +123,10 @@ for name in filenames:
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append('grainID_{}@{}'.format(label,
options.disorientation if options.degrees else np.degrees(options.disorientation))) # report orientation source and disorientation in degrees
table.labels_append('grainID_{}@{:g}'.format('+'.join(label)
if isinstance(label, (list,tuple))
else label,
options.disorientation)) # report orientation source and disorientation
table.head_write()
# ------------------------------------------ process data ------------------------------------------
@ -162,7 +165,7 @@ for name in filenames:
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'\
%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),np.count_nonzero(memberCounts)))
if inputtype == 'eulers':
o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians,
@ -180,83 +183,50 @@ for name in filenames:
symmetry = options.symmetry).reduced()
matched = False
# check against last matched needs to be really picky. best would be to exclude jumps across the poke (checking distance between last and me?)
# when walking through neighborhood first check whether grainID of that point has already been tested, if yes, skip!
if matchedID != -1: # has matched before?
matched = (o.quaternion.conjugated() * orientations[matchedID].quaternion).w > cos_disorientation
if not matched:
alreadyChecked = {}
candidates = []
bestDisorientation = damask.Quaternion([0,0,0,1]) # initialize to 180 deg rotation as worst case
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
gID = grainID[i]
if gID != -1 and gID not in alreadyChecked: # indexed point belonging to a grain not yet tested?
alreadyChecked[gID] = True # remember not to check again
disorientation = o.disorientation(orientations[gID],SST = False)[0] # compare against other orientation
if disorientation.quaternion.w > cos_disorientation and \
disorientation.quaternion.w >= bestDisorientation.w: # within threshold and betterthan current best?
if disorientation.quaternion.w > cos_disorientation: # within threshold ...
candidates.append(gID) # remember as potential candidate
if disorientation.quaternion.w >= bestDisorientation.w: # ... and better than current best?
matched = True
matchedID = gID # remember that grain
bestDisorientation = disorientation.quaternion
if not matched: # no match -> new grain found
memberCounts += [1] # start new membership counter
if matched: # did match existing grain
memberCounts[matchedID] += 1
if len(candidates) > 1: # ambiguity in grain identification?
largestGrain = sorted(candidates,key=lambda x:memberCounts[x])[-1] # find largest among potential candidate grains
matchedID = largestGrain
for c in [c for c in candidates if c != largestGrain]: # loop over smaller candidates
memberCounts[largestGrain] += memberCounts[c] # reassign member count of smaller to largest
memberCounts[c] = 0
grainID = np.where(np.in1d(grainID,candidates), largestGrain, grainID) # relabel grid points of smaller candidates as largest one
else: # no match -> new grain found
orientations += [o] # initialize with current orientation
memberCounts += [1] # start new membership counter
matchedID = g
g += 1 # increment grain counter
else: # did match existing grain
memberCounts[matchedID] += 1
grainID[p] = matchedID # remember grain index assigned to point
p += 1 # increment point
bg.set_message('identifying similar orientations among {} grains...'.format(len(orientations)))
memberCounts = np.array(memberCounts)
similarOrientations = [[] for i in xrange(len(orientations))]
for i,orientation in enumerate(orientations[:-1]): # compare each identified orientation...
for j in xrange(i+1,len(orientations)): # ...against all others that were defined afterwards
if orientation.disorientation(orientations[j],SST = False)[0].quaternion.w > cos_disorientation: # similar orientations in both grainIDs?
similarOrientations[i].append(j) # remember in upper triangle...
similarOrientations[j].append(i) # ...and lower triangle of matrix
if similarOrientations[i] != []:
bg.set_message('grainID {} is as: {}'.format(i,' '.join(map(str,similarOrientations[i]))))
stillShifting = True
while stillShifting:
stillShifting = False
tick = time.clock()
for p,gID in enumerate(grainID): # walk through all points
if p > 0 and p % 1000 == 0:
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
bg.set_message('(%02i:%02i:%02i) shifting ID of point %i out of %i (grain count %i)...'
%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
if similarOrientations[gID] != []: # orientation of my grainID is similar to someone else?
similarNeighbors = defaultdict(int) # frequency of neighboring grainIDs sharing my orientation
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring point
if grainID[i] in similarOrientations[gID]: # neighboring point shares my orientation?
similarNeighbors[grainID[i]] += 1 # remember its grainID
if similarNeighbors != {}: # found similar orientation(s) in neighborhood
candidates = np.array([gID]+similarNeighbors.keys()) # possible replacement grainIDs for me
grainID[p] = candidates[np.argsort(memberCounts[candidates])[-1]] # adopt ID that is most frequent in overall dataset
memberCounts[gID] -= 1 # my former ID loses one fellow
memberCounts[grainID[p]] += 1 # my new ID gains one fellow
bg.set_message('{}:{} --> {}'.format(p,gID,grainID[p])) # report switch of grainID
stillShifting = True
grainIDs = np.where(np.array(memberCounts) > 0)[0] # identify "live" grain identifiers
packingMap = dict(zip(list(grainIDs),range(len(grainIDs)))) # map to condense into consecutive IDs
table.data_rewind()
outputAlive = True
p = 0
while outputAlive and table.data_read(): # read next data line of ASCII table
table.data_append(1+grainID[p]) # add grain ID
table.data_append(1+packingMap[grainID[p]]) # add (condensed) grain ID
outputAlive = table.data_write() # output processed line
p += 1

