Merge branch 'Python3' into development

This commit is contained in:
Philip Eisenlohr 2016-10-31 11:28:40 -04:00
commit 4acfc73fa1
63 changed files with 577 additions and 597 deletions

View File

@ -84,7 +84,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def _quote(self, def _quote(self,
what): what):
"""quote empty or white space-containing output""" """Quote empty or white space-containing output"""
import re import re
return '{quote}{content}{quote}'.format( return '{quote}{content}{quote}'.format(
@ -107,7 +107,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def output_write(self, def output_write(self,
what): what):
"""aggregate a single row (string) or list of (possibly containing further lists of) rows into output""" """Aggregate a single row (string) or list of (possibly containing further lists of) rows into output"""
if not isinstance(what, (str, unicode)): if not isinstance(what, (str, unicode)):
try: try:
for item in what: self.output_write(item) for item in what: self.output_write(item)
@ -147,7 +147,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def head_read(self): def head_read(self):
""" """
get column labels Get column labels
by either reading the first row or, by either reading the first row or,
if keyword "head[*]" is present, the last line of the header if keyword "head[*]" is present, the last line of the header
@ -200,7 +200,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def head_write(self, def head_write(self,
header = True): header = True):
"""write current header information (info + labels)""" """Write current header information (info + labels)"""
head = ['{}\theader'.format(len(self.info)+self.__IO__['labeled'])] if header else [] head = ['{}\theader'.format(len(self.info)+self.__IO__['labeled'])] if header else []
head.append(self.info) head.append(self.info)
if self.__IO__['labeled']: head.append('\t'.join(map(self._quote,self.tags))) if self.__IO__['labeled']: head.append('\t'.join(map(self._quote,self.tags)))
@ -209,7 +209,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def head_getGeom(self): def head_getGeom(self):
"""interpret geom header""" """Interpret geom header"""
identifiers = { identifiers = {
'grid': ['a','b','c'], 'grid': ['a','b','c'],
'size': ['x','y','z'], 'size': ['x','y','z'],
@ -249,7 +249,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def head_putGeom(self,info): def head_putGeom(self,info):
"""translate geometry description to header""" """Translate geometry description to header"""
self.info_append([ self.info_append([
"grid\ta {}\tb {}\tc {}".format(*info['grid']), "grid\ta {}\tb {}\tc {}".format(*info['grid']),
"size\tx {}\ty {}\tz {}".format(*info['size']), "size\tx {}\ty {}\tz {}".format(*info['size']),
@ -262,7 +262,7 @@ class ASCIItable():
def labels_append(self, def labels_append(self,
what, what,
reset = False): reset = False):
"""add item or list to existing set of labels (and switch on labeling)""" """Add item or list to existing set of labels (and switch on labeling)"""
if not isinstance(what, (str, unicode)): if not isinstance(what, (str, unicode)):
try: try:
for item in what: self.labels_append(item) for item in what: self.labels_append(item)
@ -276,7 +276,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def labels_clear(self): def labels_clear(self):
"""delete existing labels and switch to no labeling""" """Delete existing labels and switch to no labeling"""
self.tags = [] self.tags = []
self.__IO__['labeled'] = False self.__IO__['labeled'] = False
@ -285,7 +285,7 @@ class ASCIItable():
tags = None, tags = None,
raw = False): raw = False):
""" """
tell abstract labels. Tell abstract labels.
"x" for "1_x","2_x",... unless raw output is requested. "x" for "1_x","2_x",... unless raw output is requested.
operates on object tags or given list. operates on object tags or given list.
@ -322,7 +322,7 @@ class ASCIItable():
def label_index(self, def label_index(self,
labels): labels):
""" """
tell index of column label(s). Tell index of column label(s).
return numpy array if asked for list of labels. return numpy array if asked for list of labels.
transparently deals with label positions implicitly given as numbers or their headings given as strings. transparently deals with label positions implicitly given as numbers or their headings given as strings.
@ -363,7 +363,7 @@ class ASCIItable():
def label_dimension(self, def label_dimension(self,
labels): labels):
""" """
tell dimension (length) of column label(s). Tell dimension (length) of column label(s).
return numpy array if asked for list of labels. return numpy array if asked for list of labels.
transparently deals with label positions implicitly given as numbers or their headings given as strings. transparently deals with label positions implicitly given as numbers or their headings given as strings.
