Added martensite lamellar term to mean free path of slip
This commit is contained in:
parent
b65ccb0181
commit
53ae245e4f
|
@ -34,9 +34,9 @@ module constitutive_dislotwin
|
|||
CONSTITUTIVE_DISLOTWIN_listBasicTransStates = &
|
||||
['stressTransFraction', 'strainTransFraction']
|
||||
|
||||
character(len=17), dimension(4), parameter, private :: &
|
||||
character(len=18), dimension(5), parameter, private :: &
|
||||
CONSTITUTIVE_DISLOTWIN_listDependentSlipStates = &
|
||||
['invLambdaSlip ', 'invLambdaSlipTwin', 'meanFreePathSlip ', 'tauSlipThreshold ']
|
||||
['invLambdaSlip ', 'invLambdaSlipTwin ', 'invLambdaSlipTrans','meanFreePathSlip ', 'tauSlipThreshold ']
|
||||
|
||||
character(len=16), dimension(4), parameter, private :: &
|
||||
CONSTITUTIVE_DISLOTWIN_listDependentTwinStates = &
|
||||
|
@ -114,6 +114,8 @@ module constitutive_dislotwin
|
|||
constitutive_dislotwin_twinsizePerTwinSystem, & !< twin thickness [m] for each twin system and instance
|
||||
constitutive_dislotwin_CLambdaSlipPerSlipFamily, & !< Adj. parameter for distance between 2 forest dislocations for each slip family and instance
|
||||
constitutive_dislotwin_CLambdaSlipPerSlipSystem, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance
|
||||
constitutive_dislotwin_lamellarsizePerTransFamily, & !< martensite lamellar thickness [m] for each trans family and instance
|
||||
constitutive_dislotwin_lamellarsizePerTransSystem, & !< martensite lamellar thickness [m] for each trans system and instance
|
||||
constitutive_dislotwin_interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance
|
||||
constitutive_dislotwin_interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance
|
||||
constitutive_dislotwin_interaction_TwinSlip, & !< coefficients for twin-slip interaction for each interaction type and instance
|
||||
|
@ -322,6 +324,8 @@ subroutine constitutive_dislotwin_init(fileUnit)
|
|||
source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_sbSv(6,6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
|
||||
source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_lamellarsizePerTransFamily(lattice_maxNtransFamily,maxNinstance), &
|
||||
source=0.0_pReal)
|
||||
|
||||
|
||||
rewind(fileUnit)
|
||||
|
@ -545,6 +549,11 @@ subroutine constitutive_dislotwin_init(fileUnit)
|
|||
do j = 1_pInt, Nchunks_TransFamilies
|
||||
constitutive_dislotwin_Ntrans(j,instance) = IO_intValue(line,positions,1_pInt+j)
|
||||
enddo
|
||||
case ('lamellarsize')
|
||||
do j = 1_pInt, Nchunks_TransFamilies
|
||||
tempPerTrans(j) = IO_floatValue(line,positions,1_pInt+j)
|
||||
enddo
|
||||
constitutive_dislotwin_lamellarsizePerTransFamily(1:Nchunks_TransFamilies,instance) = tempPerTrans(1:Nchunks_TransFamilies)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! parameters depending on number of interactions
|
||||
case ('interaction_slipslip','interactionslipslip')
|
||||
|
@ -722,7 +731,8 @@ subroutine constitutive_dislotwin_init(fileUnit)
|
|||
allocate(constitutive_dislotwin_tau_r(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_twinsizePerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance),source=0.0_pReal)
|
||||
|
||||