View File

@ -239,7 +239,9 @@ for name in filenames:
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['{id}_S[{direction[0]:.1g}_{direction[1]:.1g}_{direction[2]:.1g}]({normal[0]:.1g}_{normal[1]:.1g}_{normal[2]:.1g})'\
table.labels_append(['{id}_'
'S[{direction[0]:.1g}_{direction[1]:.1g}_{direction[2]:.1g}]'
'({normal[0]:.1g}_{normal[1]:.1g}_{normal[2]:.1g})'\
.format( id = i+1,
normal = theNormal,
direction = theDirection,

View File

@ -37,9 +37,13 @@ if options.label is None:
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
outname = options.label+'_averaged_'+name if name else name,
damask.util.croak(name)
try: table = damask.ASCIItable(name = name,
outname = os.path.join(
os.path.split(name)[0],
options.label+'_averaged_'+os.path.split(name)[1]
) if name else name,
buffered = False)
except: continue
damask.util.report(scriptName,name)

142
processing/post/histogram.py Executable file
View File

@ -0,0 +1,142 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys
import numpy as np
from optparse import OptionParser
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Generate histogram of N bins in given data range.
""", version = scriptID)
parser.add_option('-d','--data',
dest = 'data',
type = 'string', metavar = 'string',
help = 'column heading for data')
parser.add_option('-w','--weights',
dest = 'weights',
type = 'string', metavar = 'string',
help = 'column heading for weights')
parser.add_option('--range',
dest = 'range',
type = 'float', nargs = 2, metavar = 'float float',
help = 'data range of histogram [min - max]')
parser.add_option('-N',
dest = 'N',
type = 'int', metavar = 'int',
help = 'number of bins')
parser.add_option('--density',
dest = 'density',
action = 'store_true',
help = 'report probability density')
parser.add_option('--logarithmic',
dest = 'log',
action = 'store_true',
help = 'logarithmically spaced bins')
parser.set_defaults(data = None,
weights = None,
range = None,
N = None,
density = False,
log = False,
)
(options,filenames) = parser.parse_args()
if not options.data: parser.error('no data specified.')
if not options.N: parser.error('no bin number specified.')
if options.log:
def forward(x):
return np.log(x)
def reverse(x):
return np.exp(x)
else:
def forward(x):
return x
def reverse(x):
return x
# --- loop over input files ------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try: table = damask.ASCIItable(name = name,
buffered = False,
readonly = True)
except: continue
damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
if table.label_dimension(options.data) != 1: errors.append('data {} are not scalar.'.format(options.data))
if options.weights and \
table.label_dimension(options.data) != 1: errors.append('weights {} are not scalar.'.format(options.weights))
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# --------------- read data ----------------------------------------------------------------
table.data_readArray([options.data,options.weights])
# --------------- auto range ---------------------------------------------------------------
if options.range is None:
rangeMin,rangeMax = min(table.data[:,0]),max(table.data[:,0])
else:
rangeMin,rangeMax = min(options.range),max(options.range)
# --------------- bin data ----------------------------------------------------------------
count,edges = np.histogram(table.data[:,0],
bins = reverse(forward(rangeMin) + np.arange(options.N+1) *
(forward(rangeMax)-forward(rangeMin))/options.N),
range = (rangeMin,rangeMax),
weights = None if options.weights is None else table.data[:,1],
density = options.density,
)
bincenter = reverse(forward(rangeMin) + (0.5+np.arange(options.N)) *
(forward(rangeMax)-forward(rangeMin))/options.N) # determine center of bins
# ------------------------------------------ assemble header ---------------------------------------
table.info_clear()
table.info_append([scriptID + '\t' + ' '.join(sys.argv[1:]),
scriptID + ':\t' +
'data range {} -- {}'.format(rangeMin,rangeMax) +
(' (log)' if options.log else ''),
])
table.labels_clear()
table.labels_append(['bincenter','count'])
table.head_write()
# ------------------------------------------ output result -----------------------------------------
table.data = np.squeeze(np.dstack((bincenter,count)))
table.data_writeArray()
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables

View File

@ -1,7 +1,7 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys
import os,sys,re
import damask
from optparse import OptionParser
@ -32,13 +32,16 @@ parser.set_defaults(label = [],
(options,filenames) = parser.parse_args()
pattern = [re.compile('^()(.+)$'), # label pattern for scalar
re.compile('^(\d+_)?(.+)$'), # label pattern for multidimension
]
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
try: table = damask.ASCIItable(name = name,
buffered = False)
except: continue
damask.util.report(scriptName,name)
@ -63,8 +66,9 @@ for name in filenames:
for i,index in enumerate(indices):
if index == -1: remarks.append('label {} not present...'.format(options.label[i]))
else:
m = pattern[dimensions[i]>1].match(table.labels[index]) # isolate label name
for j in xrange(dimensions[i]):
table.labels[index+j] = table.labels[index+j].replace(options.label[i],options.substitute[i])
table.labels[index+j] = table.labels[index+j].replace(m.group(2),options.substitute[i]) # replace name with substitute
if remarks != []: damask.util.croak(remarks)
if errors != []:

View File

@ -1,8 +1,9 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,vtk
import os,vtk
import damask
from collections import defaultdict
from optparse import OptionParser
scriptName = os.path.splitext(os.path.basename(__file__))[0]
@ -17,27 +18,38 @@ Add scalar and RGB tuples from ASCIItable to existing VTK point cloud (.vtp).
""", version = scriptID)
parser.add_option('-v', '--vtk', dest='vtk', \
parser.add_option( '--vtk',
dest = 'vtk',
type = 'string', metavar = 'string',
help = 'VTK file name')
parser.add_option( '--inplace',
dest = 'inplace',
action = 'store_true',
help = 'modify VTK file in-place')
parser.add_option('-r', '--render',
dest = 'render',
action = 'store_true',
help = 'open output in VTK render window')
parser.add_option('-s', '--scalar', dest='scalar', action='extend', \
help = 'scalar values')
parser.add_option('-v', '--vector',
dest = 'vector',
action = 'extend', metavar = '<string LIST>',
help = 'vector value label(s)')
parser.add_option('-c', '--color', dest='color', action='extend', \
help = 'RGB color tuples')
parser.set_defaults(scalar = [])
parser.set_defaults(color = [])
parser.set_defaults(scalar = [],
vector = [],
color = [],
inplace = False,
render = False,
)
(options, filenames) = parser.parse_args()
datainfo = { # list of requested labels per datatype
'scalar': {'len':1,
'label':[]},
'color': {'len':3,
'label':[]},
}
if not os.path.exists(options.vtk):
parser.error('VTK file does not exist'); sys.exit()
if not options.vtk: parser.error('No VTK file specified.')
if not os.path.exists(options.vtk): parser.error('VTK file does not exist.')
reader = vtk.vtkXMLPolyDataReader()
reader.SetFileName(options.vtk)
@ -48,69 +60,64 @@ Nvertices = reader.GetNumberOfVerts()
Polydata = reader.GetOutput()
if Npoints != Ncells or Npoints != Nvertices:
parser.error('Number of points, cells, and vertices in VTK differ from each other'); sys.exit()
if options.scalar is not None: datainfo['scalar']['label'] += options.scalar
if options.color is not None: datainfo['color']['label'] += options.color
parser.error('Number of points, cells, and vertices in VTK differ from each other.')
# ------------------------------------------ setup file handles ---------------------------------------
damask.util.croak('{}: {} points, {} vertices, and {} cells...'.format(options.vtk,Npoints,Nvertices,Ncells))
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':sys.stderr, 'croak':sys.stderr})
# --- loop over input files -------------------------------------------------------------------------
#--- loop over input files ------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
if filenames == []: filenames = [None]
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
for name in filenames:
try: table = damask.ASCIItable(name = name,
buffered = False,
readonly = True)
except: continue
damask.util.report(scriptName, name)
# --------------- figure out columns to process
active = {}
column = {}
# --- interpret header ----------------------------------------------------------------------------
array = {}
table.head_read()
for datatype,info in datainfo.items():
for label in info['label']:
foundIt = False
for key in ['1_'+label,label]:
if key in table.labels:
foundIt = True
if datatype not in active: active[datatype] = []
if datatype not in column: column[datatype] = {}