@ -417,7 +417,7 @@ class ASCIItable():
def label_indexrange(self, def label_indexrange(self,
labels): labels):
""" """
tell index range for given label(s). Tell index range for given label(s).
return numpy array if asked for list of labels. return numpy array if asked for list of labels.
transparently deals with label positions implicitly given as numbers or their headings given as strings. transparently deals with label positions implicitly given as numbers or their headings given as strings.
@ -434,7 +434,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def info_append(self, def info_append(self,
what): what):
"""add item or list to existing set of infos""" """Add item or list to existing set of infos"""
if not isinstance(what, (str, unicode)): if not isinstance(what, (str, unicode)):
try: try:
for item in what: self.info_append(item) for item in what: self.info_append(item)
@ -445,7 +445,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def info_clear(self): def info_clear(self):
"""delete any info block""" """Delete any info block"""
self.info = [] self.info = []
# ------------------------------------------------------------------ # ------------------------------------------------------------------
@ -458,7 +458,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def data_skipLines(self, def data_skipLines(self,
count): count):
"""wind forward by count number of lines""" """Wind forward by count number of lines"""
for i in range(count): for i in range(count):
alive = self.data_read() alive = self.data_read()
@ -468,7 +468,7 @@ class ASCIItable():
def data_read(self, def data_read(self,
advance = True, advance = True,
respectLabels = True): respectLabels = True):
"""read next line (possibly buffered) and parse it into data array""" """Read next line (possibly buffered) and parse it into data array"""
import shlex import shlex
self.line = self.__IO__['readBuffer'].pop(0) if len(self.__IO__['readBuffer']) > 0 \ self.line = self.__IO__['readBuffer'].pop(0) if len(self.__IO__['readBuffer']) > 0 \
@ -490,7 +490,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def data_readArray(self, def data_readArray(self,
labels = []): labels = []):
"""read whole data of all (given) labels as numpy array""" """Read whole data of all (given) labels as numpy array"""
from collections import Iterable from collections import Iterable
try: try:
@ -527,7 +527,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def data_write(self, def data_write(self,
delimiter = '\t'): delimiter = '\t'):
"""write current data array and report alive output back""" """Write current data array and report alive output back"""
if len(self.data) == 0: return True if len(self.data) == 0: return True
if isinstance(self.data[0],list): if isinstance(self.data[0],list):
@ -539,7 +539,7 @@ class ASCIItable():
def data_writeArray(self, def data_writeArray(self,
fmt = None, fmt = None,
delimiter = '\t'): delimiter = '\t'):
"""write whole numpy array data""" """Write whole numpy array data"""
for row in self.data: for row in self.data:
try: try:
output = [fmt % value for value in row] if fmt else list(map(repr,row)) output = [fmt % value for value in row] if fmt else list(map(repr,row))
@ -562,7 +562,7 @@ class ASCIItable():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def data_set(self, def data_set(self,
what, where): what, where):
"""update data entry in column "where". grows data array if needed.""" """Update data entry in column "where". grows data array if needed."""
idx = -1 idx = -1
try: try:
idx = self.label_index(where) idx = self.label_index(where)
@ -589,7 +589,7 @@ class ASCIItable():
grid, grid,
type = 'i', type = 'i',
strict = False): strict = False):
"""read microstructure data (from .geom format)""" """Read microstructure data (from .geom format)"""
def datatype(item): def datatype(item):
return int(item) if type.lower() == 'i' else float(item) return int(item) if type.lower() == 'i' else float(item)

View File

@ -5,11 +5,12 @@ import math,numpy as np
### --- COLOR CLASS -------------------------------------------------- ### --- COLOR CLASS --------------------------------------------------
class Color(): class Color():
"""Conversion of colors between different color-spaces. """
Conversion of colors between different color-spaces.
Colors should be given in the form Colors should be given in the form Color('model',[vector]).
Color('model',[vector]).To convert and copy color from one space to other, use the methods To convert or copy color from one space to other, use the methods
convertTo('model') and expressAs('model')spectively convertTo('model') or expressAs('model'), respectively.
