next round in modularization
This commit is contained in:
parent
9c7a826f00
commit
4ed68bb4ae
|
@ -78,7 +78,8 @@ program DAMASK_spectral_Driver
|
|||
restartInc
|
||||
|
||||
use numerics, only: &
|
||||
rotation_tol
|
||||
rotation_tol, &
|
||||
myspectralsolver
|
||||
|
||||
use homogenization, only: &
|
||||
materialpoint_sizeResults, &
|
||||
|
@ -109,10 +110,8 @@ program DAMASK_spectral_Driver
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables related to information from load case and geom file
|
||||
real(pReal), dimension(9) :: &
|
||||
temp_valueVector !> temporarily from loadcase file when reading in tensors
|
||||
logical, dimension(9) :: &
|
||||
temp_maskVector !> temporarily from loadcase file when reading in tensors
|
||||
real(pReal), dimension(9) :: temp_valueVector !> temporarily from loadcase file when reading in tensors
|
||||
logical, dimension(9) :: temp_maskVector !> temporarily from loadcase file when reading in tensors
|
||||
integer(pInt), parameter :: maxNchunksLoadcase = (1_pInt + 9_pInt)*3_pInt +& ! deformation, rotation, and stress
|
||||
(1_pInt + 1_pInt)*5_pInt +& ! time, (log)incs, temp, restartfrequency, and outputfrequency
|
||||
1_pInt, & ! dropguessing
|
||||
|
@ -147,7 +146,7 @@ program DAMASK_spectral_Driver
|
|||
call DAMASK_interface_init
|
||||
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') ' <<<+- DAMASK_spectral init -+>>>'
|
||||
write(6,'(a)') ' <<<+- DAMASK_spectral_Driver init -+>>>'
|
||||
write(6,'(a)') ' $Id$'
|
||||
#include "compilation_info.f90"
|
||||
write(6,'(a)') ' Working Directory: ',trim(getSolverWorkingDirectoryName())
|
||||
|
@ -343,7 +342,15 @@ print*, 'my Unit closed'
|
|||
if (debugGeneral) write(6,'(a)') 'Header of result file written out'
|
||||
endif
|
||||
|
||||
call Basic_init()
|
||||
select case (myspectralsolver)
|
||||
|
||||
case (DAMASK_spectral_SolverBasic_label)
|
||||
call basic_init()
|
||||
|
||||
case (DAMASK_spectral_SolverAL_label)
|
||||
call AL_init()
|
||||
|
||||
end select
|
||||
|
||||
!##################################################################################################
|
||||
! Loop over loadcases defined in the currentLoadcase file
|
||||
|
@ -390,7 +397,10 @@ print*, 'my Unit closed'
|
|||
write(6,'(a)') '##################################################################'
|
||||
write(6,'(A,I5.5,A,es12.5)') 'Increment ', totalIncsCounter, ' Time ',time
|
||||
|
||||
solres =basic_solution (&
|
||||
select case (myspectralsolver)
|
||||
|
||||
case (DAMASK_spectral_SolverBasic_label)
|
||||
solres = basic_solution (&
|
||||
guessmode,timeinc,timeinc_old, &
|
||||
P_BC = bc(currentLoadcase)%stress, &
|
||||
F_BC = bc(currentLoadcase)%deformation, &
|
||||
|
@ -398,6 +408,18 @@ print*, 'my Unit closed'
|
|||
mask_stressVector = bc(currentLoadcase)%maskStressVector, &
|
||||
velgrad = bc(currentLoadcase)%velGradApplied, &
|
||||
rotation_BC = bc(currentLoadcase)%rotation)
|
||||
|
||||
case (DAMASK_spectral_SolverAL_label)
|
||||
solres = AL_solution (&
|
||||
guessmode,timeinc,timeinc_old, &
|
||||
P_BC = bc(currentLoadcase)%stress, &
|
||||
F_BC = bc(currentLoadcase)%deformation, &
|
||||
! temperature_bc = bc(currentLoadcase)%temperature, &
|
||||
mask_stressVector = bc(currentLoadcase)%maskStressVector, &
|
||||
velgrad = bc(currentLoadcase)%velGradApplied, &
|
||||
rotation_BC = bc(currentLoadcase)%rotation)
|
||||
|
||||
end select
|
||||
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
|
@ -420,6 +442,15 @@ print*, 'my Unit closed'
|
|||
|
||||
enddo incLooping
|
||||
enddo loadCaseLooping
|
||||
select case (myspectralsolver)
|
||||
|
||||
case (DAMASK_spectral_SolverBasic_label)
|
||||
call basic_destroy()
|
||||
|
||||
case (DAMASK_spectral_SolverAL_label)
|
||||
call AL_destroy()
|
||||
|
||||
end select
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '##################################################################'
|
||||
write(6,'(i6.6,a,i6.6,a,f5.1,a)') convergedCounter, ' out of ', &
|
||||
|
|
|
@ -1,6 +1,263 @@
|
|||
module DAMASK_spectral_SolverAL
|
||||
use DAMASK_spectral_Utilities
|
||||
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
|
||||
|
||||
use DAMASK_spectral_Utilities
|
||||
|
||||
use math
|
||||
|
||||
use mesh, only : &
|
||||
mesh_spectral_getResolution, &
|
||||
mesh_spectral_getDimension
|
||||
|
||||
implicit none
|
||||
|
||||
character (len=*), parameter, public :: &
|
||||
DAMASK_spectral_SolverAL_label = 'AL'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! common pointwise data
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc, F_lambda, F_lambda_lastInc, P
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
|
||||
real(pReal), dimension(:,:,:), allocatable :: temperature
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress, stiffness and compliance average etc.
|
||||
real(pReal), dimension(3,3) :: &
|
||||
F_aim = math_I3, &
|
||||
F_aim_lastInc = math_I3, &
|
||||
P_av
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
C_ref = 0.0_pReal, &
|
||||
C = 0.0_pReal
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! solution state
|
||||
|
||||
contains
|
||||
|
||||
subroutine AL_init()
|
||||
|
||||
use IO, only: &
|
||||
IO_read_JobBinaryFile, &
|
||||
IO_write_JobBinaryFile
|
||||
|
||||
use FEsolving, only: &
|
||||
restartInc
|
||||
|
||||
end module DAMASK_spectral_SolverAL
|
||||
use DAMASK_interface, only: &
|
||||
getSolverJobName
|
||||
|
||||
implicit none
|
||||
|
||||
integer(pInt) :: i, j, k
|
||||
res = mesh_spectral_getResolution()
|
||||
geomdim = mesh_spectral_getDimension()
|
||||
|
||||
allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
|
||||
allocate (temperature( res(1), res(2),res(3)), source = 0.0_pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! init fields
|
||||
if (restartInc == 1_pInt) then ! no deformation (no restart)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F(i,j,k,1:3,1:3) = math_I3
|
||||
F_lastInc(i,j,k,1:3,1:3) = math_I3
|
||||
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) &
|
||||
- geomdim/real(2_pInt*res,pReal)
|
||||
enddo; enddo; enddo
|
||||
elseif (restartInc > 1_pInt) then ! using old values from file
|
||||
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
|
||||
restartInc - 1_pInt,' from file'
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
|
||||
trim(getSolverJobName()),size(F))
|
||||
read (777,rec=1) F
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',&
|
||||
trim(getSolverJobName()),size(F_lastInc))
|
||||
read (777,rec=1) F_lastInc
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim))
|
||||
read (777,rec=1) F_aim
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc))
|
||||
read (777,rec=1) F_aim_lastInc
|
||||
close (777)
|
||||
|
||||
coordinates = 0.0 ! change it later!!!