allocate(constitutive_dislotwin_lamellarsizePerTransSystem(maxTotalNtrans, maxNinstance),source=0.0_pReal)
|
||||
|
||||
allocate(constitutive_dislotwin_interactionMatrix_SlipSlip(maxval(constitutive_dislotwin_totalNslip),& ! slip resistance from slip activity
|
||||
maxval(constitutive_dislotwin_totalNslip),&
|
||||
maxNinstance), source=0.0_pReal)
|
||||
|
@ -943,6 +953,10 @@ subroutine constitutive_dislotwin_init(fileUnit)
|
|||
index_myFamily = sum(constitutive_dislotwin_Ntrans(1:f-1_pInt,instance)) ! index in truncated trans system list
|
||||
transSystemsLoop: do j = 1_pInt,constitutive_dislotwin_Ntrans(f,instance)
|
||||
|
||||
!* Martensite lamellar size
|
||||
constitutive_dislotwin_lamellarsizePerTransSystem(index_myFamily+j,instance) = &
|
||||
constitutive_dislotwin_lamellarsizePerTransFamily(f,instance)
|
||||
|
||||
!* Rotate trans elasticity matrices
|
||||
index_otherFamily = sum(lattice_NtransSystem(1:f-1_pInt,phase)) ! index in full lattice trans list
|
||||
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt
|
||||
|
@ -1038,25 +1052,25 @@ subroutine constitutive_dislotwin_stateInit(ph,instance)
|
|||
forall (i = 1_pInt:ns) &
|
||||
MeanFreePathSlip0(i) = &
|
||||
constitutive_dislotwin_GrainSize(instance)/(1.0_pReal+invLambdaSlip0(i)*constitutive_dislotwin_GrainSize(instance))
|
||||
tempState(5_pInt*ns+3_pInt*nt+2_pInt*nr+1:6_pInt*ns+3_pInt*nt+2_pInt*nr) = MeanFreePathSlip0
|
||||
tempState(6_pInt*ns+3_pInt*nt+2_pInt*nr+1:7_pInt*ns+3_pInt*nt+2_pInt*nr) = MeanFreePathSlip0
|
||||
|
||||
forall (i = 1_pInt:ns) &
|
||||
tauSlipThreshold0(i) = &
|
||||
lattice_mu(ph)*constitutive_dislotwin_burgersPerSlipSystem(i,instance) * &
|
||||
sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_interactionMatrix_SlipSlip(i,1:ns,instance)))
|
||||
|
||||
tempState(6_pInt*ns+4_pInt*nt+2_pInt*nr+1:7_pInt*ns+4_pInt*nt+2_pInt*nr) = tauSlipThreshold0
|
||||
tempState(7_pInt*ns+4_pInt*nt+2_pInt*nr+1:8_pInt*ns+4_pInt*nt+2_pInt*nr) = tauSlipThreshold0
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! initialize dependent twin microstructural variables
|
||||
forall (j = 1_pInt:nt) &
|
||||
MeanFreePathTwin0(j) = constitutive_dislotwin_GrainSize(instance)
|
||||
tempState(6_pInt*ns+3_pInt*nt+2_pInt*nr+1_pInt:6_pInt*ns+4_pInt*nt+2_pInt*nr) = MeanFreePathTwin0
|
||||
tempState(7_pInt*ns+3_pInt*nt+2_pInt*nr+1_pInt:7_pInt*ns+4_pInt*nt+2_pInt*nr) = MeanFreePathTwin0
|
||||
|
||||
forall (j = 1_pInt:nt) &
|
||||
TwinVolume0(j) = &
|
||||
(pi/4.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(j,instance)*MeanFreePathTwin0(j)**(2.0_pReal)
|
||||
tempState(7_pInt*ns+5_pInt*nt+2_pInt*nr+1_pInt:7_pInt*ns+6_pInt*nt+2_pInt*nr) = TwinVolume0
|
||||
tempState(8_pInt*ns+5_pInt*nt+2_pInt*nr+1_pInt:8_pInt*ns+6_pInt*nt+2_pInt*nr) = TwinVolume0
|
||||
|
||||
plasticState(ph)%state0 = spread(tempState,2,size(plasticState(ph)%state(1,:)))
|
||||
|
||||
|
@ -1198,12 +1212,14 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
integer(pInt) :: &
|
||||
instance, &
|
||||
ns,nt,nr,s,t, &
|
||||
ns,nt,nr,s,t,r, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: &
|
||||
sumf,sfe,x0,sumftr
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: fOverStacksize