""" """
__slots__ = [ __slots__ = [
@ -85,9 +86,9 @@ class Color():
def _HSL2RGB(self): def _HSL2RGB(self):
""" """
convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue) Convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue)
with S,L,H,R,G,B running from 0 to 1 with all values in the range of 0 to 1
from http://en.wikipedia.org/wiki/HSL_and_HSV from http://en.wikipedia.org/wiki/HSL_and_HSV
""" """
if self.model != 'HSL': return if self.model != 'HSL': return
@ -111,9 +112,9 @@ class Color():
def _RGB2HSL(self): def _RGB2HSL(self):
""" """
convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance) Convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance)
with S,L,H,R,G,B running from 0 to 1 with all values in the range of 0 to 1
from http://130.113.54.154/~monger/hsl-rgb.html from http://130.113.54.154/~monger/hsl-rgb.html
""" """
if self.model != 'RGB': return if self.model != 'RGB': return
@ -151,7 +152,7 @@ class Color():
def _RGB2XYZ(self): def _RGB2XYZ(self):
""" """
convert R(ed) G(reen) B(lue) to CIE XYZ Convert R(ed) G(reen) B(lue) to CIE XYZ
with all values in the range of 0 to 1 with all values in the range of 0 to 1
from http://www.cs.rit.edu/~ncs/color/t_convert.html from http://www.cs.rit.edu/~ncs/color/t_convert.html
@ -180,12 +181,13 @@ class Color():
def _XYZ2RGB(self): def _XYZ2RGB(self):
""" """
convert CIE XYZ to R(ed) G(reen) B(lue) Convert CIE XYZ to R(ed) G(reen) B(lue)
with all values in the range of 0 to 1 with all values in the range of 0 to 1
from http://www.cs.rit.edu/~ncs/color/t_convert.html from http://www.cs.rit.edu/~ncs/color/t_convert.html
""" """
if self.model != 'XYZ': return if self.model != 'XYZ':
return
convert = np.array([[ 3.240479,-1.537150,-0.498535], convert = np.array([[ 3.240479,-1.537150,-0.498535],
[-0.969256, 1.875992, 0.041556], [-0.969256, 1.875992, 0.041556],
@ -211,7 +213,7 @@ class Color():
def _CIELAB2XYZ(self): def _CIELAB2XYZ(self):
""" """
convert CIE Lab to CIE XYZ Convert CIE Lab to CIE XYZ
with XYZ in the range of 0 to 1 with XYZ in the range of 0 to 1
from http://www.easyrgb.com/index.php?X=MATH&H=07#text7 from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
@ -235,10 +237,11 @@ class Color():
def _XYZ2CIELAB(self): def _XYZ2CIELAB(self):
""" """
convert CIE XYZ to CIE Lab Convert CIE XYZ to CIE Lab
with XYZ in the range of 0 to 1 with XYZ in the range of 0 to 1
from http://en.wikipedia.org/wiki/Lab_color_space, http://www.cs.rit.edu/~ncs/color/t_convert.html from http://en.wikipedia.org/wiki/Lab_color_space,
http://www.cs.rit.edu/~ncs/color/t_convert.html
""" """
if self.model != 'XYZ': return if self.model != 'XYZ': return
@ -258,7 +261,7 @@ class Color():
def _CIELAB2MSH(self): def _CIELAB2MSH(self):
""" """
convert CIE Lab to Msh colorspace Convert CIE Lab to Msh colorspace
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
""" """
@ -278,9 +281,9 @@ class Color():
def _MSH2CIELAB(self): def _MSH2CIELAB(self):
""" """
convert Msh colorspace to CIE Lab Convert Msh colorspace to CIE Lab
s,h in radians with s,h in radians
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
""" """
if self.model != 'MSH': return if self.model != 'MSH': return
@ -296,7 +299,7 @@ class Color():
class Colormap(): class Colormap():
"""perceptually uniform diverging or sequential colormaps.""" """Perceptually uniform diverging or sequential colormaps."""