if datatype not in array: array[datatype] = {}
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
if datatype == 'scalar':
array[datatype][label] = vtk.vtkDoubleArray()
array[datatype][label].SetNumberOfComponents(1)
array[datatype][label].SetName(label)
elif datatype == 'color':
array[datatype][label] = vtk.vtkUnsignedCharArray()
array[datatype][label].SetNumberOfComponents(3)
array[datatype][label].SetName(label)
if not foundIt:
file['croak'].write('column %s not found...\n'%label)
remarks = []
errors = []
VTKarray = {}
active = defaultdict(list)
for datatype,dimension,label in [['scalar',1,options.scalar],
['vector',3,options.vector],
['color',3,options.color],
]:
for i,dim in enumerate(table.label_dimension(label)):
me = label[i]
if dim == -1: remarks.append('{} "{}" not found...'.format(datatype,me))
elif dim > dimension: remarks.append('"{}" not of dimension {}...'.format(me,dimension))
else:
remarks.append('adding {} "{}"...'.format(datatype,me))
active[datatype].append(me)
if datatype in ['scalar','vector']: VTKarray[me] = vtk.vtkDoubleArray()
elif datatype == 'color': VTKarray[me] = vtk.vtkUnsignedCharArray()
VTKarray[me].SetNumberOfComponents(dimension)
VTKarray[me].SetName(label[i])
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ process data ---------------------------------------
while table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over scalar,color
for label in labels: # loop over all requested items
theData = table.data[column[datatype][label]:\
column[datatype][label]+datainfo[datatype]['len']] # read strings
if datatype == 'color':
theData = map(lambda x: int(255.*float(x)),theData)
array[datatype][label].InsertNextTuple3(theData[0],theData[1],theData[2],)
elif datatype == 'scalar':
array[datatype][label].InsertNextValue(float(theData[0]))
for me in labels: # loop over all requested items
theData = [table.data[i] for i in table.label_indexrange(me)] # read strings
if datatype == 'color': VTKarray[me].InsertNextTuple3(*map(lambda x: int(255.*float(x)),theData))
elif datatype == 'vector': VTKarray[me].InsertNextTuple3(*map(float,theData))
elif datatype == 'scalar': VTKarray[me].InsertNextValue(float(theData[0]))
table.input_close() # close input ASCII table
@ -118,24 +125,50 @@ for file in files:
for datatype,labels in active.items(): # loop over scalar,color
if datatype == 'color':
Polydata.GetPointData().SetScalars(array[datatype][labels[0]])
Polydata.GetCellData().SetScalars(array[datatype][labels[0]])
for label in labels: # loop over all requested items
Polydata.GetPointData().AddArray(array[datatype][label])
Polydata.GetCellData().AddArray(array[datatype][label])
Polydata.GetPointData().SetScalars(VTKarray[active['color'][0]])
Polydata.GetCellData().SetScalars(VTKarray[active['color'][0]])
for me in labels: # loop over all requested items
Polydata.GetPointData().AddArray(VTKarray[me])
Polydata.GetCellData().AddArray(VTKarray[me])
Polydata.Modified()
if vtk.VTK_MAJOR_VERSION <= 5:
Polydata.Update()
if vtk.VTK_MAJOR_VERSION <= 5: Polydata.Update()
# ------------------------------------------ output result ---------------------------------------
writer = vtk.vtkXMLPolyDataWriter()
writer.SetDataModeToBinary()
writer.SetCompressorTypeToZLib()
writer.SetFileName(os.path.splitext(options.vtk)[0]+'_added.vtp')
if vtk.VTK_MAJOR_VERSION <= 5:
writer.SetInput(Polydata)
else:
writer.SetInputData(Polydata)
writer.Write()
writer = vtk.vtkXMLPolyDataWriter()
writer.SetDataModeToBinary()
writer.SetCompressorTypeToZLib()
writer.SetFileName(os.path.splitext(options.vtk)[0]+('.vtp' if options.inplace else '_added.vtp'))
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(Polydata)
else: writer.SetInputData(Polydata)
writer.Write()
# ------------------------------------------ render result ---------------------------------------
if options.render:
mapper = vtk.vtkDataSetMapper()
mapper.SetInputData(Polydata)
actor = vtk.vtkActor()
actor.SetMapper(mapper)
# Create the graphics structure. The renderer renders into the
# render window. The render window interactor captures mouse events
# and will perform appropriate camera or actor manipulation
# depending on the nature of the events.
ren = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
ren.AddActor(actor)
ren.SetBackground(1, 1, 1)
renWin.SetSize(200, 200)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
iren.Initialize()
renWin.Render()
iren.Start()

