in kinetics: non schmid stresses only influence peierls mechanism, but not solid solution hardening; as a result the derivative of the velocity with respect to the resolved stress has to be split into a Schmid and a non-Schmid part
This commit is contained in:
parent
ec377a6e8e
commit
4f8664baa3
|
@ -1545,7 +1545,8 @@ endsubroutine
|
|||
!*********************************************************************
|
||||
!* calculates kinetics *
|
||||
!*********************************************************************
|
||||
subroutine constitutive_nonlocal_kinetics(v, dv_dtau, tau, tauThreshold, c, Temperature, g, ip, el)
|
||||
subroutine constitutive_nonlocal_kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, &
|
||||
tauThreshold, c, Temperature, g, ip, el)
|
||||
|
||||
use debug, only: debug_level, &
|
||||
debug_constitutive, &
|
||||
|
@ -1567,23 +1568,23 @@ integer(pInt), intent(in) :: g, & !< curre
|
|||
c !< dislocation character (1:edge, 2:screw)
|
||||
real(pReal), intent(in) :: Temperature !< temperature
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
|
||||
intent(in) :: tau, & !< resolved external shear stress (for bcc this already contains non Schmid effects)
|
||||
intent(in) :: tau, & !< resolved external shear stress (without non Schmid effects)
|
||||
tauNS, & !< resolved external shear stress (including non Schmid effects)
|
||||
tauThreshold !< threshold shear stress
|
||||
|
||||
!*** output variables
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
|
||||
intent(out) :: v !< velocity
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
|
||||
intent(out) :: dv_dtau !< velocity derivative with respect to resolved shear stress
|
||||
intent(out) :: v, & !< velocity
|
||||
dv_dtau, & !< velocity derivative with respect to resolved shear stress (without non Schmid contributions)
|
||||
dv_dtauNS !< velocity derivative with respect to resolved shear stress (including non Schmid contributions)
|
||||
|
||||
!*** local variables
|
||||
integer(pInt) :: instance, & !< current instance of this plasticity
|
||||
ns, & !< short notation for the total number of active slip systems
|
||||
s !< index of my current slip system
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
|
||||
tauEff !< effective shear stress
|
||||
real(pReal) tauRel_P, &
|
||||
tauRel_S, &
|
||||
tauEff, & !< effective shear stress
|
||||
tPeierls, & !< waiting time in front of a peierls barriers
|
||||
tSolidSolution, & !< waiting time in front of a solid solution obstacle
|
||||
vViscous, & !< viscous glide velocity
|
||||
|
@ -1607,30 +1608,31 @@ real(pReal) tauRel_P, &
|
|||
instance = phase_plasticityInstance(material_phase(g,ip,el))
|
||||
ns = totalNslip(instance)
|
||||
|
||||
tauEff = abs(tau) - tauThreshold
|
||||
|
||||
v = 0.0_pReal
|
||||
dv_dtau = 0.0_pReal
|
||||
dv_dtauNS = 0.0_pReal
|
||||
|
||||
|
||||
if (Temperature > 0.0_pReal) then
|
||||
do s = 1_pInt,ns
|
||||
if (tauEff(s) > 0.0_pReal) then
|
||||
if (abs(tau(s)) > tauThreshold(s)) then
|
||||
|
||||
!* Peierls contribution
|
||||
!* Effective stress includes non Schmid constributions
|
||||