__slots__ = [ __slots__ = [
'left', 'left',
@ -371,7 +374,7 @@ class Colormap():
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def __repr__(self): def __repr__(self):
"""left and right value of colormap""" """Left and right value of colormap"""
return 'Left: %s Right: %s'%(self.left,self.right) return 'Left: %s Right: %s'%(self.left,self.right)
@ -415,11 +418,7 @@ class Colormap():
return Color('MSH',Msh) return Color('MSH',Msh)
def interpolate_linear(lo, hi, frac): def interpolate_linear(lo, hi, frac):
""" """Linear interpolation between lo and hi color at given fraction; output in model of lo color."""
linearly interpolate color at given fraction between lower and
higher color in model of lower color
"""
interpolation = (1.0 - frac) * np.array(lo.color[:]) \ interpolation = (1.0 - frac) * np.array(lo.color[:]) \
+ frac * np.array(hi.expressAs(lo.model).color[:]) + frac * np.array(hi.expressAs(lo.model).color[:])
@ -443,10 +442,10 @@ class Colormap():
""" """
[RGB] colormap for use in paraview or gmsh, or as raw string, or array. [RGB] colormap for use in paraview or gmsh, or as raw string, or array.
arguments: name, format, steps, crop. Arguments: name, format, steps, crop.
format is one of (paraview, gmsh, raw, list). Format is one of (paraview, gmsh, raw, list).
crop selects a (sub)range in [-1.0,1.0]. Crop selects a (sub)range in [-1.0,1.0].
generates sequential map if one limiting color is either white or black, Generates sequential map if one limiting color is either white or black,
diverging map otherwise. diverging map otherwise.
""" """
format = format.lower() # consistent comparison basis format = format.lower() # consistent comparison basis
@ -456,9 +455,8 @@ class Colormap():
colormap = ['[\n {{\n "ColorSpace" : "RGB", "Name" : "{}",\n "RGBPoints" : ['.format(name)] \ colormap = ['[\n {{\n "ColorSpace" : "RGB", "Name" : "{}",\n "RGBPoints" : ['.format(name)] \
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f},'.format(i,color[0],color[1],color[2],) + [' {:4d},{:8.6f},{:8.6f},{:8.6f},'.format(i,color[0],color[1],color[2],)
for i,color in enumerate(colors[:-1])]\ for i,color in enumerate(colors[:-1])]\
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f} '.format(i+1,colors[-1][0],colors[-1][1],colors[-1][2],)]\ + [' {:4d},{:8.6f},{:8.6f},{:8.6f} '.format(len(colors),colors[-1][0],colors[-1][1],colors[-1][2],)]\
+ [' ]\n }\n]'] + [' ]\n }\n]']
elif format == 'gmsh': elif format == 'gmsh':
colormap = ['View.ColorTable = {'] \ colormap = ['View.ColorTable = {'] \
+ [',\n'.join(['{%s}'%(','.join([str(x*255.0) for x in color])) for color in colors])] \ + [',\n'.join(['{%s}'%(','.join([str(x*255.0) for x in color])) for color in colors])] \
@ -481,4 +479,3 @@ class Colormap():
raise NameError('unknown color export format') raise NameError('unknown color export format')
return '\n'.join(colormap) + '\n' if type(colormap[0]) is str else colormap return '\n'.join(colormap) + '\n' if type(colormap[0]) is str else colormap

View File

@ -104,7 +104,7 @@ class Material():
__slots__ = ['data'] __slots__ = ['data']
def __init__(self,verbose=True): def __init__(self,verbose=True):
"""generates ordered list of parts""" """Generates ordered list of parts"""
self.parts = [ self.parts = [
'homogenization', 'homogenization',
'microstructure', 'microstructure',
@ -122,7 +122,7 @@ class Material():
self.verbose = verbose self.verbose = verbose
def __repr__(self): def __repr__(self):
"""returns current configuration to be used as material.config""" """Returns current configuration to be used as material.config"""
me = [] me = []
for part in self.parts: for part in self.parts:
if self.verbose: print('doing '+part) if self.verbose: print('doing '+part)

View File

@ -24,7 +24,7 @@ except(NameError):
def lables_to_path(label, dsXMLPath=None): def lables_to_path(label, dsXMLPath=None):
"""read the xml definition file and return the path.""" """Read the XML definition file and return the path."""
if dsXMLPath is None: if dsXMLPath is None:
# use the default storage layout in DS_HDF5.xml # use the default storage layout in DS_HDF5.xml
if "h5table.pyc" in __file__: if "h5table.pyc" in __file__:
@ -48,31 +48,32 @@ def lables_to_path(label, dsXMLPath=None):
class H5Table(object): class H5Table(object):
"""light weight interface class for h5py """
Lightweight interface class for h5py
DESCRIPTION DESCRIPTION
----------- -----------
Interface/wrapper class for manipulating data in HDF5 with DAMASK Interface/wrapper class for manipulating data in HDF5 with DAMASK
specialized data structure. specialized data structure.