View File

@ -83,9 +83,9 @@ damask.util.croak('{}: {} points and {} cells...'.format(options.vtk,Npoints,Nce
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
buffered = False, readonly = True)
try: table = damask.ASCIItable(name = name,
buffered = False,
readonly = True)
except: continue
damask.util.report(scriptName, name)
@ -133,6 +133,8 @@ for name in filenames:
elif datatype == 'vector': VTKarray[me].InsertNextTuple3(*map(float,theData))
elif datatype == 'scalar': VTKarray[me].InsertNextValue(float(theData[0]))
table.input_close() # close input ASCII table
# ------------------------------------------ add data ---------------------------------------
for datatype,labels in active.items(): # loop over scalar,color

View File

@ -18,12 +18,12 @@ Produce a VTK point cloud dataset based on coordinates given in an ASCIItable.
""", version = scriptID)
parser.add_option('-d', '--deformed',
dest = 'deformed',
parser.add_option('-c', '--coordinates',
dest = 'pos',
type = 'string', metavar = 'string',
help = 'deformed coordinate label [%default]')
help = 'coordinate label [%default]')
parser.set_defaults(deformed = 'ipdeformedcoord'
parser.set_defaults(pos = 'pos'
)
(options, filenames) = parser.parse_args()
@ -46,9 +46,9 @@ for name in filenames:
errors = []
remarks = []
coordDim = table.label_dimension(options.deformed)
if not 3 >= coordDim >= 1: errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.deformed))
elif coordDim < 3: remarks.append('appending {} dimensions to coordinates "{}"...'.format(3-coordDim,options.deformed))
coordDim = table.label_dimension(options.pos)
if not 3 >= coordDim >= 1: errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.pos))
elif coordDim < 3: remarks.append('appending {} dimensions to coordinates "{}"...'.format(3-coordDim,options.pos))
if remarks != []: damask.util.croak(remarks)
if errors != []:
@ -58,7 +58,7 @@ for name in filenames:
# ------------------------------------------ process data ---------------------------------------
table.data_readArray(options.deformed)
table.data_readArray(options.pos)
if len(table.data.shape) < 2: table.data.shape += (1,) # expand to 2D shape
if table.data.shape[1] < 3:
table.data = np.hstack((table.data,