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
|
||||
|
||||
tauEff = max(0.0_pReal, abs(tauNS(s)) - tauThreshold(s)) ! ensure that the effective stress is positive
|
||||
meanfreepath_P = burgers(s,instance)
|
||||
jumpWidth_P = burgers(s,instance)
|
||||
activationLength_P = doublekinkwidth(instance) * burgers(s,instance)
|
||||
activationVolume_P = activationLength_P * jumpWidth_P * burgers(s,instance)
|
||||
criticalStress_P = peierlsStress(s,c,instance)
|
||||
activationEnergy_P = criticalStress_P * activationVolume_P
|
||||
tauRel_P = min(1.0_pReal, tauEff(s) / criticalStress_P) ! ensure that the activation probability cannot become greater than one
|
||||
tauRel_P = min(1.0_pReal, tauEff / criticalStress_P) ! ensure that the activation probability cannot become greater than one
|
||||
tPeierls = 1.0_pReal / fattack(instance) &
|
||||
* exp(activationEnergy_P / (KB * Temperature) &
|
||||
* (1.0_pReal - tauRel_P**pParam(instance))**qParam(instance))
|
||||
if (tauEff(s) < criticalStress_P) then
|
||||
if (tauEff < criticalStress_P) then
|
||||
dtPeierls_dtau = tPeierls * pParam(instance) * qParam(instance) * activationVolume_P / (KB * Temperature) &
|
||||
* (1.0_pReal - tauRel_P**pParam(instance))**(qParam(instance)-1.0_pReal) &
|
||||
* tauRel_P**(pParam(instance)-1.0_pReal)
|
||||
|
@ -1642,17 +1644,18 @@ if (Temperature > 0.0_pReal) then
|
|||
!* Contribution from solid solution strengthening
|
||||
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
|
||||
|
||||
tauEff = abs(tau(s)) - tauThreshold(s)
|
||||
meanfreepath_S = burgers(s,instance) / sqrt(solidSolutionConcentration(instance))
|
||||
jumpWidth_S = solidSolutionSize(instance) * burgers(s,instance)
|
||||
activationLength_S = burgers(s,instance) / sqrt(solidSolutionConcentration(instance))
|
||||
activationVolume_S = activationLength_S * jumpWidth_S * burgers(s,instance)
|
||||
activationEnergy_S = solidSolutionEnergy(instance)
|
||||
criticalStress_S = activationEnergy_S / activationVolume_S
|
||||
tauRel_S = min(1.0_pReal, tauEff(s) / criticalStress_S) ! ensure that the activation probability cannot become greater than one
|
||||
tauRel_S = min(1.0_pReal, tauEff / criticalStress_S) ! ensure that the activation probability cannot become greater than one
|
||||
tSolidSolution = 1.0_pReal / fattack(instance) &
|
||||
* exp(activationEnergy_S / (KB * Temperature) &
|
||||
* (1.0_pReal - tauRel_S**pParam(instance))**qParam(instance))
|
||||
if (tauEff(s) < criticalStress_S) then
|
||||
if (tauEff < criticalStress_S) then
|
||||
dtSolidSolution_dtau = tSolidSolution * pParam(instance) * qParam(instance) &
|
||||
* activationVolume_S / (KB * Temperature) &
|
||||
* (1.0_pReal - tauRel_S**pParam(instance))**(qParam(instance)-1.0_pReal) &
|
||||
|
@ -1664,8 +1667,9 @@ if (Temperature > 0.0_pReal) then
|
|||
|
||||
!* viscous glide velocity
|
||||
|
||||
tauEff = abs(tau(s)) - tauThreshold(s)
|
||||
mobility = burgers(s,instance) / viscosity(instance)
|
||||
vViscous = mobility * tauEff(s)
|
||||
vViscous = mobility * tauEff
|
||||
|
||||
|
||||
