1. add initial guess and weight to the fitting (nonlinear least square regression);
2. extend the dictionary:fittingCriteria
This commit is contained in:
parent
c24aa71e3c
commit
55445af9bc
|
@ -54,6 +54,9 @@ def stressInvariants(lambdas):
|
||||||
def formatOutput(n, type='%14.6f'):
|
def formatOutput(n, type='%14.6f'):
|
||||||
return ''.join([type for i in xrange(n)])
|
return ''.join([type for i in xrange(n)])
|
||||||
|
|
||||||
|
def get_weight(ndim):
|
||||||
|
#more to do
|
||||||
|
return np.ones(ndim)
|
||||||
# ---------------------------------------------------------------------------------------------
|
# ---------------------------------------------------------------------------------------------
|
||||||
# isotropic yield surfaces
|
# isotropic yield surfaces
|
||||||
# ---------------------------------------------------------------------------------------------
|
# ---------------------------------------------------------------------------------------------
|
||||||
|
@ -69,7 +72,7 @@ def Tresca(sigmas, sigma0):
|
||||||
return r.ravel()
|
return r.ravel()
|
||||||
|
|
||||||
|
|
||||||
def HuberHenckyMises(sigmas, sigma0):
|
def vonMises(sigmas, sigma0):
|
||||||
'''
|
'''
|
||||||
residuum of Huber-Mises-Hencky yield criterion (eq. 2.37)
|
residuum of Huber-Mises-Hencky yield criterion (eq. 2.37)
|
||||||
'''
|
'''
|
||||||
|
@ -112,13 +115,6 @@ def Hosford(sigmas, sigma0, a):
|
||||||
# isotropic yield surfaces
|
# isotropic yield surfaces
|
||||||
# ---------------------------------------------------------------------------------------------
|
# ---------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
def vonMises():
|
|
||||||
'''
|
|
||||||
residuum of von Mises quadratic yield criterion (eq. 2.47, theta = sigma0)
|
|
||||||
'''
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def Hill1948(sigmas, F,G,H,L,M,N):
|
def Hill1948(sigmas, F,G,H,L,M,N):
|
||||||
'''
|
'''
|
||||||
residuum of Hill 1948 quadratic yield criterion (eq. 2.48)
|
residuum of Hill 1948 quadratic yield criterion (eq. 2.48)
|
||||||
|
@ -166,11 +162,22 @@ def Barlat1994(sigmas, sigma0, a):
|
||||||
|
|
||||||
|
|
||||||
fittingCriteria = {
|
fittingCriteria = {
|
||||||
'vonMises':{'fit':np.ones(1,'d'),'err':np.inf},
|
'Tresca': {'fit' :np.ones(1,'d'),'err':np.inf,
|
||||||
'hill48' :{'fit':np.ones(6,'d'),'err':np.inf},
|
'name' :'Tresca',
|
||||||
|
'paras':'Initial yield stress:'},
|
||||||
|
'vonMises':{'fit' :np.ones(1,'d'),'err':np.inf,
|
||||||
|
'name' :'Huber-Mises-Hencky(von Mises)',
|
||||||
|
'paras':'Initial yield stress:'},
|
||||||
|
'Hill48' :{'fit' :np.ones(6,'d'),'err':np.inf,
|
||||||
|
'name' :'Hill1948',
|
||||||
|
'paras':'Normalized [F, G, H, L, M, N]'},
|
||||||
|
'Drucker' :{'fit' :np.ones(2,'d'),'err':np.inf,
|
||||||
|
'name' :'Drucker',
|
||||||
|
'paras':'Initial yield stress, C_D:'},
|
||||||
'worst' :{'err':np.inf},
|
'worst' :{'err':np.inf},
|
||||||
'best' :{'err':np.inf}
|
'best' :{'err':np.inf}
|
||||||
}
|
}
|
||||||
|
|
||||||
thresholdParameter = ['totalshear','equivalentStrain']
|
thresholdParameter = ['totalshear','equivalentStrain']
|
||||||
|
|
||||||
#---------------------------------------------------------------------------------------------------
|
#---------------------------------------------------------------------------------------------------
|
||||||
|
@ -226,11 +233,12 @@ class Criterion(object):
|
||||||
print('fitting to the %s criterion'%name)
|
print('fitting to the %s criterion'%name)
|
||||||
|
|
||||||
def fit(self,stress):
|
def fit(self,stress):
|
||||||
|
global fitResults
|
||||||
if self.name.lower() == 'tresca':
|
if self.name.lower() == 'tresca':
|
||||||
funResidum = Tresca
|
funResidum = Tresca
|
||||||
text = '\nCoefficient of Tresca criterion:\nsigma0: '+formatOutput(1)
|
text = '\nCoefficient of Tresca criterion:\nsigma0: '+formatOutput(1)
|
||||||
elif self.name.lower() == 'vonmises':
|
elif self.name.lower() == 'vonmises':
|
||||||
funResidum = HuberHenckyMises
|
funResidum = vonMises
|
||||||
text = '\nCoefficient of Huber-Mises-Hencky criterion:\nsigma0: '+formatOutput(1)
|
text = '\nCoefficient of Huber-Mises-Hencky criterion:\nsigma0: '+formatOutput(1)
|
||||||
elif self.name.lower() == 'drucker':
|
elif self.name.lower() == 'drucker':
|
||||||
funResidum = Drucker
|
funResidum = Drucker
|
||||||
|
@ -238,10 +246,18 @@ class Criterion(object):
|
||||||
elif self.name.lower() == 'hill48':
|
elif self.name.lower() == 'hill48':
|
||||||
funResidum = Hill1948
|
funResidum = Hill1948
|
||||||
text = '\nCoefficient of Hill1948 criterion:\n[F, G, H, L, M, N]:\n'+formatOutput(6)
|
text = '\nCoefficient of Hill1948 criterion:\n[F, G, H, L, M, N]:\n'+formatOutput(6)
|
||||||
|
|
||||||
|
if fitResults == []:
|
||||||
|
initialguess = fittingCriteria[funResidum.__name__]['fit']
|
||||||
|
else:
|
||||||
|
initialguess = np.array(fitResults[-1])
|
||||||
|
weight = get_weight(np.shape(stress)[1])
|
||||||
try:
|
try:
|
||||||
popt, pcov = \
|
popt, pcov = \
|
||||||
curve_fit(funResidum, stress, np.zeros(np.shape(stress)[1]))
|
curve_fit(funResidum, stress, np.zeros(np.shape(stress)[1]),
|
||||||
|
initialguess, weight)
|
||||||
print (text%popt)
|
print (text%popt)
|
||||||
|
fitResults.append(popt.tolist())
|
||||||
except Exception as detail:
|
except Exception as detail:
|
||||||
print detail
|
print detail
|
||||||
pass
|
pass
|
||||||
|
@ -419,6 +435,7 @@ if not os.path.isfile('material.config'):
|
||||||
|
|
||||||
unitGPa = 10.e8
|
unitGPa = 10.e8
|
||||||
N_simulations=0
|
N_simulations=0
|
||||||
|
fitResults = []
|
||||||
s=threading.Semaphore(1)
|
s=threading.Semaphore(1)
|
||||||
|
|
||||||
stressAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
|
stressAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
|
||||||
|
|
Loading…
Reference in New Issue