|
||||
endif
|
||||
|
||||
call constitutiveResponse(coordinates,F,F_lastInc,temperature,0.0_pReal,&
|
||||
P,C,P_av,.false.,math_I3)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! reference stiffness
|
||||
if (restartInc == 1_pInt) then
|
||||
C_ref = C
|
||||
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
|
||||
write (777,rec=1) C_ref
|
||||
close(777)
|
||||
elseif (restartInc > 1_pInt) then
|
||||
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
|
||||
read (777,rec=1) C_ref
|
||||
close (777)
|
||||
endif
|
||||
|
||||
call Utilities_Init(C_ref)
|
||||
|
||||
end subroutine AL_init
|
||||
|
||||
type(solutionState) function AL_solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,mask_stressVector,velgrad,rotation_BC)
|
||||
|
||||
use numerics, only: &
|
||||
itmax,&
|
||||
itmin
|
||||
|
||||
use IO, only: &
|
||||
IO_write_JobBinaryFile
|
||||
|
||||
use FEsolving, only: &
|
||||
restartWrite
|
||||
|
||||
implicit none
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! input data for solution
|
||||
|
||||
real(pReal), intent(in) :: timeinc, timeinc_old
|
||||
real(pReal), intent(in) :: guessmode
|
||||
logical, intent(in) :: velgrad
|
||||
real(pReal), dimension(3,3), intent(in) :: P_BC,F_BC,rotation_BC
|
||||
logical, dimension(9), intent(in) :: mask_stressVector
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! loop variables, convergence etc.
|
||||
|
||||
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
||||
real(pReal), dimension(3,3) :: temp33_Real
|
||||
real(pReal), dimension(3,3,3,3) :: S
|
||||
real(pReal), dimension(3,3) :: mask_stress, &
|
||||
mask_defgrad, &
|
||||
deltaF_aim, &
|
||||
F_aim_lab, &
|
||||
F_aim_lab_lastIter
|
||||
real(pReal) :: err_div, err_stress
|
||||
integer(pInt) :: iter
|
||||
integer(pInt) :: i, j, k
|
||||
logical :: ForwardData
|
||||
real(pReal) :: defgradDet
|
||||
real(pReal) :: defgradDetMax, defgradDetMin
|
||||
|
||||
mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
|
||||
mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
|
||||
|
||||
if (restartWrite) then
|
||||
write(6,'(a)') 'writing converged results for restart'
|
||||
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_lastInc)) ! writing deformation gradient field to file
|
||||
write (777,rec=1) F_LastInc
|
||||
close (777)
|
||||
call IO_write_jobBinaryFile(777,'C',size(C))
|
||||
write (777,rec=1) C
|
||||
close(777)
|
||||
endif
|
||||
|
||||
ForwardData = .True.
|
||||
if (velgrad) then ! calculate deltaF_aim from given L and current F
|
||||
deltaF_aim = timeinc * mask_defgrad * math_mul33x33(F_BC, F_aim)
|
||||
else ! deltaF_aim = fDot *timeinc where applicable
|
||||
deltaF_aim = timeinc * mask_defgrad * F_BC
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! winding forward of deformation aim in loadcase system
|
||||
temp33_Real = F_aim
|
||||
F_aim = F_aim &
|
||||
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
|
||||
+ deltaF_aim
|
||||
F_aim_lastInc = temp33_Real
|
||||
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! update local deformation gradient and coordinates
|
||||
deltaF_aim = math_rotate_backward33(deltaF_aim,rotation_BC)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
temp33_Real = F(i,j,k,1:3,1:3)
|
||||
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
|
||||
+ guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))*timeinc/timeinc_old& ! guessing...
|
||||
+ (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
|
||||
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
|
||||
enddo; enddo; enddo
|
||||
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),& ! calculate current coordinates
|
||||
1.0_pReal,F_lastInc,coordinates)
|
||||
|
||||
iter = 0_pInt
|
||||
S = S_lastInc(rotation_BC,mask_stressVector,C)
|
||||
|
||||
convergenceLoop: do while((iter < itmax .and. (any([err_div ,err_stress] > 1.0_pReal)))&
|
||||
.or. iter < itmin)
|
||||
|
||||
iter = iter + 1_pInt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! report begin of new iteration
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax
|
||||
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
|
||||
math_transpose33(F_aim)
|
||||
F_aim_lab_lastIter = math_rotate_backward33(F_aim,rotation_BC)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! evaluate constitutive response
|
||||
call constitutiveResponse(coordinates,F,F_lastInc,temperature,timeinc,&
|
||||
P,C,P_av,ForwardData,rotation_BC)
|
||||
ForwardData = .False.
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress BC handling
|
||||
if(any(mask_stressVector)) then ! calculate stress BC if applied
|
||||
err_stress = BCcorrection(mask_stressVector,P_BC,P_av,F_aim,S)
|
||||
else
|
||||
err_stress = 0.0_pReal
|
||||
endif
|
||||
|
||||
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! updated deformation gradient
|
||||
field_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = P
|
||||
err_div = convolution(.True.,F_aim_lab_lastIter - F_aim_lab, C_ref)
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3) ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
|
||||
enddo; enddo; enddo
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate bounds of det(F) and report
|
||||
if(debugGeneral) then
|
||||
defgradDetMax = -huge(1.0_pReal)
|
||||
defgradDetMin = +huge(1.0_pReal)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
defgradDet = math_det33(F(i,j,k,1:3,1:3))
|
||||
defgradDetMax = max(defgradDetMax,defgradDet)
|
||||
defgradDetMin = min(defgradDetMin,defgradDet)
|
||||
enddo; enddo; enddo
|
||||
|
||||
write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
|
||||
write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
|
||||
endif
|
||||
enddo convergenceLoop
|
||||
|
||||
end function AL_solution
|
||||
|
||||
subroutine AL_destroy()
|
||||
|
||||
implicit none
|
||||
|
||||
call Utilities_destroy()
|
||||
|
||||
end subroutine AL_destroy
|
||||
|
||||
end module DAMASK_spectral_SolverAL
|
||||
|
|
|
@ -1,11 +1,112 @@
|
|||
module DAMASK_spectral_SolverBasic
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
|
||||
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
|
||||
|
||||
use DAMASK_spectral_Utilities
|
||||
|
||||
use math
|
||||
|
||||
use mesh, only : &
|
||||
mesh_spectral_getResolution, &
|
||||
mesh_spectral_getDimension
|
||||
|
||||
implicit none
|
||||
|
||||
character (len=*), parameter, public :: &
|
||||
DAMASK_spectral_SolverBasic_label = 'basic'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! common pointwise data
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc, P
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
|
||||
real(pReal), dimension(:,:,:), allocatable :: temperature
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress, stiffness and compliance average etc.
