updated restart test to use the new table comparison facilities and check the new basic solver (part 1, there is some problem with renaming)
This commit is contained in:
parent
1e32eb560e
commit
549ea3c1e6
|
@ -214,8 +214,8 @@ class Test():
|
|||
data = [[] for i in xrange(dataLength)]
|
||||
maxError = [0.0 for i in xrange(dataLength)]
|
||||
maxNorm = [0.0 for i in xrange(dataLength)]
|
||||
column = [[1 for i in xrange(dataLength)] for j in xrange(2)]
|
||||
|
||||
column = [[length],[length]]
|
||||
for i in xrange(dataLength):
|
||||
if headings0[i]['shape'] != headings1[i]['shape']:
|
||||
raise Exception('shape mismatch when comparing ', headings0[i]['label'], ' with ', headings1[i]['label'])
|
||||
|
@ -225,7 +225,6 @@ class Test():
|
|||
else:
|
||||
raise Exception('trying to compare ', len(headings0), ' with ', len(headings1), ' data sets')
|
||||
|
||||
|
||||
table0 = damask.ASCIItable(open(file0))
|
||||
table0.head_read()
|
||||
table1 = damask.ASCIItable(open(file1))
|
||||
|
@ -236,7 +235,6 @@ class Test():
|
|||
False:'%s' }[length[i]>1]%headings0[i]['label']
|
||||
key1 = {True :'1_%s',
|
||||
False:'%s' }[length[i]>1]%headings1[i]['label']
|
||||
|
||||
if key0 not in table0.labels:
|
||||
raise Exception('column %s not found in 1. table...\n'%key0)
|
||||
elif key1 not in table1.labels:
|
||||
|
@ -246,6 +244,7 @@ class Test():
|
|||
column[1][i] = table1.labels.index(key1) # remember columns of requested data in second column
|
||||
|
||||
line0 = 0
|
||||
|
||||
while table0.data_read(): # read next data line of ASCII table
|
||||
line0 +=1
|
||||
for i in xrange(dataLength):
|
||||
|
@ -253,6 +252,7 @@ class Test():
|
|||
column[0][i]+length[i]]),'d')
|
||||
maxNorm[i] = max(maxNorm[i],numpy.linalg.norm(numpy.reshape(myData,shape[i])))
|
||||
data[i]=numpy.append(data[i],myData)
|
||||
|
||||
for i in xrange(dataLength):
|
||||
data[i] = numpy.reshape(data[i],[line0,length[i]])
|
||||
if maxNorm[i] == 0.0:
|
||||
|
@ -264,7 +264,6 @@ class Test():
|
|||
for i in xrange(dataLength):
|
||||
myData = numpy.array(map(float,table1.data[column[1][i]:\
|
||||
column[1][i]+length[i]]),'d')
|
||||
|
||||
maxError[i] = max(maxError[i],numpy.linalg.norm(numpy.reshape(myData-data[i][line1,:],shape[i])))
|
||||
line1 +=1
|
||||
|
||||
|
|
Loading…
Reference in New Issue