from/as tests use rotation-array; separate bounds checks

This commit is contained in:
Philip Eisenlohr 2022-12-05 02:08:31 +00:00 committed by Martin Diehl
parent 1f624ddbf5
commit 5127dfe90b
1 changed files with 148 additions and 98 deletions

View File

@ -7,6 +7,7 @@ from damask import Table
from damask import _rotation from damask import _rotation
from damask import grid_filters from damask import grid_filters
from damask import util from damask import util
from damask import tensor
n = 1000 n = 1000
atol=1.e-4 atol=1.e-4
@ -20,6 +21,16 @@ def ref_path(ref_path_base):
def set_of_rotations(set_of_quaternions): def set_of_rotations(set_of_quaternions):
return [Rotation.from_quaternion(s) for s in set_of_quaternions] return [Rotation.from_quaternion(s) for s in set_of_quaternions]
@pytest.fixture
def multidim_rotations(set_of_quaternions):
L = len(set_of_quaternions)
i = 0
while L%(f:=np.random.randint(2,np.sqrt(L).astype(int))) > 0 and i<L:
i += 1
f = i if i == L else f
return Rotation.from_quaternion(set_of_quaternions.reshape((L//f,f,-1)))
#################################################################################################### ####################################################################################################
# Code below available according to the following conditions # Code below available according to the following conditions
@ -691,117 +702,156 @@ class TestRotation:
def test_to_numpy(self): def test_to_numpy(self):
r = Rotation.from_random(np.random.randint(0,10,4)) r = Rotation.from_random(np.random.randint(0,10,4))
assert np.all(r.as_quaternion() == np.array(r)) assert (r.as_quaternion() == np.array(r)).all()
@pytest.mark.parametrize('degrees',[True,False]) def test_bounds(self,multidim_rotations):
def test_Eulers(self,set_of_rotations,degrees): m = multidim_rotations
for rot in set_of_rotations:
m = rot.as_quaternion()
o = Rotation.from_Euler_angles(rot.as_Euler_angles(degrees),degrees).as_quaternion()
ok = np.allclose(m,o,atol=atol)
if np.isclose(rot.as_quaternion()[0],0.0,atol=atol):
ok |= np.allclose(m*-1.,o,atol=atol)
assert ok and np.isclose(np.linalg.norm(o),1.0), f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('P',[1,-1]) q = m.as_quaternion()
@pytest.mark.parametrize('normalize',[True,False]) assert np.allclose(1.,np.linalg.norm(q,axis=-1))
@pytest.mark.parametrize('degrees',[True,False])
def test_axis_angle(self,set_of_rotations,degrees,normalize,P):
c = np.array([P*-1,P*-1,P*-1,1.])
c[:3] *= 0.9 if normalize else 1.0
for rot in set_of_rotations:
m = rot.as_Euler_angles()
o = Rotation.from_axis_angle(rot.as_axis_angle(degrees)*c,degrees,normalize,P).as_Euler_angles()
u = np.array([np.pi*2,np.pi,np.pi*2])
ok = np.allclose(m,o,atol=atol)
ok |= np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol):
sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]])
ok |= np.isclose(sum_phi[0],sum_phi[1],atol=atol)
assert ok and (np.zeros(3)-1.e-9 <= o).all() \
and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all(), f'{m},{o},{rot.as_quaternion()}'
def test_matrix(self,set_of_rotations): v = m.as_Rodrigues_vector(compact=False)
for rot in set_of_rotations: assert np.allclose(1.,np.linalg.norm(v[...,:3],axis=-1))
m = rot.as_axis_angle()
o = Rotation.from_axis_angle(rot.as_axis_angle()).as_axis_angle()
ok = np.allclose(m,o,atol=atol)
if np.isclose(m[3],np.pi,atol=atol):
ok |= np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol)
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) \
and o[3]<=np.pi+1.e-9, f'{m},{o},{rot.as_quaternion()}'
def test_parallel(self,set_of_rotations): v = m.as_axis_angle(degrees=False)
a = np.array([[1.0,0.0,0.0], assert np.allclose(1.,np.linalg.norm(v[...,:3],axis=-1))
[0.0,1.0,0.0]]) assert (v[...,3] >= 0.).all and (v < np.pi+1.e-9).all()
for rot in set_of_rotations:
assert rot.allclose(Rotation.from_parallel(a,rot.broadcast_to((2,))@a))
@pytest.mark.parametrize('P',[1,-1]) r = m.as_matrix()
@pytest.mark.parametrize('normalize',[True,False]) assert np.allclose(1.,np.linalg.det(r))
def test_Rodrigues(self,set_of_rotations,normalize,P):
c = np.array([P*-1,P*-1,P*-1,1.])
