following python convention

This commit is contained in:
Martin Diehl 2020-03-20 08:49:33 +01:00
parent e390982be7
commit 4d4f321872
2 changed files with 10 additions and 10 deletions

View File

@ -59,7 +59,7 @@ def cube_to_ball(cube):
ball = np.zeros(3)
else:
# get pyramide and scale by grid parameter ratio
p = get_order(cube)
p = _get_order(cube)
XYZ = cube[p] * sc
# intercept all the points along the z-axis
@ -109,7 +109,7 @@ def ball_to_cube(ball):
if np.allclose(ball,0.0,rtol=0.0,atol=1.0e-300):
cube = np.zeros(3)
else:
p = get_order(ball)
p = _get_order(ball)
xyz3 = ball[p]
# inverse M_3
@ -137,7 +137,7 @@ def ball_to_cube(ball):
return cube
def get_order(xyz):
def _get_order(xyz):
"""
Get order of the coordinates.

View File

@ -85,7 +85,7 @@ def left_stretch(T):
Tensor of which the left stretch is computed.
"""
return __polar_decomposition(T,'V')[0]
return _polar_decomposition(T,'V')[0]
def maximum_shear(T_sym):
@ -113,7 +113,7 @@ def Mises_strain(epsilon):
Symmetric strain tensor of which the von Mises equivalent is computed.
"""
return __Mises(epsilon,2.0/3.0)
return _Mises(epsilon,2.0/3.0)
def Mises_stress(sigma):
@ -126,7 +126,7 @@ def Mises_stress(sigma):
Symmetric stress tensor of which the von Mises equivalent is computed.
"""
return __Mises(sigma,3.0/2.0)
return _Mises(sigma,3.0/2.0)
def PK2(P,F):
@ -158,7 +158,7 @@ def right_stretch(T):
Tensor of which the right stretch is computed.
"""
return __polar_decomposition(T,'U')[0]
return _polar_decomposition(T,'U')[0]
def rotational_part(T):
@ -171,7 +171,7 @@ def rotational_part(T):
Tensor of which the rotational part is computed.
"""
return __polar_decomposition(T,'R')[0]
return _polar_decomposition(T,'R')[0]
def spherical_part(T,tensor=False):
@ -262,7 +262,7 @@ def transpose(T):
np.transpose(T,(0,2,1))
def __polar_decomposition(T,requested):
def _polar_decomposition(T,requested):
"""
Singular value decomposition.
@ -290,7 +290,7 @@ def __polar_decomposition(T,requested):
return tuple(output)
def __Mises(T_sym,s):
def _Mises(T_sym,s):
"""
Base equation for Mises equivalent of a stres or strain tensor.