View File

@ -38,9 +38,9 @@ parser.set_defaults(position ='ipinitialcoord',
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
buffered = False, readonly = True)
try: table = damask.ASCIItable(name = name,
buffered = False,
readonly = True)
except: continue
damask.util.report(scriptName,name)
@ -48,10 +48,13 @@ for name in filenames:
table.head_read()
remarks = []
errors = []
if table.label_dimension(options.position) != 3:
errors.append('coordinates {} are not a vector.'.format(options.position))
coordDim = table.label_dimension(options.position)
if not 3 >= coordDim >= 1: errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.position))
elif coordDim < 3: remarks.append('appending {} dimensions to coordinates "{}"...'.format(3-coordDim,options.position))
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss=True)
@ -60,6 +63,11 @@ for name in filenames:
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray(options.position)
if len(table.data.shape) < 2: table.data.shape += (1,) # expand to 2D shape
if table.data.shape[1] < 3:
table.data = np.hstack((table.data,
np.zeros((table.data.shape[0],
3-table.data.shape[1]),dtype='f'))) # fill coords up to 3D with zeros
coords = [np.unique(table.data[:,i]) for i in xrange(3)]
if options.mode == 'cell':

View File

@ -4,7 +4,7 @@
import os,sys,math
import numpy as np
import multiprocessing
from optparse import OptionParser
from optparse import OptionParser,OptionGroup
from scipy import spatial
import damask
@ -109,71 +109,83 @@ Generate geometry description and material configuration by standard Voronoi tes
""", version = scriptID)
parser.add_option('-g', '--grid',
dest = 'grid',
type = 'int', nargs = 3, metavar = ' '.join(['int']*3),
help = 'a,b,c grid of hexahedral box [auto]')
parser.add_option('-s', '--size',
dest = 'size',
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
help = 'x,y,z size of hexahedral box [auto]')
parser.add_option('-o', '--origin',
dest = 'origin',
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
help = 'offset from old to new origin of grid')
parser.add_option('-p', '--position',
dest = 'position',
type = 'string', metavar = 'string',
help = 'column label for seed positions [%default]')
parser.add_option('-w', '--weight',
dest = 'weight',
type = 'string', metavar = 'string',
help = 'column label for seed weights [%default]')
parser.add_option('-m', '--microstructure',
dest = 'microstructure',
type = 'string', metavar = 'string',
help = 'column label for seed microstructures [%default]')
parser.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'column label for seed Euler angles [%default]')
parser.add_option('--axes',
dest = 'axes',
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
help = 'orientation coordinate frame in terms of position coordinate frame')
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
parser.add_option('--crystallite',
dest = 'crystallite',
type = 'int', metavar = 'int',
help = 'crystallite index to be used [%default]')
parser.add_option('--phase',
dest = 'phase',
type = 'int', metavar = 'int',
help = 'phase index to be used [%default]')
parser.add_option('-r', '--rnd',
dest = 'randomSeed',
type = 'int', metavar='int',
help = 'seed of random number generator for second phase distribution [%default]')
parser.add_option('--secondphase',
dest = 'secondphase',
type = 'float', metavar= 'float',
help = 'volume fraction of randomly distribute second phase [%default]')
parser.add_option('-l', '--laguerre',
group = OptionGroup(parser, "Tessellation","")
group.add_option('-l', '--laguerre',
dest = 'laguerre',
action = 'store_true',
help = 'use Laguerre (weighted Voronoi) tessellation')
parser.add_option('--cpus',
group.add_option('--cpus',
dest = 'cpus',
type = 'int', metavar = 'int',
help = 'number of parallel processes to use for Laguerre tessellation [%default]')
parser.add_option('--nonperiodic',
group.add_option('--nonperiodic',
dest = 'nonperiodic',
action = 'store_true',
help = 'use nonperiodic tessellation')
parser.add_option_group(group)
group = OptionGroup(parser, "Geometry","")
group.add_option('-g', '--grid',
dest = 'grid',
type = 'int', nargs = 3, metavar = ' '.join(['int']*3),
help = 'a,b,c grid of hexahedral box [auto]')
group.add_option('-s', '--size',
dest = 'size',
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
help = 'x,y,z size of hexahedral box [auto]')
group.add_option('-o', '--origin',
dest = 'origin',
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
help = 'origin of grid')
parser.add_option_group(group)
group = OptionGroup(parser, "Seeds","")
group.add_option('-p', '--position',
dest = 'position',
type = 'string', metavar = 'string',
help = 'column label for seed positions [%default]')
group.add_option('-w', '--weight',
dest = 'weight',
type = 'string', metavar = 'string',
help = 'column label for seed weights [%default]')
group.add_option('-m', '--microstructure',
dest = 'microstructure',
type = 'string', metavar = 'string',
help = 'column label for seed microstructures [%default]')
group.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'column label for seed Euler angles [%default]')
group.add_option('--axes',
dest = 'axes',
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
help = 'orientation coordinate frame in terms of position coordinate frame')
parser.add_option_group(group)
group = OptionGroup(parser, "Configuration","")
group.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
group.add_option('--crystallite',
dest = 'crystallite',
type = 'int', metavar = 'int',
help = 'crystallite index to be used [%default]')
group.add_option('--phase',
dest = 'phase',
type = 'int', metavar = 'int',
help = 'phase index to be used [%default]')
parser.add_option_group(group)
parser.set_defaults(position = 'pos',
weight = 'weight',
microstructure = 'microstructure',
@ -181,24 +193,18 @@ parser.set_defaults(position = 'pos',
homogenization = 1,
crystallite = 1,
phase = 1,
secondphase = 0.0,
cpus = 2,
laguerre = False,
nonperiodic = False,
randomSeed = None,
)
(options,filenames) = parser.parse_args()
if options.secondphase > 1.0 or options.secondphase < 0.0:
parser.error('volume fraction of second phase ({}) out of bounds.'.format(options.secondphase))
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
try: table = damask.ASCIItable(name = name,
outname = os.path.splitext(name)[-2]+'.geom' if name else name,
buffered = False)
except: continue
@ -294,20 +300,11 @@ for name in filenames:
config_header = []
formatwidth = 1+int(math.log10(NgrainIDs))
phase = options.phase * np.ones(NgrainIDs,'i')
if int(options.secondphase*info['microstructures']) > 0:
phase[0:int(options.secondphase*info['microstructures'])] += 1 # alter fraction 'options.secondphase' of used grainIDs
randomSeed = options.randomSeed if options.randomSeed \
else int(os.urandom(4).encode('hex'), 16) # random seed for second phase
np.random.seed(randomSeed)
np.random.shuffle(phase)
config_header += ['# random seed (phase shuffling): {}'.format(randomSeed)]
config_header += ['<microstructure>']
for i,ID in enumerate(grainIDs):
config_header += ['[Grain%s]'%(str(ID).zfill(formatwidth)),
'crystallite %i'%options.crystallite,
'(constituent)\tphase %i\ttexture %s\tfraction 1.0'%(phase[i],str(ID).rjust(formatwidth)),
'(constituent)\tphase %i\ttexture %s\tfraction 1.0'%(options.phase,str(ID).rjust(formatwidth)),
]
if hasEulers:
config_header += ['<texture>']