!* Mean velocity results from waiting time at peierls barriers and solid solution obstacles with respective meanfreepath of
|
||||
|
@ -1674,11 +1678,9 @@ if (Temperature > 0.0_pReal) then
|
|||
|
||||
v(s) = sign(1.0_pReal,tau(s)) &
|
||||
/ (tPeierls / meanfreepath_P + tSolidSolution / meanfreepath_S + 1.0_pReal / vViscous)
|
||||
dv_dtau(s) = v(s) * v(s) &
|
||||
* (dtPeierls_dtau / meanfreepath_P &
|
||||
+ dtSolidSolution_dtau / meanfreepath_S &
|
||||
+ 1.0_pReal / (mobility * tauEff(s)*tauEff(s)))
|
||||
|
||||
dv_dtau(s) = v(s) * v(s) * (dtSolidSolution_dtau / meanfreepath_S &
|
||||
+ mobility / (vViscous * vViscous))
|
||||
dv_dtauNS(s) = v(s) * v(s) * dtPeierls_dtau / meanfreepath_P
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
|
@ -1691,10 +1693,12 @@ endif
|
|||
write(6,*)
|
||||
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_kinetics at el ip g',el,ip,g
|
||||
write(6,*)
|
||||
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauThreshold / MPa', tauThreshold / 1e6_pReal
|
||||
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tau / MPa', tau / 1e6_pReal
|
||||
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauEff / MPa', tauEff / 1e6_pReal
|
||||
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauNS / MPa', tauNS / 1e6_pReal
|
||||
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> v / 1e-3m/s', v * 1e3
|
||||
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtau', dv_dtau
|
||||
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtauNS', dv_dtauNS
|
||||
endif
|
||||
#endif
|
||||
|
||||
|
@ -1760,10 +1764,11 @@ real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,e
|
|||
rhoSgl !< single dislocation densities (including blocked)
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
|
||||
v, & !< velocity
|
||||
tau, & !< resolved shear stress including non Schmid and backstress terms
|
||||
dgdot_dtau, & !< derivative of the shear rate with respect to the shear stress
|
||||
dv_dtau !< velocity derivative with respect to the shear stress
|
||||
tauNS, & !< resolved shear stress including non Schmid and backstress terms
|
||||
dv_dtau, & !< velocity derivative with respect to the shear stress
|
||||
dv_dtauNS !< velocity derivative with respect to the shear stress
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
|
||||
tau, & !< resolved shear stress including backstress terms
|
||||
gdotTotal, & !< shear rate
|
||||
tauBack, & !< back stress from dislocation gradients on same slip system
|
||||
tauThreshold !< threshold shear stress
|
||||
|
@ -1799,26 +1804,31 @@ tauThreshold = state%p(iTauF(1:ns,myInstance))
|
|||
|
||||
do s = 1_pInt,ns
|
||||
sLattice = slipSystemLattice(s,myInstance)
|
||||
tau(s,1:2) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,myStructure))
|
||||
if (tau(s,1) > 0.0_pReal) then
|
||||
tau(s,3) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,1,s,myInstance))
|
||||
tau(s,4) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,3,s,myInstance))
|
||||
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,myStructure))
|
||||
tauNS(s,1) = tau(s)
|
||||
tauNS(s,2) = tau(s)
|
||||
if (tau(s) > 0.0_pReal) then
|
||||