|
||||
real(pReal), dimension(3,3) :: &
|
||||
F_aim = math_I3, &
|
||||
F_aim_lastInc = math_I3, &
|
||||
P_av
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
C_ref = 0.0_pReal, &
|
||||
C = 0.0_pReal
|
||||
|
||||
|
||||
contains
|
||||
|
||||
subroutine Basic_Init()
|
||||
call Utilities_Init()
|
||||
end subroutine basic_Init
|
||||
subroutine basic_init()
|
||||
|
||||
use IO, only: &
|
||||
IO_read_JobBinaryFile, &
|
||||
IO_write_JobBinaryFile
|
||||
|
||||
use FEsolving, only: &
|
||||
restartInc
|
||||
|
||||
use DAMASK_interface, only: &
|
||||
getSolverJobName
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i,j,k
|
||||
|
||||
res = mesh_spectral_getResolution()
|
||||
geomdim = mesh_spectral_getDimension()
|
||||
|
||||
allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
|
||||
allocate (temperature( res(1), res(2),res(3)), source = 0.0_pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! init fields
|
||||
if (restartInc == 1_pInt) then ! no deformation (no restart)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F(i,j,k,1:3,1:3) = math_I3
|
||||
F_lastInc(i,j,k,1:3,1:3) = math_I3
|
||||
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) &
|
||||
- geomdim/real(2_pInt*res,pReal)
|
||||
enddo; enddo; enddo
|
||||
elseif (restartInc > 1_pInt) then ! using old values from file
|
||||
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
|
||||
restartInc - 1_pInt,' from file'
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
|
||||
trim(getSolverJobName()),size(F))
|
||||
read (777,rec=1) F
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',&
|
||||
trim(getSolverJobName()),size(F_lastInc))
|
||||
read (777,rec=1) F_lastInc
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim))
|
||||
read (777,rec=1) F_aim
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc))
|
||||
read (777,rec=1) F_aim_lastInc
|
||||
close (777)
|
||||
|
||||
coordinates = 0.0 ! change it later!!!
|
||||
endif
|
||||
|
||||
call constitutiveResponse(coordinates,F,F_lastInc,temperature,0.0_pReal,&
|
||||
P,C,P_av,.false.,math_I3)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! reference stiffness
|
||||
if (restartInc == 1_pInt) then
|
||||
C_ref = C
|
||||
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
|
||||
write (777,rec=1) C_ref
|
||||
close(777)
|
||||
elseif (restartInc > 1_pInt) then
|
||||
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
|
||||
read (777,rec=1) C_ref
|
||||
close (777)
|
||||
endif
|
||||
|
||||
call Utilities_Init(C_ref)
|
||||
|
||||
end subroutine basic_init
|
||||
|
||||
type(solutionState) function basic_solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,mask_stressVector,velgrad,rotation_BC)
|
||||
|
||||
|
@ -19,45 +120,34 @@ type(solutionState) function basic_solution(guessmode,timeinc,timeinc_old,P_BC,F
|
|||
use FEsolving, only: &
|
||||
restartWrite
|
||||
|
||||
|
||||
|
||||
implicit none
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! input data for solution
|
||||
|
||||
real(pReal), intent(in) :: timeinc, timeinc_old
|
||||
real(pReal), intent(in) :: guessmode
|
||||
logical, intent(in) :: velgrad
|
||||
logical, intent(in) :: velgrad
|
||||
real(pReal), dimension(3,3), intent(in) :: P_BC,F_BC,rotation_BC
|
||||
logical, dimension(9), intent(in) :: mask_stressVector
|
||||
|
||||
|
||||
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
real(pReal), dimension(3,3) :: temp33_Real ! compliance and stiffness in matrix notation
|
||||
|
||||
|
||||
|
||||
real(pReal), dimension(3,3,3,3) :: S
|
||||
real(pReal), dimension(3,3) :: &
|
||||
mask_stress, &
|
||||
mask_defgrad, &
|
||||
deltaF_aim, &
|
||||
F_aim_lab, &
|
||||
F_aim_lab_lastIter
|
||||
logical, dimension(9), intent(in) :: mask_stressVector
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! loop variables, convergence etc.
|
||||
real(pReal) :: err_div, err_stress
|
||||
|
||||
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
||||
real(pReal), dimension(3,3) :: temp33_Real
|
||||
real(pReal), dimension(3,3,3,3) :: S
|
||||
real(pReal), dimension(3,3) :: mask_stress, &
|
||||
mask_defgrad, &
|
||||
deltaF_aim, &
|
||||
F_aim_lab, &
|
||||
F_aim_lab_lastIter
|
||||
real(pReal) :: err_div, err_stress
|
||||
integer(pInt) :: iter
|
||||
integer(pInt) :: i, j, k
|
||||
logical :: ForwardResults
|
||||
real(pReal) :: defgradDet
|
||||
real(pReal) :: defgradDetMax, defgradDetMin
|
||||
logical :: ForwardData
|
||||
real(pReal) :: defgradDet
|
||||
real(pReal) :: defgradDetMax, defgradDetMin
|
||||
|
||||
mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
|
||||
mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
|
||||
|
@ -72,7 +162,7 @@ real(pReal), dimension(3,3) :: &
|
|||
close(777)
|
||||
endif
|
||||
|
||||
ForwardResults = .True.
|
||||
ForwardData = .True.
|
||||
if (velgrad) then ! calculate deltaF_aim from given L and current F
|
||||
deltaF_aim = timeinc * mask_defgrad * math_mul33x33(F_BC, F_aim)
|
||||
else ! deltaF_aim = fDot *timeinc where applicable
|
||||
|
@ -102,7 +192,8 @@ real(pReal), dimension(3,3) :: &
|
|||
1.0_pReal,F_lastInc,coordinates)
|
||||
|
||||
iter = 0_pInt
|
||||
S = S_lastInc(rotation_BC,mask_stressVector)
|
||||
S = S_lastInc(rotation_BC,mask_stressVector,C)
|
||||
|
||||
convergenceLoop: do while((iter < itmax .and. (any([err_div ,err_stress] > 1.0_pReal)))&
|
||||
.or. iter < itmin)
|
||||
|
||||
|
@ -118,23 +209,24 @@ S = S_lastInc(rotation_BC,mask_stressVector)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! evaluate constitutive response
|
||||
|
||||
call constitutiveResponse(ForwardResults,timeInc)
|
||||
ForwardResults = .False.
|
||||
call constitutiveResponse(coordinates,F,F_lastInc,temperature,timeinc,&
|
||||
P,C,P_av,ForwardData,rotation_BC)
|
||||
ForwardData = .False.