c[:3] *= 0.9 if normalize else 1.0
for rot in set_of_rotations:
m = rot.as_matrix()
o = Rotation.from_Rodrigues_vector(rot.as_Rodrigues_vector()*c,normalize,P).as_matrix()
ok = np.allclose(m,o,atol=atol)
assert ok and np.isclose(np.linalg.det(o),1.0), f'{m},{o}'
def test_Rodrigues_compact(self,set_of_rotations): e = m.as_Euler_angles(degrees=False)
for rot in set_of_rotations: assert (e >= 0.).all and (e < np.pi*np.array([2.,1.,2.])+1.e-9).all()
c = rot.as_Rodrigues_vector(compact=True)
r = rot.as_Rodrigues_vector(compact=False) c = m.as_cubochoric()
assert np.allclose(r[:3]*r[3], c, equal_nan=True) assert (np.linalg.norm(c,ord=np.inf,axis=-1) < np.pi**(2./3.)*0.5+1.e-9).all()
h = m.as_homochoric()
assert (np.linalg.norm(h,axis=-1) < (3.*np.pi/4.)**(1./3.) + 1.e-9).all()
@pytest.mark.parametrize('P',[1,-1])
def test_homochoric(self,set_of_rotations,P):
cutoff = np.tan(np.pi*.5*(1.-1e-4))
for rot in set_of_rotations:
m = rot.as_Rodrigues_vector()
o = Rotation.from_homochoric(rot.as_homochoric()*P*-1,P).as_Rodrigues_vector()
ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol)
ok |= np.isclose(m[3],0.0,atol=atol)
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0), f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('P',[1,-1])
def test_cubochoric(self,set_of_rotations,P):
for rot in set_of_rotations:
m = rot.as_homochoric()
o = Rotation.from_cubochoric(rot.as_cubochoric()*P*-1,P).as_homochoric()
ok = np.allclose(m,o,atol=atol)
assert ok and np.linalg.norm(o) < (3.*np.pi/4.)**(1./3.) + 1.e-9, f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('P',[1,-1])
@pytest.mark.parametrize('accept_homomorph',[True,False]) @pytest.mark.parametrize('accept_homomorph',[True,False])
@pytest.mark.parametrize('normalize',[True,False]) @pytest.mark.parametrize('normalize',[True,False])
def test_quaternion(self,set_of_rotations,P,accept_homomorph,normalize): @pytest.mark.parametrize('P',[1,-1])
c = np.array([1,P*-1,P*-1,P*-1]) * (-1 if accept_homomorph else 1) * (0.9 if normalize else 1.0) def test_quaternion(self,multidim_rotations,accept_homomorph,normalize,P):
for rot in set_of_rotations: c = np.array([1,-P,-P,-P]) * (-1 if accept_homomorph else 1) * (0.9 if normalize else 1.0)
m = rot.as_cubochoric() m = multidim_rotations
o = Rotation.from_quaternion(rot.as_quaternion()*c,accept_homomorph,normalize,P).as_cubochoric() o = Rotation.from_quaternion(m.as_quaternion()*c,
ok = np.allclose(m,o,atol=atol) accept_homomorph=accept_homomorph,
if np.count_nonzero(np.isclose(np.abs(o),np.pi**(2./3.)*.5)): normalize=normalize,
ok |= np.allclose(m*-1.,o,atol=atol) P=P)
assert ok and o.max() < np.pi**(2./3.)*0.5+1.e-9, f'{m},{o},{rot.as_quaternion()}' f = Rotation(np.where(np.isclose(m.as_quaternion()[...,0],0.0,atol=atol)[...,np.newaxis],~o,o))
assert np.logical_or(m.isclose(o,atol=atol),
m.isclose(f,atol=atol)
).all()
@pytest.mark.parametrize('degrees',[True,False])
def test_Eulers(self,multidim_rotations,degrees):
m = multidim_rotations
o = Rotation.from_Euler_angles(m.as_Euler_angles(degrees),
degrees=degrees)
f = Rotation(np.where(np.isclose(m.as_quaternion()[...,0],0.0,atol=atol)[...,np.newaxis],~o,o))
assert np.logical_or(m.isclose(o,atol=atol),
m.isclose(f,atol=atol)
).all()
@pytest.mark.parametrize('degrees',[True,False])
@pytest.mark.parametrize('normalize',[True,False])
@pytest.mark.parametrize('P',[1,-1])
def test_axis_angle(self,multidim_rotations,degrees,normalize,P):
c = np.array([-P,-P,-P,1.])
c[:3] *= 0.9 if normalize else 1.0
m = multidim_rotations
o = Rotation.from_axis_angle(m.as_axis_angle(degrees)*c,
degrees=degrees,
normalize=normalize,
P=P)
f = Rotation(np.where(np.isclose(m.as_quaternion()[...,0],0.0,atol=atol)[...,np.newaxis],~o,o))
assert np.logical_or(m.isclose(o,atol=atol),
m.isclose(f,atol=atol)
).all()
def test_matrix(self,multidim_rotations):
m = multidim_rotations
o = Rotation.from_matrix(m.as_matrix())
f = Rotation(np.where(np.isclose(m.as_quaternion()[...,0],0.0,atol=atol)[...,np.newaxis],~o,o))
assert np.logical_or(m.isclose(o,atol=atol),
m.isclose(f,atol=atol)
).all()
def test_parallel(self,multidim_rotations):
m = multidim_rotations
a = np.broadcast_to(np.array([[1.0,0.0,0.0],
[0.0,1.0,0.0]]),m.shape+(2,3))
assert m.allclose(Rotation.from_parallel(a,m.broadcast_to(m.shape+(2,))@a))
@pytest.mark.parametrize('normalize',[True,False])
@pytest.mark.parametrize('P',[1,-1])
def test_Rodrigues(self,multidim_rotations,normalize,P):
c = np.array([-P,-P,-P,1.])