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNtrans(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
ftransOverLamellarSize
|
||||
|
||||
!* Shortened notation
|
||||
of = mappingConstitutive(1,ipc,ip,el)
|
||||
|
@ -1225,11 +1241,12 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
!* State: 3*ns+2*nt+2*nr+1 : 4*ns+2*nt+2*nr 1/lambda_slip
|
||||
!* State: 4*ns+2*nt+2*nr+1 : 5*ns+2*nt+2*nr 1/lambda_sliptwin
|
||||
!* State: 5*ns+2*nt+2*nr+1 : 5*ns+3*nt+2*nr 1/lambda_twin
|
||||
!* State: 5*ns+3*nt+2*nr+1 : 6*ns+3*nt+2*nr mfp_slip
|
||||
!* State: 6*ns+3*nt+2*nr+1 : 6*ns+4*nt+2*nr mfp_twin
|
||||
!* State: 6*ns+4*nt+2*nr+1 : 7*ns+4*nt+2*nr threshold_stress_slip
|
||||
!* State: 7*ns+4*nt+2*nr+1 : 7*ns+5*nt+2*nr threshold_stress_twin
|
||||
!* State: 7*ns+5*nt+2*nr+1 : 7*ns+6*nt+2*nr twin volume
|
||||
!* State: 5*ns+3*nt+2*nr+1 : 6*ns+3*nt+2*nr 1/lambda_sliptrans
|
||||
!* State: 6*ns+3*nt+2*nr+1 : 7*ns+3*nt+2*nr mfp_slip
|
||||
!* State: 7*ns+3*nt+2*nr+1 : 7*ns+4*nt+2*nr mfp_twin
|
||||
!* State: 7*ns+4*nt+2*nr+1 : 8*ns+4*nt+2*nr threshold_stress_slip
|
||||
!* State: 8*ns+4*nt+2*nr+1 : 8*ns+5*nt+2*nr threshold_stress_twin
|
||||
!* State: 8*ns+5*nt+2*nr+1 : 8*ns+6*nt+2*nr twin volume
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3*ns+1):(3*ns+nt), of)) ! safe for nt == 0
|
||||
|
@ -1246,6 +1263,12 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
forall (t = 1_pInt:nt) &
|
||||
fOverStacksize(t) = &
|
||||
plasticState(ph)%state(3_pInt*ns+t, of)/constitutive_dislotwin_twinsizePerTwinSystem(t,instance)
|
||||
|
||||
!* rescaled trans volume fraction for topology
|
||||
forall (r = 1_pInt:nr) &
|
||||
ftransOverLamellarSize(r) = &
|
||||
(plasticState(ph)%state(3_pInt*ns+2_pInt*nt+r, of)+plasticState(ph)%state(3_pInt*ns+2_pInt*nt+nr+r, of))/&
|
||||
constitutive_dislotwin_lamellarsizePerTransSystem(r,instance)
|
||||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:ns) &
|
||||
|
@ -1268,16 +1291,23 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
plasticState(ph)%state((5_pInt*ns+2_pInt*nt+2_pInt*nr+1_pInt):(5_pInt*ns+3_pInt*nt+2_pInt*nr), of) = &
|
||||
matmul(constitutive_dislotwin_interactionMatrix_TwinTwin(1:nt,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
|
||||
plasticState(ph)%state((5_pInt*ns+3_pInt*nt+2_pInt*nr+1_pInt):(6_pInt*ns+3_pInt*nt+2_pInt*nr), of) = 0.0_pReal
|
||||
if (nr > 0_pInt .and. ns > 0_pInt) &
|
||||
plasticState(ph)%state((5_pInt*ns+3_pInt*nt+2_pInt*nr+1):(6_pInt*ns+3_pInt*nt+2_pInt*nr), of) = &
|
||||
ftransOverLamellarSize(1:nr)/(1.0_pReal-sumftr)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,ns
|
||||
if (nt > 0_pInt) then
|
||||
plasticState(ph)%state(5_pInt*ns+3_pInt*nt+2_pInt*nr+s, of) = &
|
||||
if ((nt > 0_pInt) .or. (nr > 0_pInt)) then
|
||||
plasticState(ph)%state(6_pInt*ns+3_pInt*nt+2_pInt*nr+s, of) = &
|
||||
constitutive_dislotwin_GrainSize(instance)/(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*&
|
||||
(plasticState(ph)%state(3_pInt*ns+2_pInt*nt+2_pInt*nr+s, of) + &
|
||||
plasticState(ph)%state(4_pInt*ns+2_pInt*nt+2_pInt*nr+s, of)))
|
||||
plasticState(ph)%state(4_pInt*ns+2_pInt*nt+2_pInt*nr+s, of) + &
|
||||
plasticState(ph)%state(5_pInt*ns+3_pInt*nt+2_pInt*nr+s, of)))
|
||||
else
|