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress BC handling
|
||||
if(any(mask_stressVector)) then ! calculate stress BC if applied
|
||||
err_stress = BCcorrection(mask_stressVector,P_BC,S)
|
||||
else
|
||||
err_stress = 0.0_pReal
|
||||
endif
|
||||
if(any(mask_stressVector)) then ! calculate stress BC if applied
|
||||
err_stress = BCcorrection(mask_stressVector,P_BC,P_av,F_aim,S)
|
||||
else
|
||||
err_stress = 0.0_pReal
|
||||
endif
|
||||
|
||||
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! updated deformation gradient
|
||||
field_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = P
|
||||
err_div = convolution(.True.,F_aim_lab_lastIter - F_aim_lab)
|
||||
err_div = convolution(.True.,F_aim_lab_lastIter - F_aim_lab, C_ref)
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3) ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
|
||||
|
@ -158,4 +250,12 @@ S = S_lastInc(rotation_BC,mask_stressVector)
|
|||
|
||||
end function basic_solution
|
||||
|
||||
end module DAMASK_spectral_SolverBasic
|
||||
subroutine basic_destroy()
|
||||
|
||||
implicit none
|
||||
|
||||
call Utilities_destroy()
|
||||
|
||||
end subroutine basic_destroy
|
||||
|
||||
end module DAMASK_spectral_SolverBasic
|
||||
|
|
|
@ -46,20 +46,6 @@ module DAMASK_spectral_Utilities
|
|||
IO_error
|
||||
|
||||
implicit none
|
||||
|
||||
type solutionState ! mask of stress boundary conditions
|
||||
logical :: converged = .false.
|
||||
logical :: regrid = .false.
|
||||
logical :: term_ill = .false.
|
||||
end type solutionState
|
||||
|
||||
character(len=5) :: solverType, parameter = 'basic'
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! common pointwise data
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc, P
|
||||
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
|
||||
real(pReal), dimension(:,:,:), allocatable :: temperature
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables storing information for spectral method and FFTW
|
||||
|
@ -86,28 +72,22 @@ module DAMASK_spectral_Utilities
|
|||
!variables controlling debugging
|
||||
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress, stiffness and compliance average etc.
|
||||
real(pReal), dimension(3,3) :: &
|
||||
F_aim = math_I3, &
|
||||
F_aim_lastInc = math_I3, &
|
||||
P_av
|
||||
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
C_ref = 0.0_pReal, &
|
||||
C = 0.0_pReal
|
||||
|
||||
real(pReal), dimension(3) :: geomdim = 0.0_pReal, virt_dim = 0.0_pReal ! physical dimension of volume element per direction
|
||||
integer(pInt), dimension(3) :: res = 1_pInt
|
||||
real(pReal) :: wgt
|
||||
integer(pInt) :: res1_red, Npoints
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! solution state
|
||||
type solutionState
|
||||
logical :: converged = .false.
|
||||
logical :: regrid = .false.
|
||||
logical :: term_ill = .false.
|
||||
end type solutionState
|
||||
contains
|
||||
|
||||
subroutine Utilities_init(F,P,F_...)
|
||||
|
||||
use DAMASK_interface, only: &
|
||||
getSolverJobName
|
||||
subroutine Utilities_init(C_ref)
|
||||
|
||||
use mesh, only : &
|
||||
mesh_spectral_getResolution, &
|
||||
|
@ -126,24 +106,17 @@ subroutine Utilities_init(F,P,F_...)
|
|||
debug_spectralDivergence, &
|
||||
debug_spectralRestart, &
|
||||
debug_spectralFFTW
|
||||
|
||||
use FEsolving, only: &
|
||||
restartInc
|
||||
|
||||
use numerics, only: &
|
||||
memory_efficient
|
||||
|
||||
use CPFEM, only: &
|
||||
CPFEM_general
|
||||
|
||||
use IO, only: &
|
||||
IO_read_JobBinaryFile, &
|
||||
IO_write_JobBinaryFile
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), dimension(3,3) :: temp33_Real, xiDyad
|
||||
integer(pInt) :: i, j, k, l, m, n, q, ierr
|
||||
integer(pInt), dimension(3) :: k_s
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
C_ref
|
||||
|
||||
type(C_PTR) :: tensorField ! field in real and fourier space
|
||||
type(C_PTR) :: scalarField_realC, scalarField_fourierC
|
||||
|
@ -151,7 +124,7 @@ subroutine Utilities_init(F,P,F_...)
|
|||
|
||||
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') ' <<<+- DAMASK_spectralSolver init -+>>>'
|
||||
write(6,'(a)') ' <<<+- DAMASK_spectralSolver Utilities init -+>>>'
|
||||
write(6,'(a)') ' $Id$'
|
||||
#include "compilation_info.f90"
|
||||
write(6,'(a)') ''
|
||||
|
@ -172,12 +145,7 @@ subroutine Utilities_init(F,P,F_...)
|
|||
Npoints = res(1)*res(2)*res(3)
|
||||
wgt = 1.0/real(Npoints,pReal)
|
||||
|
||||
allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
||||
allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal)
|
||||
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
|
||||
allocate (temperature( res(1), res(2),res(3)), source = 0.0_pReal) ! start out isothermally
|
||||
allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal) ! start out isothermally
|
||||
tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8)
|
||||
call c_f_pointer(tensorField, field_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
|
||||
call c_f_pointer(tensorField, field_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
|
||||
|
@ -232,37 +200,6 @@ subroutine Utilities_init(F,P,F_...)
|
|||
endif
|
||||
|
||||
if (debugGeneral) write(6,'(a)') 'FFTW initialized'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! init fields
|
||||
if (restartInc == 1_pInt) then ! no deformation (no restart)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
F(i,j,k,1:3,1:3) = math_I3
|
||||
F_lastInc(i,j,k,1:3,1:3) = math_I3
|
||||
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) &
|
||||
- geomdim/real(2_pInt*res,pReal)
|
||||
enddo; enddo; enddo
|
||||
elseif (restartInc > 1_pInt) then ! using old values from file
|
||||
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
|
||||
restartInc - 1_pInt,' from file'
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
|
||||
trim(getSolverJobName()),size(F))
|
||||
read (777,rec=1) F
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',&
|
||||
trim(getSolverJobName()),size(F_lastInc))
|
||||
read (777,rec=1) F_lastInc
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim))
|
||||
read (777,rec=1) F_aim
|
||||
close (777)
|
||||
call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc))
|
||||
read (777,rec=1) F_aim_lastInc
|
||||
close (777)
|
||||
|
||||
coordinates = 0.0 ! change it later!!!
|
||||
endif
|
||||
call constitutiveResponse(.FALSE.,0.0_pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
|
||||
|
@ -284,19 +221,6 @@ subroutine Utilities_init(F,P,F_...)
|
|||
k_s(1) = i - 1_pInt
|
||||
xi(1:3,i,j,k) = real(k_s, pReal)/virt_dim
|
||||
enddo; enddo; enddo
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate the gamma operator
|
||||
if (restartInc == 1_pInt) then
|
||||
C_ref = C
|
||||
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
|
||||
write (777,rec=1) C_ref
|
||||
close(777)
|
||||
elseif (restartInc > 1_pInt) then
|
||||
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
|
||||
read (777,rec=1) C_ref
|
||||
close (777)
|
||||
endif
|
||||
|
||||
if(memory_efficient) then ! allocate just single fourth order tensor
|
||||
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
|
||||
|
@ -317,252 +241,250 @@ subroutine Utilities_init(F,P,F_...)