-->try to maintain a minimal API design. --> try to maintain a minimal API design.
PARAMETERS PARAMETERS
---------- ----------
h5f_path: str h5f_path: str
Absolute path the HDF5 file Absolute path of the HDF5 file
METHOD METHOD
------ ------
del_entry() -- Force delete attributes/group/datasets (Dangerous) del_entry() -- Force delete attributes/group/datasets (dangerous)
get_attr() -- Return attributes if possible get_attr() -- Return attributes if possible
add_attr() -- Add NEW attributes to dataset/group (no force overwrite) add_attr() -- Add NEW attributes to dataset/group (no force overwrite)
get_data() -- Retrieve data in numpy.ndarray get_data() -- Retrieve data in numpy.ndarray
add_data() -- Add dataset to H5 file add_data() -- Add dataset to H5 file
get_cmdlog() -- Return the command used to generate the data if possible. get_cmdlog() -- Return the command used to generate the data if possible
NOTE NOTE
---- ----
1. As an interface class, it uses the lazy evaluation design 1. As an interface class, it uses the lazy evaluation design
that read the data only when its absolutely necessary. that reads the data only when it is absolutely necessary.
2. The command line used to generate new feature is stored with 2. The command line used to generate each new feature is stored with
each dataset as dataset attribute. each dataset as dataset attribute.
""" """
@ -85,7 +86,7 @@ class H5Table(object):
h5f['/'].attrs['description'] = msg h5f['/'].attrs['description'] = msg
def del_entry(self, feature_name): def del_entry(self, feature_name):
"""delete entry in HDF5 table""" """Delete entry in HDF5 table"""
dataType, h5f_path = lables_to_path(feature_name, dataType, h5f_path = lables_to_path(feature_name,
dsXMLPath=self.dsXMLFile) dsXMLPath=self.dsXMLFile)
with h5py.File(self.h5f_path, 'a') as h5f: with h5py.File(self.h5f_path, 'a') as h5f:
@ -106,7 +107,7 @@ class H5Table(object):
h5f.flush() h5f.flush()
def get_data(self, feature_name=None): def get_data(self, feature_name=None):
"""extract dataset from HDF5 table and return it in a numpy array""" """Extract dataset from HDF5 table and return it in a numpy array"""
dataType, h5f_path = lables_to_path(feature_name, dataType, h5f_path = lables_to_path(feature_name,
dsXMLPath=self.dsXMLFile) dsXMLPath=self.dsXMLFile)
with h5py.File(self.h5f_path, 'a') as h5f: with h5py.File(self.h5f_path, 'a') as h5f:
@ -116,7 +117,7 @@ class H5Table(object):
return rst_data return rst_data
def add_data(self, feature_name, dataset, cmd_log=None): def add_data(self, feature_name, dataset, cmd_log=None):
"""adding new feature into existing HDF5 file""" """Adding new feature into existing HDF5 file"""
dataType, h5f_path = lables_to_path(feature_name, dataType, h5f_path = lables_to_path(feature_name,
dsXMLPath=self.dsXMLFile) dsXMLPath=self.dsXMLFile)
with h5py.File(self.h5f_path, 'a') as h5f: with h5py.File(self.h5f_path, 'a') as h5f:
@ -126,8 +127,7 @@ class H5Table(object):