||||
plasticState(ph)%state(5_pInt*ns+2_pInt*nr+s, of) = &
|
||||
plasticState(ph)%state(6_pInt*ns+s, of) = &
|
||||
constitutive_dislotwin_GrainSize(instance)/&
|
||||
(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*(plasticState(ph)%state(3_pInt*ns+s, of)))
|
||||
endif
|
||||
|
@ -1285,20 +1315,20 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* mean free path between 2 obstacles seen by a growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(6_pInt*ns+3_pInt*nt+2_pInt*nr+t, of) = &
|
||||
plasticState(ph)%state(7_pInt*ns+3_pInt*nt+2_pInt*nr+t, of) = &
|
||||
(constitutive_dislotwin_Cmfptwin(instance)*constitutive_dislotwin_GrainSize(instance))/&
|
||||
(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*plasticState(ph)%state(5_pInt*ns+2_pInt*nt+2_pInt*nr+t, of))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:ns) &
|
||||
plasticState(ph)%state(6_pInt*ns+4_pInt*nt+2_pInt*nr+s, of) = &
|
||||
plasticState(ph)%state(7_pInt*ns+4_pInt*nt+2_pInt*nr+s, of) = &
|
||||
lattice_mu(ph)*constitutive_dislotwin_burgersPerSlipSystem(s,instance)*&
|
||||
sqrt(dot_product((plasticState(ph)%state(1:ns, of)+plasticState(ph)%state(ns+1_pInt:2_pInt*ns, of)),&
|
||||
constitutive_dislotwin_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||||
|
||||
!* threshold stress for growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(7_pInt*ns+4_pInt*nt+2_pInt*nr+t, of) = &
|
||||
plasticState(ph)%state(8_pInt*ns+4_pInt*nt+2_pInt*nr+t, of) = &
|
||||
constitutive_dislotwin_Cthresholdtwin(instance)*&
|
||||
(sfe/(3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,instance))+&
|
||||
3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,instance)*lattice_mu(ph)/&
|
||||
|
@ -1306,9 +1336,9 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* final twin volume after growth
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+2_pInt*nr+t, of) = &
|
||||
plasticState(ph)%state(8_pInt*ns+5_pInt*nt+2_pInt*nr+t, of) = &
|
||||
(pi/4.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,instance)*&
|
||||
plasticState(ph)%state(6_pInt*ns+3_pInt*nt+2_pInt*nr+t, of)**(2.0_pReal)
|
||||
plasticState(ph)%state(7_pInt*ns+3_pInt*nt+2_pInt*nr+t, of)**(2.0_pReal)
|
||||
|
||||
!* equilibrium seperation of partial dislocations
|
||||
do t = 1_pInt,nt
|
||||
|
@ -1435,12 +1465,12 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
|
||||
if((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau_slip(j))-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau_slip(j))- plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau_slip(j))- plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
|
@ -1545,7 +1575,7 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
|
||||
!* Stress ratios
|
||||
if (tau_twin(j) > tol_math_check) then
|
||||
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)/&
|
||||
StressRatio_r = (plasticState(ph)%state(8*ns+4*nt+2*nr+j, of)/&
|
||||
tau_twin(j))**constitutive_dislotwin_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
select case(lattice_structure(ph))
|
||||
|
@ -1566,7 +1596,7 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
end select
|
||||
gdot_twin(j) = &
|
||||
