ensures that at least one orientation in the FZ is found
This commit is contained in:
parent
d5c98bbf62
commit
4bcbcb34d0
|
@ -481,26 +481,26 @@ class Orientation(Rotation):
|
|||
if self.family is None:
|
||||
raise ValueError('Missing crystal symmetry')
|
||||
|
||||
rho_abs = np.abs(self.as_Rodrigues_vector(compact=True))
|
||||
rho_abs = np.abs(self.as_Rodrigues_vector(compact=True))*(1.-1.e-9)
|
||||
|
||||
with np.errstate(invalid='ignore'):
|
||||
# using '*'/prod for 'and'
|
||||
if self.family == 'cubic':
|
||||
return (np.prod(np.sqrt(2)-1. >= rho_abs,axis=-1) *
|
||||
(1. >= np.sum(rho_abs,axis=-1))).astype(np.bool)
|
||||
(1. >= np.sum(rho_abs,axis=-1))).astype(bool)
|
||||
elif self.family == 'hexagonal':
|
||||
return (np.prod(1. >= rho_abs,axis=-1) *
|
||||
(2. >= np.sqrt(3)*rho_abs[...,0] + rho_abs[...,1]) *
|
||||
(2. >= np.sqrt(3)*rho_abs[...,1] + rho_abs[...,0]) *
|
||||
(2. >= np.sqrt(3) + rho_abs[...,2])).astype(np.bool)
|
||||
(2. >= np.sqrt(3) + rho_abs[...,2])).astype(bool)
|
||||
elif self.family == 'tetragonal':
|
||||
return (np.prod(1. >= rho_abs[...,:2],axis=-1) *
|
||||
(np.sqrt(2) >= rho_abs[...,0] + rho_abs[...,1]) *
|
||||
(np.sqrt(2) >= rho_abs[...,2] + 1.)).astype(np.bool)
|
||||
(np.sqrt(2) >= rho_abs[...,2] + 1.)).astype(bool)
|
||||
elif self.family == 'orthorhombic':
|
||||
return (np.prod(1. >= rho_abs,axis=-1)).astype(np.bool)
|
||||
return (np.prod(1. >= rho_abs,axis=-1)).astype(bool)
|
||||
elif self.family == 'monoclinic':
|
||||
return (1. >= rho_abs[...,1]).astype(np.bool)
|
||||
return (1. >= rho_abs[...,1]).astype(bool)
|
||||
else:
|
||||
return np.all(np.isfinite(rho_abs),axis=-1)
|
||||
|
||||
|
@ -524,28 +524,28 @@ class Orientation(Rotation):
|
|||
if self.family is None:
|
||||
raise ValueError('Missing crystal symmetry')
|
||||
|
||||
rho = self.as_Rodrigues_vector(compact=True)
|
||||
rho = self.as_Rodrigues_vector(compact=True)*(1.0-1.0e-9)
|
||||
|
||||
with np.errstate(invalid='ignore'):
|
||||
if self.family == 'cubic':
|
||||
return ((rho[...,0] >= rho[...,1]) &
|
||||
(rho[...,1] >= rho[...,2]) &
|
||||
(rho[...,2] >= 0)).astype(np.bool)
|
||||
(rho[...,2] >= 0)).astype(bool)
|
||||
elif self.family == 'hexagonal':
|
||||
return ((rho[...,0] >= rho[...,1]*np.sqrt(3)) &
|
||||
(rho[...,1] >= 0) &
|
||||
(rho[...,2] >= 0)).astype(np.bool)
|
||||
(rho[...,2] >= 0)).astype(bool)
|
||||
elif self.family == 'tetragonal':
|
||||
return ((rho[...,0] >= rho[...,1]) &
|
||||
(rho[...,1] >= 0) &
|
||||
(rho[...,2] >= 0)).astype(np.bool)
|
||||
(rho[...,2] >= 0)).astype(bool)
|
||||
elif self.family == 'orthorhombic':
|
||||
return ((rho[...,0] >= 0) &
|
||||
(rho[...,1] >= 0) &
|
||||
(rho[...,2] >= 0)).astype(np.bool)
|
||||
(rho[...,2] >= 0)).astype(bool)
|
||||
elif self.family == 'monoclinic':
|
||||
return ((rho[...,1] >= 0) &
|
||||
(rho[...,2] >= 0)).astype(np.bool)
|
||||
(rho[...,2] >= 0)).astype(bool)
|
||||
else:
|
||||
return np.ones_like(rho[...,0],dtype=bool)
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ from damask import Orientation
|
|||
from damask import Table
|
||||
from damask import lattice
|
||||
from damask import util
|
||||
from damask import grid_filters
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -221,6 +222,16 @@ class TestOrientation:
|
|||
for r, theO in zip(o.reduced.flatten(),o.flatten()):
|
||||
assert r == theO.reduced
|
||||
|
||||
@pytest.mark.parametrize('lattice',Orientation.crystal_families)
|
||||
def test_reduced_corner_cases(self,lattice):
|
||||
# test whether there is always a sym-eq rotation that falls into the FZ
|
||||
N = np.random.randint(10,40)
|
||||
size = np.ones(3)*np.pi**(2./3.)
|
||||
grid = grid_filters.coordinates0_node([N+1,N+1,N+1],size,-size*.5)
|
||||
evenly_distributed = Orientation.from_cubochoric(c=grid[:-2,:-2,:-2],lattice=lattice)
|
||||
assert evenly_distributed.shape == evenly_distributed.reduced.shape
|
||||
|
||||
|
||||
@pytest.mark.parametrize('lattice',Orientation.crystal_families)
|
||||
@pytest.mark.parametrize('shape',[(1),(2,3),(4,3,2)])
|
||||
@pytest.mark.parametrize('vector',np.array([[1,0,0],[1,2,3],[-1,1,-1]]))
|
||||
|
|
Loading…
Reference in New Issue