# record its state as fresh in the cmd log. # record its state as fresh in the cmd log.
try: try:
del h5f[h5f_path] del h5f[h5f_path]
print "***deleting old {} from {}".format(feature_name, print("***deleting old {} from {}".format(feature_name,self.h5f_path))
self.h5f_path)
except: except:
# if no cmd log, None will used # if no cmd log, None will used
cmd_log = str(cmd_log) + " [FRESH]" cmd_log = str(cmd_log) + " [FRESH]"
@ -138,7 +138,7 @@ class H5Table(object):
h5f.flush() h5f.flush()
def get_cmdlog(self, feature_name): def get_cmdlog(self, feature_name):
"""get cmd history used to generate the feature""" """Get cmd history used to generate the feature"""
dataType, h5f_path = lables_to_path(feature_name, dataType, h5f_path = lables_to_path(feature_name,
dsXMLPath=self.dsXMLFile) dsXMLPath=self.dsXMLFile)
with h5py.File(self.h5f_path, 'a') as h5f: with h5py.File(self.h5f_path, 'a') as h5f:

View File

@ -28,21 +28,21 @@ class Rodrigues:
# ****************************************************************************************** # ******************************************************************************************
class Quaternion: class Quaternion:
""" """
Orientation represented as unit quaternion Orientation represented as unit quaternion.
All methods and naming conventions based on http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions All methods and naming conventions based on http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions.
w is the real part, (x, y, z) are the imaginary parts w is the real part, (x, y, z) are the imaginary parts.
Representation of rotation is in ACTIVE form! Representation of rotation is in ACTIVE form!
(derived directly or through angleAxis, Euler angles, or active matrix) (Derived directly or through angleAxis, Euler angles, or active matrix)
vector "a" (defined in coordinate system "A") is actively rotated to new coordinates "b" Vector "a" (defined in coordinate system "A") is actively rotated to new coordinates "b".
b = Q * a b = Q * a
b = np.dot(Q.asMatrix(),a) b = np.dot(Q.asMatrix(),a)
""" """
def __init__(self, def __init__(self,
quatArray = [1.0,0.0,0.0,0.0]): quatArray = [1.0,0.0,0.0,0.0]):
"""initializes to identity if not given""" """Initializes to identity if not given"""
self.w, \ self.w, \
self.x, \ self.x, \
self.y, \ self.y, \
@ -50,23 +50,23 @@ class Quaternion:
self.homomorph() self.homomorph()
def __iter__(self): def __iter__(self):
"""components""" """Components"""
return iter([self.w,self.x,self.y,self.z]) return iter([self.w,self.x,self.y,self.z])
def __copy__(self): def __copy__(self):
"""create copy""" """Create copy"""
Q = Quaternion([self.w,self.x,self.y,self.z]) Q = Quaternion([self.w,self.x,self.y,self.z])
return Q return Q
copy = __copy__ copy = __copy__
def __repr__(self): def __repr__(self):
"""readbable string""" """Readbable string"""
return 'Quaternion(real=%+.6f, imag=<%+.6f, %+.6f, %+.6f>)' % \ return 'Quaternion(real=%+.6f, imag=<%+.6f, %+.6f, %+.6f>)' % \
(self.w, self.x, self.y, self.z) (self.w, self.x, self.y, self.z)
def __pow__(self, exponent): def __pow__(self, exponent):
"""power""" """Power"""
omega = math.acos(self.w) omega = math.acos(self.w)
vRescale = math.sin(exponent*omega)/math.sin(omega) vRescale = math.sin(exponent*omega)/math.sin(omega)
Q = Quaternion() Q = Quaternion()
@ -77,7 +77,7 @@ class Quaternion:
return Q return Q
def __ipow__(self, exponent): def __ipow__(self, exponent):
"""in place power""" """In-place power"""
omega = math.acos(self.w) omega = math.acos(self.w)
vRescale = math.sin(exponent*omega)/math.sin(omega) vRescale = math.sin(exponent*omega)/math.sin(omega)
self.w = np.cos(exponent*omega) self.w = np.cos(exponent*omega)
@ -87,7 +87,7 @@ class Quaternion:
return self return self
def __mul__(self, other): def __mul__(self, other):
"""multiplication""" """Multiplication"""
try: # quaternion try: # quaternion
Aw = self.w Aw = self.w
Ax = self.x Ax = self.x
@ -135,7 +135,7 @@ class Quaternion:
return self.copy() return self.copy()