View File

@ -48,8 +48,11 @@ parser.add_option('-m', '--microstructure',
parser.add_option('-r', '--rnd',
dest = 'randomSeed', type = 'int', metavar = 'int',
help = 'seed of random number generator [%default]')
parser.add_option('--format',
dest = 'format', type = 'string', metavar = 'string',
help = 'number format of output [auto]')
group = OptionGroup(parser, "Laguerre Tessellation Options",
group = OptionGroup(parser, "Laguerre Tessellation",
"Parameters determining shape of weight distribution of seed points"
)
group.add_option('-w', '--weights',
@ -70,8 +73,8 @@ group.add_option('--sigma',
help='standard deviation of normal distribution for weights [%default]')
parser.add_option_group(group)
group = OptionGroup(parser, "Selective Seeding Options",
"More uniform distribution of seed points using Mitchell\'s Best Candidate Algorithm"
group = OptionGroup(parser, "Selective Seeding",
"More uniform distribution of seed points using Mitchell's Best Candidate Algorithm"
)
group.add_option('-s','--selective',
action = 'store_true',
@ -103,6 +106,7 @@ parser.set_defaults(randomSeed = None,
force = False,
distance = 0.2,
numCandidates = 10,
format = None,
)
(options,filenames) = parser.parse_args()
@ -215,7 +219,7 @@ for name in filenames:
# --- write seeds information ------------------------------------------------------------
table.data = seeds
table.data_writeArray()
table.data_writeArray(fmt = options.format)
# --- output finalization --------------------------------------------------------------------------