tauNS(s,3) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,1,s,myInstance))
|
||||
tauNS(s,4) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,3,s,myInstance))
|
||||
else
|
||||
tau(s,3) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,2,s,myInstance))
|
||||
tau(s,4) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,4,s,myInstance))
|
||||
tauNS(s,3) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,2,s,myInstance))
|
||||
tauNS(s,4) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,4,s,myInstance))
|
||||
endif
|
||||
forall (t = 1_pInt:4_pInt) &
|
||||
tau(s,t) = tau(s,t) + tauBack(s) ! add backstress
|
||||
enddo
|
||||
forall (t = 1_pInt:4_pInt) &
|
||||
tauNS(1:ns,t) = tauNS(1:ns,t) + tauBack ! add backstress
|
||||
tau = tau + tauBack ! add backstress
|
||||
|
||||
|
||||
!*** get dislocation velocity and its tangent and store the velocity in the state array
|
||||
|
||||
! edges
|
||||
call constitutive_nonlocal_kinetics(v(1:ns,1), dv_dtau(1:ns,1), tau(1:ns,1), tauThreshold(1:ns), &
|
||||
call constitutive_nonlocal_kinetics(v(1:ns,1), dv_dtau(1:ns,1), dv_dtauNS(1:ns,1), &
|
||||
tau(1:ns), tauNS(1:ns,1), tauThreshold(1:ns), &
|
||||
1_pInt, Temperature, g, ip, el)
|
||||
v(1:ns,2) = v(1:ns,1)
|
||||
dv_dtau(1:ns,2) = dv_dtau(1:ns,1)
|
||||
dv_dtauNS(1:ns,2) = dv_dtauNS(1:ns,1)
|
||||
state%p(iV(1:ns,2,myInstance)) = v(1:ns,1)
|
||||
|
||||
!screws
|
||||
|
@ -1826,11 +1836,13 @@ if (lattice_NnonSchmid(myStructure) == 0_pInt) then
|
|||
forall(t = 3_pInt:4_pInt)
|
||||
v(1:ns,t) = v(1:ns,1)
|
||||
dv_dtau(1:ns,t) = dv_dtau(1:ns,1)
|
||||
dv_dtauNS(1:ns,t) = dv_dtauNS(1:ns,1)
|
||||
state%p(iV(1:ns,t,myInstance)) = v(1:ns,1)
|
||||
endforall
|
||||
else ! take non-Schmid contributions into account
|
||||
do t = 3_pInt,4_pInt
|
||||
call constitutive_nonlocal_kinetics(v(1:ns,t), dv_dtau(1:ns,t), tau(1:ns,t), tauThreshold(1:ns), &
|
||||
call constitutive_nonlocal_kinetics(v(1:ns,t), dv_dtau(1:ns,t), dv_dtauNS(1:ns,t), &
|
||||
tau(1:ns), tauNS(1:ns,t), tauThreshold(1:ns), &
|
||||
2_pInt , Temperature, g, ip, el)
|
||||
state%p(iV(1:ns,t,myInstance)) = v(1:ns,t)
|
||||
enddo
|
||||
|
@ -1843,32 +1855,36 @@ forall (s = 1_pInt:ns, t = 5_pInt:8_pInt, rhoSgl(s,t) * v(s,t-4_pInt) < 0.0_pRea
|
|||
rhoSgl(s,t-4_pInt) = rhoSgl(s,t-4_pInt) + abs(rhoSgl(s,t))
|
||||
|
||||
|
||||
!*** Calculation of gdot and its tangent
|
||||
|
||||
gdotTotal = sum(rhoSgl(1:ns,1:4) * v, 2) * burgers(1:ns,myInstance)
|
||||
forall (t = 1_pInt:4_pInt) &
|
||||
dgdot_dtau(1:ns,t) = rhoSgl(1:ns,t) * dv_dtau(1:ns,t) * burgers(1:ns,myInstance)
|
||||
|
||||
|
||||
!*** Calculation of Lp and its tangent
|
||||
|
||||
gdotTotal = sum(rhoSgl(1:ns,1:4) * v, 2) * burgers(1:ns,myInstance)
|
||||
|
||||
do s = 1_pInt,ns
|
||||
sLattice = slipSystemLattice(s,myInstance)
|
||||
Lp = Lp + gdotTotal(s) * lattice_Sslip(1:3,1:3,1,sLattice,myStructure)
|
||||
if (tau(s,1) > 0.0_pReal) then
|
||||
|
||||
! Schmid contributions to tangent
|
||||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
|
||||
+ dgdot_dtau(s,1) * lattice_Sslip(i,j,1,sLattice,myStructure) * lattice_Sslip(k,l,1,sLattice,myStructure) &