(1.0_pReal-sumf-sumftr)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
plasticState(ph)%state(7*ns+5*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
plasticState(ph)%state(8*ns+5*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
dgdot_dtautwin(j) = ((gdot_twin(j)*constitutive_dislotwin_rPerTwinFamily(f,instance))/tau_twin(j))*StressRatio_r
|
||||
endif
|
||||
|
||||
|
@ -1711,16 +1741,15 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
do i = 1_pInt,constitutive_dislotwin_Nslip(f,instance) ! process each (active) slip system in family
|
||||
j = j+1_pInt
|
||||
|
||||
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
|
||||
if((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau_slip(j))-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau_slip(j))-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
|
@ -1737,7 +1766,7 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Multiplication
|
||||
DotRhoMultiplication(j) = abs(gdot_slip(j))/&
|
||||
(constitutive_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
plasticState(ph)%state(5*ns+3*nt+2*nr+j, of))
|
||||
plasticState(ph)%state(6*ns+3*nt+2*nr+j, of))
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = &
|
||||
constitutive_dislotwin_CEdgeDipMinDistance(instance)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)
|
||||
|
@ -1747,8 +1776,8 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
EdgeDipDistance(j) = &
|
||||
(3.0_pReal*lattice_mu(ph)*constitutive_dislotwin_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(tau_slip(j)))
|
||||
if (EdgeDipDistance(j)>plasticState(ph)%state(5*ns+3*nt+2*nr+j, of)) &
|
||||
EdgeDipDistance(j)=plasticState(ph)%state(5*ns+3*nt+2*nr+j, of)
|
||||
if (EdgeDipDistance(j)>plasticState(ph)%state(6*ns+3*nt+2*nr+j, of)) &
|
||||
EdgeDipDistance(j)=plasticState(ph)%state(6*ns+3*nt+2*nr+j, of)
|
||||
if (EdgeDipDistance(j)<EdgeDipMinDistance) EdgeDipDistance(j)=EdgeDipMinDistance
|
||||
DotRhoDipFormation(j) = &
|
||||
((2.0_pReal*EdgeDipDistance(j))/constitutive_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
|
@ -1805,7 +1834,7 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if (tau_twin(j) > tol_math_check) then
|
||||
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)/&
|
||||
StressRatio_r = (plasticState(ph)%state(8*ns+4*nt+2*nr+j, of)/&
|
||||
tau_twin(j))**constitutive_dislotwin_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
|
||||
|
@ -1827,7 +1856,7 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
end select
|
||||
plasticState(ph)%dotState(3_pInt*ns+j, of) = &
|
||||
(1.0_pReal-sumf-sumftr)*&
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
plasticState(ph)%state(8_pInt*ns+5_pInt*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
!* Dotstate for accumulated shear due to twin
|
||||
plasticState(ph)%dotState(3_pInt*ns+nt+j, of) = plasticState(ph)%dotState(3_pInt*ns+j, of) * &
|
||||
lattice_sheartwin(index_myfamily+i,ph)
|
||||
|
@ -2092,13 +2121,13 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
@ -2125,7 +2154,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + ns
|
||||
case (mfp_slip_ID)
|
||||
constitutive_dislotwin_postResults(c+1_pInt:c+ns) =&
|
||||