|
|||
endif
|
||||
end subroutine Utilities_init
|
||||
|
||||
real(pReal) function convolution(calcDivergence, field_aim,)
|
||||
use numerics, only: &
|
||||
memory_efficient, &
|
||||
err_div_tol
|
||||
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
|
||||
real(pReal) :: err_div = 0.0_pReal
|
||||
real(pReal), dimension(3,3) :: temp33_Real
|
||||
integer(pInt) :: i, j, k, l, m, n, q
|
||||
|
||||
real(pReal) function convolution(calcDivergence,field_aim,C_ref)
|
||||
|
||||
use numerics, only: &
|
||||
memory_efficient, &
|
||||
err_div_tol
|
||||
|
||||
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
|
||||
real(pReal) :: err_div = 0.0_pReal
|
||||
real(pReal), dimension(3,3) :: temp33_Real
|
||||
integer(pInt) :: i, j, k, l, m, n, q
|
||||
real(pReal), dimension(3,3,3,3) :: C_ref
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!variables for additional output due to general debugging
|
||||
real(pReal) :: maxCorrectionSym, maxCorrectionSkew
|
||||
logical :: calcDivergence
|
||||
real(pReal), dimension(3,3) :: field_avg, field_aim
|
||||
real(pReal) :: maxCorrectionSym, maxCorrectionSkew
|
||||
logical :: calcDivergence
|
||||
real(pReal), dimension(3,3) :: field_avg, field_aim
|
||||
integer(pInt) :: row, column
|
||||
real(pReal) :: field_av_L2, err_div_RMS, err_real_div_RMS, err_post_div_RMS,&
|
||||
err_div_max, err_real_div_max
|
||||
complex(pReal), dimension(3) :: temp3_complex
|
||||
complex(pReal), dimension(3,3) :: temp33_complex
|
||||
real(pReal) :: field_av_L2, err_div_RMS, err_real_div_RMS, err_post_div_RMS,&
|
||||
err_div_max, err_real_div_max
|
||||
complex(pReal), dimension(3) :: temp3_complex
|
||||
complex(pReal), dimension(3,3) :: temp33_complex
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! actual spectral method
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... doing convolution .................'
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... doing convolution .................'
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! copy one component of the stress field to to a single FT and check for mismatch
|
||||
if (debugFFTW) then
|
||||
row = 3 ! (mod(totalIncsCounter+iter-2_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1
|
||||
column = 3 !(mod(totalIncsCounter+iter-2_pInt,3_pInt)) + 1_pInt
|
||||
scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component
|
||||
cmplx(field_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal)
|
||||
endif
|
||||
if (debugFFTW) then
|
||||
row = 3 ! (mod(totalIncsCounter+iter-2_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1
|
||||
column = 3 !(mod(totalIncsCounter+iter-2_pInt,3_pInt)) + 1_pInt
|
||||
scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component
|
||||
cmplx(field_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal)
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! call function to calculate divergence from math (for post processing) to check results
|
||||
if (debugDivergence) &
|
||||
call divergence_fft(res,virt_dim,3_pInt,&
|
||||
field_real(1:res(1),1:res(2),1:res(3),1:3,1:3),divergence_post) ! padding
|
||||
|
||||
if (debugDivergence) &
|
||||
call divergence_fft(res,virt_dim,3_pInt,&
|
||||
field_real(1:res(1),1:res(2),1:res(3),1:3,1:3),divergence_post) ! padding
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing the FT because it simplifies calculation of average stress in real space also
|
||||
call fftw_execute_dft_r2c(plan_forward,field_real,field_fourier)
|
||||
call fftw_execute_dft_r2c(plan_forward,field_real,field_fourier)
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 FT results
|
||||
if (debugFFTW) then
|
||||
call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier)
|
||||
write(6,'(a,i1,1x,i1)') 'checking FT results of compontent ', row, column
|
||||
write(6,'(a,2(es11.4,1x))') 'max FT relative error = ',&
|
||||
maxval( real((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
|
||||
field_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
|
||||
scalarField_fourier(1:res1_red,1:res(2),1:res(3)))), &
|
||||
maxval(aimag((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
|
||||
field_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
|
||||
scalarField_fourier(1:res1_red,1:res(2),1:res(3))))
|
||||
endif
|
||||
if (debugFFTW) then
|
||||
call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier)
|
||||
write(6,'(a,i1,1x,i1)') 'checking FT results of compontent ', row, column
|
||||
write(6,'(a,2(es11.4,1x))') 'max FT relative error = ',&
|
||||
maxval( real((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
|
||||
field_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
|
||||
scalarField_fourier(1:res1_red,1:res(2),1:res(3)))), &
|
||||
maxval(aimag((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
|
||||
field_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
|
||||
scalarField_fourier(1:res1_red,1:res(2),1:res(3))))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! removing highest frequencies
|
||||
field_fourier ( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
field_fourier (1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
if(res(3)>1_pInt) &
|
||||
field_fourier (1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
field_fourier ( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
field_fourier (1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
if(res(3)>1_pInt) &
|
||||
field_fourier (1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
|
||||
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculating RMS divergence criterion in Fourier space
|
||||
if( calcDivergence) then
|
||||
field_avg = real(field_fourier(1,1,1,1:3,1:3),pReal)*wgt
|
||||
|
||||
field_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(field_avg,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html)
|
||||
math_transpose33(field_avg)))))
|
||||
err_div_RMS = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
|
||||
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
err_div_RMS = err_div_RMS &
|
||||
+ 2.0_pReal*(sum (real(math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
|
||||
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
|
||||
+sum(aimag(math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3),&
|
||||
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
|
||||
enddo
|
||||
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
|
||||
+ sum( real(math_mul33x3_complex(field_fourier(1 ,j,k,1:3,1:3),&
|
||||
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum(aimag(math_mul33x3_complex(field_fourier(1 ,j,k,1:3,1:3),&
|
||||
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum( real(math_mul33x3_complex(field_fourier(res1_red,j,k,1:3,1:3),&
|
||||
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum(aimag(math_mul33x3_complex(field_fourier(res1_red,j,k,1:3,1:3),&
|
||||
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
|
||||
enddo; enddo
|
||||
|
||||
err_div_RMS = sqrt(err_div_RMS)*wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
|
||||
err_div = err_div_RMS/field_av_L2 ! criterion to stop iterations
|
||||
|
||||
|
||||
if(calcDivergence) then
|
||||
field_avg = real(field_fourier(1,1,1,1:3,1:3),pReal)*wgt
|
||||
|
||||
field_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(field_avg,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html)
|
||||
math_transpose33(field_avg)))))
|
||||
err_div_RMS = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
|
||||
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
err_div_RMS = err_div_RMS &
|
||||
+ 2.0_pReal*(sum (real(math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
|
||||
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
|
||||
+sum(aimag(math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3),&
|
||||
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
|
||||
enddo
|
||||
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
|
||||
+ sum( real(math_mul33x3_complex(field_fourier(1 ,j,k,1:3,1:3),&
|
||||
