1. add initial guess and weight to the fitting (nonlinear least square regression);
2. extend the dictionary:fittingCriteria
This commit is contained in:
parent
c24aa71e3c
commit
55445af9bc
|
@ -35,7 +35,7 @@ def principalStresses(sigmas):
|
|||
for i in xrange(np.shape(sigmas)[1]):
|
||||
eigenvalues = np.linalg.eigvalsh(np.array(sigmas[:,i]).reshape(3,3))
|
||||
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
|
||||
lambdas = np.transpose( lambdas.reshape(np.shape(sigmas)[1],3) )
|
||||
lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3))
|
||||
return lambdas
|
||||
|
||||
def stressInvariants(lambdas):
|
||||
|
@ -54,6 +54,9 @@ def stressInvariants(lambdas):
|
|||
def formatOutput(n, type='%14.6f'):
|
||||
return ''.join([type for i in xrange(n)])
|
||||
|
||||
def get_weight(ndim):
|
||||
#more to do
|
||||
return np.ones(ndim)
|
||||
# ---------------------------------------------------------------------------------------------
|
||||
# isotropic yield surfaces
|
||||
# ---------------------------------------------------------------------------------------------
|
||||
|
@ -69,7 +72,7 @@ def Tresca(sigmas, sigma0):
|
|||
return r.ravel()
|
||||
|
||||
|
||||
def HuberHenckyMises(sigmas, sigma0):
|
||||
def vonMises(sigmas, sigma0):
|
||||
'''
|
||||
residuum of Huber-Mises-Hencky yield criterion (eq. 2.37)
|
||||
'''
|
||||
|
@ -112,13 +115,6 @@ def Hosford(sigmas, sigma0, a):
|
|||
# isotropic yield surfaces
|
||||
# ---------------------------------------------------------------------------------------------
|
||||
|
||||
def vonMises():
|
||||
'''
|
||||
residuum of von Mises quadratic yield criterion (eq. 2.47, theta = sigma0)
|
||||
'''
|
||||
return None
|
||||
|
||||
|
||||
def Hill1948(sigmas, F,G,H,L,M,N):
|
||||
'''
|
||||
residuum of Hill 1948 quadratic yield criterion (eq. 2.48)
|
||||
|
@ -166,11 +162,22 @@ def Barlat1994(sigmas, sigma0, a):
|
|||
|
||||
|
||||
fittingCriteria = {
|
||||
'vonMises':{'fit':np.ones(1,'d'),'err':np.inf},
|
||||
'hill48' :{'fit':np.ones(6,'d'),'err':np.inf},
|
||||
'Tresca': {'fit' :np.ones(1,'d'),'err':np.inf,
|
||||
'name' :'Tresca',
|
||||
'paras':'Initial yield stress:'},
|
||||
'vonMises':{'fit' :np.ones(1,'d'),'err':np.inf,
|
||||
'name' :'Huber-Mises-Hencky(von Mises)',
|
||||
'paras':'Initial yield stress:'},
|
||||
'Hill48' :{'fit' :np.ones(6,'d'),'err':np.inf,
|
||||
'name' :'Hill1948',
|
||||
'paras':'Normalized [F, G, H, L, M, N]'},
|
||||
'Drucker' :{'fit' :np.ones(2,'d'),'err':np.inf,
|
||||
'name' :'Drucker',
|
||||
'paras':'Initial yield stress, C_D:'},
|
||||
'worst' :{'err':np.inf},
|
||||
'best' :{'err':np.inf}
|
||||
}
|
||||
|
||||
thresholdParameter = ['totalshear','equivalentStrain']
|
||||
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
|
@ -226,11 +233,12 @@ class Criterion(object):
|
|||
print('fitting to the %s criterion'%name)
|
||||
|
||||
def fit(self,stress):
|
||||
global fitResults
|
||||
if self.name.lower() == 'tresca':
|
||||
funResidum = Tresca
|
||||
text = '\nCoefficient of Tresca criterion:\nsigma0: '+formatOutput(1)
|
||||
elif self.name.lower() == 'vonmises':
|
||||
funResidum = HuberHenckyMises
|
||||
funResidum = vonMises
|
||||
text = '\nCoefficient of Huber-Mises-Hencky criterion:\nsigma0: '+formatOutput(1)
|
||||
elif self.name.lower() == 'drucker':
|
||||
funResidum = Drucker
|
||||
|
@ -238,10 +246,18 @@ class Criterion(object):
|
|||
elif self.name.lower() == 'hill48':
|
||||
funResidum = Hill1948
|
||||
text = '\nCoefficient of Hill1948 criterion:\n[F, G, H, L, M, N]:\n'+formatOutput(6)
|
||||
|
||||
if fitResults == []:
|
||||
initialguess = fittingCriteria[funResidum.__name__]['fit']
|
||||
else:
|
||||
initialguess = np.array(fitResults[-1])
|
||||
weight = get_weight(np.shape(stress)[1])
|
||||
try:
|
||||
popt, pcov = \
|
||||
curve_fit(funResidum, stress, np.zeros(np.shape(stress)[1]))
|
||||
print (text%popt)
|
||||
popt, pcov = \
|
||||
curve_fit(funResidum, stress, np.zeros(np.shape(stress)[1]),
|
||||
initialguess, weight)
|
||||
print (text%popt)
|
||||
fitResults.append(popt.tolist())
|
||||
except Exception as detail:
|
||||
print detail
|
||||
pass
|
||||
|
@ -419,6 +435,7 @@ if not os.path.isfile('material.config'):
|
|||
|
||||
unitGPa = 10.e8
|
||||
N_simulations=0
|
||||
fitResults = []
|
||||
s=threading.Semaphore(1)
|
||||
|
||||
stressAll=[np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
|
||||
|
|
Loading…
Reference in New Issue