c[:3] *= 0.9 if normalize else 1.0
m = multidim_rotations
o = Rotation.from_Rodrigues_vector(m.as_Rodrigues_vector()*c,
normalize=normalize,
P=P)
f = Rotation(np.where(np.isclose(m.as_quaternion()[...,0],0.0,atol=atol)[...,np.newaxis],~o,o))
assert np.logical_or(m.isclose(o,atol=atol),
m.isclose(f,atol=atol)
).all()
def test_Rodrigues_compact(self,multidim_rotations):
m = multidim_rotations
c = m.as_Rodrigues_vector(compact=True)
r = m.as_Rodrigues_vector(compact=False)
assert np.allclose(r[...,:3]*r[...,3:], c, equal_nan=True)
@pytest.mark.parametrize('P',[1,-1])
def test_homochoric(self,multidim_rotations,P):
m = multidim_rotations
o = Rotation.from_homochoric(m.as_homochoric()*-P,
P=P)
f = Rotation(np.where(np.isclose(m.as_quaternion()[...,0],0.0,atol=atol)[...,np.newaxis],~o,o))
assert np.logical_or(m.isclose(o,atol=atol),
m.isclose(f,atol=atol)
).all()
@pytest.mark.parametrize('P',[1,-1])
def test_cubochoric(self,multidim_rotations,P):
m = multidim_rotations
o = Rotation.from_cubochoric(m.as_cubochoric()*-P,
P=P)
f = Rotation(np.where(np.isclose(m.as_quaternion()[...,0],0.0,atol=atol)[...,np.newaxis],~o,o))
assert np.logical_or(m.isclose(o,atol=atol),
m.isclose(f,atol=atol)
).all()
@pytest.mark.parametrize('reciprocal',[True,False]) @pytest.mark.parametrize('reciprocal',[True,False])
def test_basis(self,set_of_rotations,reciprocal): def test_basis(self,multidim_rotations,reciprocal):
for rot in set_of_rotations: m = multidim_rotations
om = rot.as_matrix() + 0.1*np.eye(3) r = m.as_matrix()
rot = Rotation.from_basis(om,False,reciprocal=reciprocal) r = np.linalg.inv(tensor.transpose(r)/np.pi) if reciprocal else r
assert np.isclose(np.linalg.det(rot.as_matrix()),1.0) o = Rotation.from_basis(r,
reciprocal=reciprocal)
f = Rotation(np.where(np.isclose(m.as_quaternion()[...,0],0.0,atol=atol)[...,np.newaxis],~o,o))
assert np.logical_or(m.isclose(o,atol=atol),
m.isclose(f,atol=atol)
).all()
@pytest.mark.parametrize('shape',[None,1,(4,4)]) @pytest.mark.parametrize('shape',[None,1,(4,4)])
def test_random(self,shape): def test_random(self,shape):
r = Rotation.from_random(shape) r = Rotation.from_random(shape)
if shape is None: assert r.shape == () if shape is None else (1,) if shape == 1 else shape
assert r.shape == ()
elif shape == 1:
assert r.shape == (1,)
else:
assert r.shape == shape
@pytest.mark.parametrize('shape',[None,5,(4,6)]) @pytest.mark.parametrize('shape',[None,5,(4,6)])
def test_equal(self,shape): def test_equal(self,shape):
@ -947,13 +997,13 @@ class TestRotation:
p = np.random.rand(n,3) p = np.random.rand(n,3)
o = Rotation._get_pyramid_order(p,direction) o = Rotation._get_pyramid_order(p,direction)
for i,o_i in enumerate(o): for i,o_i in enumerate(o):
assert np.all(o_i==Rotation._get_pyramid_order(p[i],direction)) assert (o_i==Rotation._get_pyramid_order(p[i],direction)).all()
def test_pyramid_invariant(self): def test_pyramid_invariant(self):
a = np.random.rand(n,3) a = np.random.rand(n,3)
f = Rotation._get_pyramid_order(a,'forward') f = Rotation._get_pyramid_order(a,'forward')
b = Rotation._get_pyramid_order(a,'backward') b = Rotation._get_pyramid_order(a,'backward')
assert np.all(np.take_along_axis(np.take_along_axis(a,f,-1),b,-1) == a) assert (np.take_along_axis(np.take_along_axis(a,f,-1),b,-1) == a).all()
@pytest.mark.parametrize('data',[np.random.rand(5,3), @pytest.mark.parametrize('data',[np.random.rand(5,3),