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum(aimag(math_mul33x3_complex(field_fourier(1 ,j,k,1:3,1:3),&
|
||||
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum( real(math_mul33x3_complex(field_fourier(res1_red,j,k,1:3,1:3),&
|
||||
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
|
||||
+ sum(aimag(math_mul33x3_complex(field_fourier(res1_red,j,k,1:3,1:3),&
|
||||
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
|
||||
enddo; enddo
|
||||
|
||||
err_div_RMS = sqrt(err_div_RMS)*wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
|
||||
err_div = err_div_RMS/field_av_L2 ! criterion to stop iterations
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate additional divergence criteria and report
|
||||
if (debugDivergence) then ! calculate divergence again
|
||||
err_div_max = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
temp3_Complex = math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3)*wgt,& ! weighting P_fourier
|
||||
xi(1:3,i,j,k))*TWOPIIMG
|
||||
err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal))
|
||||
divergence_fourier(i,j,k,1:3) = temp3_Complex ! need divergence NOT squared
|
||||
enddo; enddo; enddo
|
||||
|
||||
call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted
|
||||
|
||||
err_real_div_RMS = 0.0_pReal
|
||||
err_post_div_RMS = 0.0_pReal
|
||||
err_real_div_max = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
err_real_div_RMS = err_real_div_RMS + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
|
||||
err_post_div_RMS = err_post_div_RMS + sum(divergence_post(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
|
||||
err_real_div_max = max(err_real_div_max,sum(divergence_real(i,j,k,1:3)**2.0_pReal)) ! max of squared L_2 norm of div(stress) in real space
|
||||
enddo; enddo; enddo
|
||||
|
||||
err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space
|
||||
err_post_div_RMS = sqrt(wgt*err_post_div_RMS) ! RMS in real space
|
||||
err_real_div_max = sqrt( err_real_div_max) ! max in real space
|
||||
err_div_max = sqrt( err_div_max) ! max in Fourier space
|
||||
|
||||
write(6,'(a,es11.4)') 'error divergence FT RMS = ',err_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max
|
||||
write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max
|
||||
endif
|
||||
write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/err_div_tol,&
|
||||
' (',err_div,' N/m³)'
|
||||
end if
|
||||
if (debugDivergence) then ! calculate divergence again
|
||||
err_div_max = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
temp3_Complex = math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3)*wgt,& ! weighting P_fourier
|
||||
xi(1:3,i,j,k))*TWOPIIMG
|
||||
err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal))
|
||||
divergence_fourier(i,j,k,1:3) = temp3_Complex ! need divergence NOT squared
|
||||
enddo; enddo; enddo
|
||||
|
||||
call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted
|
||||
|
||||
err_real_div_RMS = 0.0_pReal
|
||||
err_post_div_RMS = 0.0_pReal
|
||||
err_real_div_max = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
err_real_div_RMS = err_real_div_RMS + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
|
||||
err_post_div_RMS = err_post_div_RMS + sum(divergence_post(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
|
||||
err_real_div_max = max(err_real_div_max,sum(divergence_real(i,j,k,1:3)**2.0_pReal)) ! max of squared L_2 norm of div(stress) in real space
|
||||
enddo; enddo; enddo
|
||||
|
||||
err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space
|
||||
err_post_div_RMS = sqrt(wgt*err_post_div_RMS) ! RMS in real space
|
||||
err_real_div_max = sqrt( err_real_div_max) ! max in real space
|
||||
err_div_max = sqrt( err_div_max) ! max in Fourier space
|
||||
|
||||
write(6,'(a,es11.4)') 'error divergence FT RMS = ',err_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS
|
||||
write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max
|
||||
write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max
|
||||
endif
|
||||
write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/err_div_tol,&
|
||||
' (',err_div,' N/m³)'
|
||||
end if
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! to the actual spectral method calculation (mechanical equilibrium)
|
||||
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
|
||||
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
|
||||
temp33_Real = math_inv33(temp33_Real)
|
||||
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, q=1_pInt:3_pInt)&
|
||||
gamma_hat(1,1,1, l,m,n,q) = temp33_Real(l,n)*xiDyad(m,q)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Complex(l,m) = sum(gamma_hat(1,1,1, l,m, 1:3,1:3) *&
|
||||
field_fourier(i,j,k,1:3,1:3))
|
||||
field_fourier(i,j,k,1:3,1:3) = temp33_Complex
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
|
||||
else ! use precalculated gamma-operator
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
|
||||
forall( m = 1_pInt:3_pInt, n = 1_pInt:3_pInt) &
|
||||
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) *&
|
||||
field_fourier(i,j,k,1:3,1:3))
|
||||
field_fourier(i,j,k, 1:3,1:3) = temp33_Complex
|
||||
enddo; enddo; enddo
|
||||
|
||||
endif
|
||||
field_fourier(1,1,1,1:3,1:3) = cmplx(field_aim,0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
|
||||
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
|
||||
temp33_Real = math_inv33(temp33_Real)
|
||||
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, q=1_pInt:3_pInt)&
|
||||
gamma_hat(1,1,1, l,m,n,q) = temp33_Real(l,n)*xiDyad(m,q)
|
||||
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
|
||||
temp33_Complex(l,m) = sum(gamma_hat(1,1,1, l,m, 1:3,1:3) *&
|
||||
field_fourier(i,j,k,1:3,1:3))
|
||||
field_fourier(i,j,k,1:3,1:3) = temp33_Complex
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
else ! use precalculated gamma-operator
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
|
||||
forall( m = 1_pInt:3_pInt, n = 1_pInt:3_pInt) &
|
||||
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) *&
|
||||
field_fourier(i,j,k,1:3,1:3))
|
||||
field_fourier(i,j,k, 1:3,1:3) = temp33_Complex
|
||||
enddo; enddo; enddo
|
||||
endif
|
||||
field_fourier(1,1,1,1:3,1:3) = cmplx(field_aim,0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 inverse FT results
|
||||
if (debugFFTW) then
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
scalarField_fourier(i,j,k) = field_fourier(i,j,k,row,column)
|
||||
enddo; enddo; enddo
|
||||
do i = 0_pInt, res(1)/2_pInt-2_pInt ! unpack fft data for conj complex symmetric part
|
||||
m = 1_pInt
|
||||
do k = 1_pInt, res(3)
|
||||
n = 1_pInt
|
||||
do j = 1_pInt, res(2)
|
||||
scalarField_fourier(res(1)-i,j,k) = conjg(scalarField_fourier(2+i,n,m))
|
||||
if(n == 1_pInt) n = res(2) + 1_pInt
|
||||
n = n-1_pInt
|
||||
enddo
|
||||
if(m == 1_pInt) m = res(3) + 1_pInt
|
||||
m = m -1_pInt
|
||||
enddo; enddo
|
||||
endif
|
||||
if (debugFFTW) then
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
scalarField_fourier(i,j,k) = field_fourier(i,j,k,row,column)
|
||||
enddo; enddo; enddo
|
||||
do i = 0_pInt, res(1)/2_pInt-2_pInt ! unpack fft data for conj complex symmetric part
|
||||
m = 1_pInt
|
||||
do k = 1_pInt, res(3)
|
||||
n = 1_pInt
|
||||
do j = 1_pInt, res(2)
|
||||
scalarField_fourier(res(1)-i,j,k) = conjg(scalarField_fourier(2+i,n,m))
|
||||
if(n == 1_pInt) n = res(2) + 1_pInt
|
||||
n = n-1_pInt
|
||||
enddo
|
||||
if(m == 1_pInt) m = res(3) + 1_pInt
|
||||
m = m -1_pInt
|
||||
enddo; enddo
|
||||
endif
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing the inverse FT
|
||||
call fftw_execute_dft_c2r(plan_backward,field_fourier,field_real) ! back transform of fluct deformation gradient
|
||||
call fftw_execute_dft_c2r(plan_backward,field_fourier,field_real) ! back transform of fluct deformation gradient
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 inverse FT results
|
||||
if (debugFFTW) then
|
||||
write(6,'(a,i1,1x,i1)') 'checking iFT results of compontent ', row, column
|
||||
call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real)
|
||||