|
||||
+ dgdot_dtau(s,2) * lattice_Sslip(i,j,1,sLattice,myStructure) * lattice_Sslip(k,l,1,sLattice,myStructure) &
|
||||
+ dgdot_dtau(s,3) * lattice_Sslip(i,j,1,sLattice,myStructure) * nonSchmidProjection(k,l,1,s,myInstance) &
|
||||
+ dgdot_dtau(s,4) * lattice_Sslip(i,j,1,sLattice,myStructure) * nonSchmidProjection(k,l,3,s,myInstance)
|
||||
+ lattice_Sslip(i,j,1,sLattice,myStructure) * lattice_Sslip(k,l,1,sLattice,myStructure) &
|
||||
* sum(rhoSgl(s,1:4) * dv_dtau(s,1:4)) * burgers(s,myInstance)
|
||||
|
||||
! non Schmid contributions to tangent
|
||||
if (tau(s) > 0.0_pReal) then
|
||||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
|
||||
+ lattice_Sslip(i,j,1,sLattice,myStructure) &
|
||||
* ( nonSchmidProjection(k,l,1,s,myInstance) * rhoSgl(s,3) * dv_dtauNS(s,3) &
|
||||
+ nonSchmidProjection(k,l,3,s,myInstance) * rhoSgl(s,4) * dv_dtauNS(s,4) ) &
|
||||
* burgers(s,myInstance)
|
||||
else
|
||||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
|
||||
+ dgdot_dtau(s,1) * lattice_Sslip(i,j,1,sLattice,myStructure) * lattice_Sslip(k,l,1,sLattice,myStructure) &
|
||||
+ dgdot_dtau(s,2) * lattice_Sslip(i,j,1,sLattice,myStructure) * lattice_Sslip(k,l,1,sLattice,myStructure) &
|
||||
+ dgdot_dtau(s,3) * lattice_Sslip(i,j,1,sLattice,myStructure) * nonSchmidProjection(k,l,2,s,myInstance) &
|
||||
+ dgdot_dtau(s,4) * lattice_Sslip(i,j,1,sLattice,myStructure) * nonSchmidProjection(k,l,4,s,myInstance)
|
||||
+ lattice_Sslip(i,j,1,sLattice,myStructure) &
|
||||
* ( nonSchmidProjection(k,l,2,s,myInstance) * rhoSgl(s,3) * dv_dtauNS(s,3) &
|
||||
+ nonSchmidProjection(k,l,4,s,myInstance) * rhoSgl(s,4) * dv_dtauNS(s,4) ) &
|
||||
* burgers(s,myInstance)
|
||||
endif
|
||||
enddo
|
||||
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
|
||||
|
@ -2331,11 +2347,11 @@ rhoDotMultiplication = 0.0_pReal
|
|||
if (myStructure == 2_pInt) then ! BCC
|
||||
forall (s = 1:ns, sum(abs(v(s,1:4))) > 0.0_pReal)
|
||||
rhoDotMultiplication(s,1:2) = sum(abs(gdot(s,3:4))) / burgers(s,myInstance) & ! assuming double-cross-slip of screws to be decisive for multiplication
|
||||
* sqrt(rhoForest(s)) / lambda0(s,myInstance) !& ! mean free path
|
||||
!* sum(abs(v(s,3:4))) / sum(abs(v(s,1:4))) ! ratio of screw to overall velocity determines edge generation
|
||||
* sqrt(rhoForest(s)) / lambda0(s,myInstance) ! & ! mean free path
|
||||
! * 2.0_pReal * sum(abs(v(s,3:4))) / sum(abs(v(s,1:4))) ! ratio of screw to overall velocity determines edge generation
|
||||
rhoDotMultiplication(s,3:4) = sum(abs(gdot(s,3:4))) / burgers(s,myInstance) & ! assuming double-cross-slip of screws to be decisive for multiplication
|
||||
* sqrt(rhoForest(s)) / lambda0(s,myInstance) !& ! mean free path
|
||||
!* sum(abs(v(s,1:2))) / sum(abs(v(s,1:4))) ! ratio of edge to overall velocity determines screw generation
|
||||
* sqrt(rhoForest(s)) / lambda0(s,myInstance) ! & ! mean free path
|
||||
! * 2.0_pReal * sum(abs(v(s,1:2))) / sum(abs(v(s,1:4))) ! ratio of edge to overall velocity determines screw generation
|
||||
endforall
|
||||
|
||||
else ! ALL OTHER STRUCTURES
|
||||
|
|
Loading…
Reference in New Issue