plasticState(ph)%state((5_pInt*ns+3_pInt*nt+2*nr+1_pInt):(6_pInt*ns+3_pInt*nt+2*nr), of)
|
||||
plasticState(ph)%state((6_pInt*ns+3_pInt*nt+2*nr+1_pInt):(7_pInt*ns+3_pInt*nt+2*nr), of)
|
||||
c = c + ns
|
||||
case (resolved_stress_slip_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2139,7 +2168,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + ns
|
||||
case (threshold_stress_slip_ID)
|
||||
constitutive_dislotwin_postResults(c+1_pInt:c+ns) = &
|
||||
plasticState(ph)%state((6_pInt*ns+4_pInt*nt+2*nr+1_pInt):(7_pInt*ns+4_pInt*nt+2*nr), of)
|
||||
plasticState(ph)%state((7_pInt*ns+4_pInt*nt+2*nr+1_pInt):(8_pInt*ns+4_pInt*nt+2*nr), of)
|
||||
c = c + ns
|
||||
case (edge_dipole_distance_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2151,7 +2180,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
(3.0_pReal*lattice_mu(ph)*constitutive_dislotwin_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))))
|
||||
constitutive_dislotwin_postResults(c+j)=min(constitutive_dislotwin_postResults(c+j),&
|
||||
plasticState(ph)%state(5*ns+3*nt+2*nr+j, of))
|
||||
plasticState(ph)%state(6*ns+3*nt+2*nr+j, of))
|
||||
! constitutive_dislotwin_postResults(c+j)=max(constitutive_dislotwin_postResults(c+j),&
|
||||
! plasticState(ph)%state(4*ns+2*nt+2*nr+j, of))
|
||||
enddo; enddo
|
||||
|
@ -2201,13 +2230,13 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
@ -2235,7 +2264,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on twin system
|
||||
tau = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
StressRatio_r = (plasticState(ph)%state(7_pInt*ns+4_pInt*nt+2*nr+j, of)/ &
|
||||
StressRatio_r = (plasticState(ph)%state(8_pInt*ns+4_pInt*nt+2*nr+j, of)/ &
|
||||
tau)**constitutive_dislotwin_rPerTwinFamily(f,instance)
|
||||
|
||||
!* Shear rates due to twin
|
||||
|
@ -2259,7 +2288,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
end select
|
||||
constitutive_dislotwin_postResults(c+j) = &
|
||||
(constitutive_dislotwin_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
plasticState(ph)%state(8_pInt*ns+5_pInt*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
endif
|
||||
|
||||
enddo ; enddo
|
||||
|
@ -2271,7 +2300,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + nt
|
||||
case (mfp_twin_ID)
|
||||
constitutive_dislotwin_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
||||
state((6_pInt*ns+3_pInt*nt+2_pInt*nr+1_pInt):(6_pInt*ns+4_pInt*nt+2_pInt*nr), of)
|
||||
state((7_pInt*ns+3_pInt*nt+2_pInt*nr+1_pInt):(7_pInt*ns+4_pInt*nt+2_pInt*nr), of)
|
||||
c = c + nt
|
||||
case (resolved_stress_twin_ID)
|
||||
if (nt > 0_pInt) then
|
||||
|
@ -2286,7 +2315,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + nt
|
||||
case (threshold_stress_twin_ID)
|
||||
constitutive_dislotwin_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
||||
state((7_pInt*ns+4_pInt*nt+2_pInt*nr+1_pInt):(7_pInt*ns+5_pInt*nt+2_pInt*nr), of)
|
||||
state((8_pInt*ns+4_pInt*nt+2_pInt*nr+1_pInt):(8_pInt*ns+5_pInt*nt+2_pInt*nr), of)
|
||||
c = c + nt
|
||||
case (stress_exponent_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2297,13 +2326,13 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(7*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
|
Loading…
Reference in New Issue