write(6,'(a,es11.4)') 'max iFT relative error = ',&
|
||||
maxval((real(scalarField_real(1:res(1),1:res(2),1:res(3)))-&
|
||||
field_real(1:res(1),1:res(2),1:res(3),row,column))/&
|
||||
real(scalarField_real(1:res(1),1:res(2),1:res(3))))
|
||||
endif
|
||||
if (debugFFTW) then
|
||||
write(6,'(a,i1,1x,i1)') 'checking iFT results of compontent ', row, column
|
||||
call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real)
|
||||
write(6,'(a,es11.4)') 'max iFT relative error = ',&
|
||||
maxval((real(scalarField_real(1:res(1),1:res(2),1:res(3)))-&
|
||||
field_real(1:res(1),1:res(2),1:res(3),row,column))/&
|
||||
real(scalarField_real(1:res(1),1:res(2),1:res(3))))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate some additional output
|
||||
if(debugGeneral) then
|
||||
maxCorrectionSkew = 0.0_pReal
|
||||
maxCorrectionSym = 0.0_pReal
|
||||
temp33_Real = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
maxCorrectionSym = max(maxCorrectionSym,&
|
||||
maxval(math_symmetric33(field_real(i,j,k,1:3,1:3))))
|
||||
maxCorrectionSkew = max(maxCorrectionSkew,&
|
||||
maxval(math_skew33(field_real(i,j,k,1:3,1:3))))
|
||||
temp33_Real = temp33_Real + field_real(i,j,k,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
|
||||
maxCorrectionSym*wgt
|
||||
write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
|
||||
maxCorrectionSkew*wgt
|
||||
write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
|
||||
maxval(math_symmetric33(temp33_real))/&
|
||||
maxval(math_skew33(temp33_real))
|
||||
endif
|
||||
field_real = field_real * wgt
|
||||
convolution = err_div/err_div_tol
|
||||
if(debugGeneral) then
|
||||
maxCorrectionSkew = 0.0_pReal
|
||||
maxCorrectionSym = 0.0_pReal
|
||||
temp33_Real = 0.0_pReal
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
maxCorrectionSym = max(maxCorrectionSym,&
|
||||
maxval(math_symmetric33(field_real(i,j,k,1:3,1:3))))
|
||||
maxCorrectionSkew = max(maxCorrectionSkew,&
|
||||
maxval(math_skew33(field_real(i,j,k,1:3,1:3))))
|
||||
temp33_Real = temp33_Real + field_real(i,j,k,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
|
||||
maxCorrectionSym*wgt
|
||||
write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
|
||||
maxCorrectionSkew*wgt
|
||||
write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
|
||||
maxval(math_symmetric33(temp33_real))/&
|
||||
maxval(math_skew33(temp33_real))
|
||||
endif
|
||||
field_real = field_real * wgt
|
||||
convolution = err_div/err_div_tol
|
||||
|
||||
end function convolution
|
||||
|
||||
|
||||
function S_lastInc(rot_BC,mask_stressVector1)
|
||||
function S_lastInc(rot_BC,mask_stressVector1,C)
|
||||
|
||||
real(pReal), dimension(3,3,3,3) :: S_lastInc
|
||||
integer(pInt) :: i, j, k, m,n
|
||||
real(pReal), dimension(3,3,3,3), intent(in) :: C
|
||||
integer(pInt) :: i, j, k, m, n
|
||||
real(pReal), dimension(3,3), intent(in) :: rot_BC
|
||||
logical, dimension(9), intent(in) :: mask_stressVector1
|
||||
real(pReal), dimension(3,3,3,3) :: C_lastInc
|
||||
real(pReal), dimension(9,9) :: temp99_Real
|
||||
real(pReal), dimension(9,9) :: temp99_Real
|
||||
integer(pInt) :: size_reduced = 0_pInt
|
||||
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
|
||||
logical :: errmatinv
|
||||
size_reduced = count(mask_stressVector1)
|
||||
if (allocated(c_reduced)) deallocate(c_reduced)
|
||||
if (allocated(c_reduced)) deallocate(c_reduced)
|
||||
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
|
||||
|
||||
|
||||
C_lastInc = math_rotate_forward3333(C,rot_BC) ! calculate stiffness from former inc
|
||||
temp99_Real = math_Plain3333to99(C_lastInc)
|
||||
k = 0_pInt ! build reduced stiffness
|
||||
|
@ -588,9 +510,7 @@ function S_lastInc(rot_BC,mask_stressVector1)
|
|||
j = j + 1_pInt
|
||||
temp99_Real(n,m) = s_reduced(k,j)
|
||||
endif; enddo; endif; enddo
|
||||
S_lastInc = (math_Plain99to3333(temp99_Real))
|
||||
if (allocated(c_reduced)) deallocate(c_reduced)
|
||||
if (allocated(c_reduced)) deallocate(c_reduced)
|
||||
S_lastInc = math_Plain99to3333(temp99_Real)
|
||||
|
||||
end function S_lastInc
|
||||
|
||||
|
@ -598,76 +518,90 @@ end function S_lastInc
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate reduced compliance
|
||||
|
||||
real(pReal) function BCcorrection(mask_stressVector,P_BC,S_lastInc)
|
||||
use numerics, only: err_stress_tolrel, err_stress_tolabs
|
||||
logical, dimension(9) :: mask_stressVector
|
||||
real(pReal) :: err_stress, err_stress_tol
|
||||
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
||||
real(pReal), dimension(3,3,3,3) :: S_lastInc
|
||||
real(pReal), dimension(3,3) :: &
|
||||
P_BC , &
|
||||
mask_stress, &
|
||||
mask_defgrad
|
||||
mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
|
||||
mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
|
||||
real(pReal) function BCcorrection(mask_stressVector,P_BC,P_av,F_aim,S_lastInc)
|
||||
|
||||
use numerics, only: err_stress_tolrel, err_stress_tolabs
|
||||
|
||||
logical, dimension(9) :: mask_stressVector
|
||||
real(pReal) :: err_stress, err_stress_tol
|
||||
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
||||
real(pReal), dimension(3,3,3,3) :: S_lastInc
|
||||
real(pReal), dimension(3,3) :: &
|
||||
P_BC , &
|
||||
P_av, &
|
||||
F_aim, &
|
||||
mask_stress, &
|
||||
mask_defgrad
|
||||
mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
|
||||
mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! stress BC handling
|
||||
! calculate stress BC if applied
|
||||
err_stress = maxval(abs(mask_stress * (P_av - P_BC))) ! maximum deviaton (tensor norm not applicable)
|
||||
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
|
||||
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
|
||||
' (',err_stress,' Pa)'
|
||||
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - P_BC))) ! residual on given stress components
|
||||
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
|
||||
BCcorrection = err_stress/err_stress_tol
|
||||
! calculate stress BC if applied
|
||||
err_stress = maxval(abs(mask_stress * (P_av - P_BC))) ! maximum deviaton (tensor norm not applicable)
|
||||
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
|
||||
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
|
||||
' (',err_stress,' Pa)'
|
||||
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - P_BC))) ! residual on given stress components
|
||||
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
|
||||
BCcorrection = err_stress/err_stress_tol
|
||||
|
||||
end function BCcorrection
|
||||
|
||||
subroutine constitutiveResponse(F,P,ForwardData,timeinc)
|
||||
use debug, only: &
|
||||
debug_reset, &
|
||||
debug_info
|
||||
use CPFEM, only: &
|
||||
CPFEM_general
|
||||
use FEsolving, only: restartWrite
|
||||
subroutine constitutiveResponse(coordinates,F,F_lastInc,temperature,timeinc,&
|
||||
P,C,P_av,ForwardData,rotation_BC)
|
||||
use debug, only: &
|
||||
debug_reset, &
|
||||
debug_info
|
||||
use CPFEM, only: &
|
||||
CPFEM_general
|
||||
use FEsolving, only: restartWrite
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), dimension(res(1),res(2),res(3)) :: temperature
|
||||
real(pReal), dimension(res(1),res(2),res(3),3) :: coordinates
|
||||
|
||||
real(pReal), dimension(res(1),res(2),res(3),3,3) :: F,F_lastInc, P
|
||||
real(pReal) :: timeinc
|
||||
logical :: ForwardData
|
||||
integer(pInt) :: i, j, k, ielem
|
||||
integer(pInt) :: CPFEM_mode
|
||||
real(pReal), dimension(3,3,3,3) :: dPdF
|
||||
real(pReal), dimension(6) :: sigma ! cauchy stress
|
||||
real(pReal), dimension(6,6) :: dsde
|
||||
real(pReal), dimension(3,3) :: P_av_lab, rotation_BC
|
||||
real(pReal), dimension(3,3,3,3) :: dPdF, C
|
||||
real(pReal), dimension(6) :: sigma ! cauchy stress
|
||||
real(pReal), dimension(6,6) :: dsde
|
||||
real(pReal), dimension(3,3) :: P_av_lab, P_av, rotation_BC
|
||||
|
||||
if (ForwardData) then
|
||||
CPFEM_mode = 1_pInt
|
||||
else
|
||||
CPFEM_mode = 2_pInt
|
||||
endif
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... update stress field P(F) .....................................'
