using converged dislocation velocity (from last subinc)
This commit is contained in:
parent
c7e3ac28f6
commit
4f4c6c5949
|
@ -227,6 +227,7 @@ module subroutine plastic_nonlocal_init
|
|||
|
||||
allocate(param(maxNinstances))
|
||||
allocate(state(maxNinstances))
|
||||
allocate(state0(maxNinstances))
|
||||
allocate(dotState(maxNinstances))
|
||||
allocate(deltaState(maxNinstances))
|
||||
allocate(microstructure(maxNinstances))
|
||||
|
@ -1373,8 +1374,8 @@ module subroutine plastic_nonlocal_dotState(Mp, Fe, Fp, Temperature, &
|
|||
my_rhoSgl !< single dislocation densities of central ip (positive/negative screw and edge without dipoles)
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),4) :: &
|
||||
v, & !< current dislocation glide velocity
|
||||
my_v, & !< dislocation glide velocity of central ip
|
||||
neighbor_v, & !< dislocation glide velocity of enighboring ip
|
||||
v0, &
|
||||
neighbor_v0, & !< dislocation glide velocity of enighboring ip
|
||||
gdot !< shear rates
|
||||
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el)))) :: &
|
||||
tau, & !< current resolved shear stress
|
||||
|
@ -1491,6 +1492,9 @@ module subroutine plastic_nonlocal_dotState(Mp, Fe, Fp, Temperature, &
|
|||
* sqrt(stt%rho_forest(:,o)) / prm%lambda0 / prm%burgers(1:ns), 2, 4)
|
||||
endif isBCC
|
||||
|
||||
forall (s = 1:ns, t = 1:4)
|
||||
v0(s,t) = plasticState(p)%state0(iV(s,t,instance),o)
|
||||
endforall
|
||||
|
||||
!****************************************************************************
|
||||
!*** calculate dislocation fluxes (only for nonlocal plasticity)
|
||||
|
@ -1499,14 +1503,14 @@ module subroutine plastic_nonlocal_dotState(Mp, Fe, Fp, Temperature, &
|
|||
|
||||
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
|
||||
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
|
||||
.and. prm%CFLfactor * abs(v) * timestep &
|
||||
.and. prm%CFLfactor * abs(v0) * timestep &
|
||||
> IPvolume(ip,el) / maxval(IParea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
|
||||
#ifdef DEBUG
|
||||
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0) then
|
||||
write(6,'(a,i5,a,i2)') '<< CONST >> CFL condition not fullfilled at el ',el,' ip ',ip
|
||||
write(6,'(a,e10.3,a,e10.3)') '<< CONST >> velocity is at ', &
|
||||
maxval(abs(v), abs(gdot) > 0.0_pReal &
|
||||
.and. prm%CFLfactor * abs(v) * timestep &
|
||||
maxval(abs(v0), abs(gdot) > 0.0_pReal &
|
||||
.and. prm%CFLfactor * abs(v0) * timestep &
|
||||
> IPvolume(ip,el) / maxval(IParea(:,ip,el))), &
|
||||
' at a timestep of ',timestep
|
||||
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
|
||||
|
@ -1561,7 +1565,7 @@ module subroutine plastic_nonlocal_dotState(Mp, Fe, Fp, Temperature, &
|
|||
!* compatibility
|
||||
|
||||
considerEnteringFlux = .false.
|
||||
neighbor_v = 0.0_pReal ! needed for check of sign change in flux density below
|
||||
neighbor_v0 = 0.0_pReal ! needed for check of sign change in flux density below
|
||||
neighbor_rhoSgl = 0.0_pReal
|
||||
if (neighbor_n > 0) then
|
||||
if (phase_plasticity(material_phaseAt(1,neighbor_el)) == PLASTICITY_NONLOCAL_ID &
|
||||
|
@ -1571,7 +1575,7 @@ module subroutine plastic_nonlocal_dotState(Mp, Fe, Fp, Temperature, &
|
|||
|
||||
enteringFlux: if (considerEnteringFlux) then
|
||||
forall (s = 1:ns, t = 1:4)
|
||||
neighbor_v(s,t) = plasticState(np)%state(iV (s,t,neighbor_instance),no)
|
||||
neighbor_v0(s,t) = plasticState(np)%state0(iV (s,t,neighbor_instance),no)
|
||||
neighbor_rhoSgl(s,t) = max(plasticState(np)%state(iRhoU(s,t,neighbor_instance),no), &
|
||||
0.0_pReal)
|
||||
endforall
|
||||
|
@ -1589,9 +1593,9 @@ module subroutine plastic_nonlocal_dotState(Mp, Fe, Fp, Temperature, &
|
|||
do t = 1,4
|
||||
c = (t + 1) / 2
|
||||
topp = t + mod(t,2) - mod(t+1,2)
|
||||
if (neighbor_v(s,t) * math_inner(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
|
||||
.and. v(s,t) * neighbor_v(s,t) >= 0.0_pReal ) then ! ... only if no sign change in flux density
|
||||
lineLength = neighbor_rhoSgl(s,t) * neighbor_v(s,t) &
|
||||
if (neighbor_v0(s,t) * math_inner(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
|
||||
.and. v0(s,t) * neighbor_v0(s,t) >= 0.0_pReal ) then ! ... only if no sign change in flux density
|
||||
lineLength = neighbor_rhoSgl(s,t) * neighbor_v0(s,t) &
|
||||
* math_inner(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
|
||||
where (compatibility(c,1:ns,s,n,ip,el) > 0.0_pReal) & ! positive compatibility...
|
||||
rhoDotFlux(1:ns,t) = rhoDotFlux(1:ns,t) &
|
||||
|
@ -1623,7 +1627,6 @@ module subroutine plastic_nonlocal_dotState(Mp, Fe, Fp, Temperature, &
|
|||
|
||||
leavingFlux: if (considerLeavingFlux) then
|
||||
my_rhoSgl = rhoSgl
|
||||
my_v = v
|
||||
|
||||
normal_me2neighbor_defConf = math_det33(Favg) &
|
||||
* matmul(math_inv33(transpose(Favg)), &
|
||||
|
@ -1635,18 +1638,18 @@ module subroutine plastic_nonlocal_dotState(Mp, Fe, Fp, Temperature, &
|
|||
do s = 1,ns
|
||||
do t = 1,4
|
||||
c = (t + 1) / 2
|
||||
if (my_v(s,t) * math_inner(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
|
||||
if (my_v(s,t) * neighbor_v(s,t) >= 0.0_pReal) then ! no sign change in flux density
|
||||
if (v0(s,t) * math_inner(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
|
||||
if (v0(s,t) * neighbor_v0(s,t) >= 0.0_pReal) then ! no sign change in flux density
|
||||
transmissivity = sum(compatibility(c,1:ns,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
|
||||
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
|
||||
transmissivity = 0.0_pReal
|
||||
endif
|
||||
lineLength = my_rhoSgl(s,t) * my_v(s,t) &
|
||||
lineLength = my_rhoSgl(s,t) * v0(s,t) &
|
||||
* math_inner(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of mobiles that wants to leave through this interface
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / IPvolume(ip,el) ! subtract dislocation flux from current type
|
||||
rhoDotFlux(s,t+4) = rhoDotFlux(s,t+4) &
|
||||
+ lineLength / IPvolume(ip,el) * (1.0_pReal - transmissivity) &
|
||||
* sign(1.0_pReal, my_v(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
|
||||
* sign(1.0_pReal, v0(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
|
Loading…
Reference in New Issue