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(3_pInt,& ! collect cycle
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '... update stress field P(F) .....................................'
|
||||
ielem = 0_pInt
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(3_pInt,& ! collect cycle
|
||||
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3), &
|
||||
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF)
|
||||
enddo; enddo; enddo
|
||||
enddo; enddo; enddo
|
||||
|
||||
P = 0.0_pReal ! needed because of the padding for FFTW
|
||||
C = 0.0_pReal
|
||||
P_av_lab = 0.0_pReal
|
||||
ielem = 0_pInt
|
||||
call debug_reset()
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
|
||||
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
|
||||
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF)
|
||||
CPFEM_mode = 2_pInt
|
||||
C = C + dPdF
|
||||
P_av_lab = P_av_lab + P(i,j,k,1:3,1:3)
|
||||
P = 0.0_pReal ! needed because of the padding for FFTW
|
||||
C = 0.0_pReal
|
||||
P_av_lab = 0.0_pReal
|
||||
ielem = 0_pInt
|
||||
call debug_reset()
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
ielem = ielem + 1_pInt
|
||||
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
|
||||
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
|
||||
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF)
|
||||
CPFEM_mode = 2_pInt
|
||||
C = C + dPdF
|
||||
P_av_lab = P_av_lab + P(i,j,k,1:3,1:3)
|
||||
enddo; enddo; enddo
|
||||
call debug_info()
|
||||
restartWrite = .false.
|
||||
|
@ -677,5 +611,23 @@ use FEsolving, only: restartWrite
|
|||
math_transpose33(P_av)/1.e6_pReal
|
||||
C = C * wgt
|
||||
end subroutine constitutiveResponse
|
||||
|
||||
subroutine Utilities_destroy
|
||||
|
||||
implicit none
|
||||
|
||||
if (debugDivergence) then
|
||||
call fftw_destroy_plan(plan_divergence)
|
||||
endif
|
||||
|
||||
if (debugFFTW) then
|
||||
call fftw_destroy_plan(plan_scalarField_forth)
|
||||
call fftw_destroy_plan(plan_scalarField_back)
|
||||
endif
|
||||
|
||||
call fftw_destroy_plan(plan_forward)
|
||||
call fftw_destroy_plan(plan_backward)
|
||||
|
||||
end subroutine Utilities_destroy
|
||||
|
||||
end module DAMASK_spectral_Utilities
|
||||
|
|
|
@ -79,7 +79,8 @@ real(pReal) :: err_div_tol = 0.1_pReal, &
|
|||
err_stress_tolabs = huge(1.0_pReal), & ! absolute tolerance for fullfillment of stress BC, Default: 0.01 allowing deviation of 1% of maximum stress
|
||||
fftw_timelimit = -1.0_pReal, & ! sets the timelimit of plan creation for FFTW, see manual on www.fftw.org, Default -1.0: disable timelimit
|
||||
rotation_tol = 1.0e-12_pReal ! tolerance of rotation specified in loadcase, Default 1.0e-12: first guess
|
||||
character(len=64) :: fftw_plan_mode = 'FFTW_PATIENT' ! reads the planing-rigor flag, see manual on www.fftw.org, Default FFTW_PATIENT: use patient planner flag
|
||||
character(len=64) :: fftw_plan_mode = 'FFTW_PATIENT', & ! reads the planing-rigor flag, see manual on www.fftw.org, Default FFTW_PATIENT: use patient planner flag
|
||||
myspectralsolver = 'basic' ! spectral solution method
|
||||
integer(pInt) :: fftw_planner_flag = 32_pInt, & ! conversion of fftw_plan_mode to integer, basically what is usually done in the include file of fftw
|
||||
itmax = 20_pInt, & ! maximum number of iterations
|
||||
itmin = 2_pInt ! minimum number of iterations
|
||||
|
@ -247,6 +248,8 @@ subroutine numerics_init
|
|||
fftw_timelimit = IO_floatValue(line,positions,2_pInt)
|
||||
case ('fftw_plan_mode')
|
||||
fftw_plan_mode = IO_stringValue(line,positions,2_pInt)
|
||||
case ('myspectralsolver')
|
||||
myspectralsolver = IO_stringValue(line,positions,2_pInt)
|
||||
case ('rotation_tol')
|
||||
rotation_tol = IO_floatValue(line,positions,2_pInt)
|
||||
case ('divergence_correction')
|
||||
|
@ -256,7 +259,7 @@ subroutine numerics_init
|
|||
#endif
|
||||
#ifndef Spectral
|
||||
case ('err_div_tol','err_stress_tolrel','err_stress_tolabs',&
|
||||
'itmax', 'itmin','memory_efficient','fftw_timelimit','fftw_plan_mode', &
|
||||
'itmax', 'itmin','memory_efficient','fftw_timelimit','fftw_plan_mode','myspectralsolver', &
|
||||
'rotation_tol','divergence_correction','update_gamma')
|
||||
call IO_warning(40_pInt,ext_msg=tag)
|
||||
#endif
|
||||
|
@ -348,6 +351,7 @@ subroutine numerics_init
|
|||
write(6,'(a24,1x,es8.1)') ' fftw_timelimit: ',fftw_timelimit
|
||||
endif
|
||||
write(6,'(a24,1x,a)') ' fftw_plan_mode: ',trim(fftw_plan_mode)
|
||||
write(6,'(a24,1x,a)') ' myspectralsolver: ',trim(myspectralsolver)
|
||||
write(6,'(a24,1x,i8)') ' fftw_planner_flag: ',fftw_planner_flag
|
||||
write(6,'(a24,1x,es8.1)') ' rotation_tol: ',rotation_tol
|
||||
write(6,'(a24,1x,L8,/)') ' divergence_correction: ',divergence_correction
|
||||
|
|
Loading…
Reference in New Issue