def __imul__(self, other): def __imul__(self, other):
"""in place multiplication""" """In-place multiplication"""
try: # Quaternion try: # Quaternion
Ax = self.x Ax = self.x
Ay = self.y Ay = self.y
@ -153,7 +153,7 @@ class Quaternion:
return self return self
def __div__(self, other): def __div__(self, other):
"""division""" """Division"""
if isinstance(other, (int,float)): if isinstance(other, (int,float)):
w = self.w / other w = self.w / other
x = self.x / other x = self.x / other
@ -164,7 +164,7 @@ class Quaternion:
return NotImplemented return NotImplemented
def __idiv__(self, other): def __idiv__(self, other):
"""in place division""" """In-place division"""
if isinstance(other, (int,float)): if isinstance(other, (int,float)):
self.w /= other self.w /= other
self.x /= other self.x /= other
@ -173,7 +173,7 @@ class Quaternion:
return self return self
def __add__(self, other): def __add__(self, other):
"""addition""" """Addition"""
if isinstance(other, Quaternion): if isinstance(other, Quaternion):
w = self.w + other.w w = self.w + other.w
x = self.x + other.x x = self.x + other.x
@ -184,7 +184,7 @@ class Quaternion:
return NotImplemented return NotImplemented
def __iadd__(self, other): def __iadd__(self, other):
"""in place division""" """In-place addition"""
if isinstance(other, Quaternion): if isinstance(other, Quaternion):
self.w += other.w self.w += other.w
self.x += other.x self.x += other.x
@ -193,7 +193,7 @@ class Quaternion:
return self return self
def __sub__(self, other): def __sub__(self, other):
"""subtraction""" """Subtraction"""
if isinstance(other, Quaternion): if isinstance(other, Quaternion):
Q = self.copy() Q = self.copy()
Q.w -= other.w Q.w -= other.w
@ -205,7 +205,7 @@ class Quaternion:
return self.copy() return self.copy()
def __isub__(self, other): def __isub__(self, other):
"""in place subtraction""" """In-place subtraction"""
if isinstance(other, Quaternion): if isinstance(other, Quaternion):
self.w -= other.w self.w -= other.w
self.x -= other.x self.x -= other.x
@ -214,7 +214,7 @@ class Quaternion:
return self return self
def __neg__(self): def __neg__(self):
"""additive inverse""" """Additive inverse"""
self.w = -self.w self.w = -self.w
self.x = -self.x self.x = -self.x
self.y = -self.y self.y = -self.y
@ -222,7 +222,7 @@ class Quaternion:
return self return self
def __abs__(self): def __abs__(self):
"""norm""" """Norm"""
return math.sqrt(self.w ** 2 + \ return math.sqrt(self.w ** 2 + \
self.x ** 2 + \ self.x ** 2 + \
self.y ** 2 + \ self.y ** 2 + \
@ -231,7 +231,7 @@ class Quaternion:
magnitude = __abs__ magnitude = __abs__
def __eq__(self,other): def __eq__(self,other):
"""equal at e-8 precision""" """Equal at e-8 precision"""
return (abs(self.w-other.w) < 1e-8 and \ return (abs(self.w-other.w) < 1e-8 and \
abs(self.x-other.x) < 1e-8 and \ abs(self.x-other.x) < 1e-8 and \
abs(self.y-other.y) < 1e-8 and \ abs(self.y-other.y) < 1e-8 and \
@ -243,12 +243,12 @@ class Quaternion:
abs(-self.z-other.z) < 1e-8) abs(-self.z-other.z) < 1e-8)
def __ne__(self,other): def __ne__(self,other):
"""not equal at e-8 precision""" """Not equal at e-8 precision"""
return not self.__eq__(self,other) return not self.__eq__(self,other)
def __cmp__(self,other): def __cmp__(self,other):
"""linear ordering""" """Linear ordering"""
return cmp(self.Rodrigues(),other.Rodrigues()) return (self.Rodrigues()>other.Rodrigues()) - (self.Rodrigues()<other.Rodrigues())
def magnitude_squared(self): def magnitude_squared(self):
return self.w ** 2 + \ return self.w ** 2 + \
@ -339,12 +339,12 @@ class Quaternion:
degrees = False, degrees = False,
standardRange = False): standardRange = False):
""" """
Orientation as Bunge-Euler angles Orientation as Bunge-Euler angles.
conversion of ACTIVE rotation to Euler angles taken from: Conversion of ACTIVE rotation to Euler angles taken from:
Melcher, A.; Unser, A.; Reichhardt, M.; Nestler, B.; Poetschke, M.; Selzer, M. Melcher, A.; Unser, A.; Reichhardt, M.; Nestler, B.; Poetschke, M.; Selzer, M.
Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulations Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulations
Technische Mechanik 30 (2010) pp 401--413 Technische Mechanik 30 (2010) pp 401--413.
""" """
angles = [0.0,0.0,0.0] angles = [0.0,0.0,0.0]
@ -508,10 +508,10 @@ class Quaternion:
@classmethod @classmethod
def new_interpolate(cls, q1, q2, t): def new_interpolate(cls, q1, q2, t):
""" """
interpolation Interpolation
see http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070017872_2007014421.pdf See http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070017872_2007014421.pdf
for (another?) way to interpolate quaternions for (another?) way to interpolate quaternions.
""" """
assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion) assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
Q = cls() Q = cls()
@ -555,7 +555,7 @@ class Symmetry:
lattices = [None,'orthorhombic','tetragonal','hexagonal','cubic',] lattices = [None,'orthorhombic','tetragonal','hexagonal','cubic',]
def __init__(self, symmetry = None): def __init__(self, symmetry = None):
"""lattice with given symmetry, defaults to None""" """Lattice with given symmetry, defaults to None"""
if isinstance(symmetry, str) and symmetry.lower() in Symmetry.lattices: if isinstance(symmetry, str) and symmetry.lower() in Symmetry.lattices:
self.lattice = symmetry.lower() self.lattice = symmetry.lower()
else: else:
@ -563,28 +563,30 @@ class Symmetry:
def __copy__(self): def __copy__(self):
"""copy""" """Copy"""
return self.__class__(self.lattice) return self.__class__(self.lattice)
copy = __copy__ copy = __copy__
def __repr__(self): def __repr__(self):
"""readbable string""" """Readbable string"""
return '%s' % (self.lattice) return '%s' % (self.lattice)
def __eq__(self, other): def __eq__(self, other):
"""equal""" """Equal"""
return self.lattice == other.lattice return self.lattice == other.lattice
def __neq__(self, other): def __neq__(self, other):
"""not equal""" """Not equal"""
return not self.__eq__(other) return not self.__eq__(other)
def __cmp__(self,other): def __cmp__(self,other):
"""linear ordering""" """Linear ordering"""
return cmp(Symmetry.lattices.index(self.lattice),Symmetry.lattices.index(other.lattice)) myOrder = Symmetry.lattices.index(self.lattice)
otherOrder = Symmetry.lattices.index(other.lattice)
return (myOrder > otherOrder) - (myOrder < otherOrder)
def symmetryQuats(self,who = []): def symmetryQuats(self,who = []):
"""List of symmetry operations as quaternions.""" """List of symmetry operations as quaternions."""
@ -742,39 +744,39 @@ class Symmetry:
if self.lattice == 'cubic': if self.lattice == 'cubic':
basis = {'improper':np.array([ [-1. , 0. , 1. ], basis = {'improper':np.array([ [-1. , 0. , 1. ],
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ], [ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
[ 0. , np.sqrt(3.) , 0. ] ]), [ 0. , np.sqrt(3.) , 0. ] ]),
'proper':np.array([ [ 0. , -1. , 1. ], 'proper':np.array([ [ 0. , -1. , 1. ],
[-np.sqrt(2.) , np.sqrt(2.) , 0. ], [-np.sqrt(2.) , np.sqrt(2.) , 0. ],
[ np.sqrt(3.) , 0. , 0. ] ]), [ np.sqrt(3. ) , 0. , 0. ] ]),
} }
elif self.lattice == 'hexagonal': elif self.lattice == 'hexagonal':
basis = {'improper':np.array([ [ 0. , 0. , 1. ], basis = {'improper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -np.sqrt(3.), 0. ], [ 1. , -np.sqrt(3.) , 0. ],
[ 0. , 2. , 0. ] ]), [ 0. , 2. , 0. ] ]),
'proper':np.array([ [ 0. , 0. , 1. ], 'proper':np.array([ [ 0. , 0. , 1. ],
[-1. , np.sqrt(3.) , 0. ], [-1. , np.sqrt(3.) , 0. ],
[ np.sqrt(3) , -1. , 0. ] ]), [ np.sqrt(3) , -1. , 0. ] ]),
} }
elif self.lattice == 'tetragonal': elif self.lattice == 'tetragonal':
basis = {'improper':np.array([ [ 0. , 0. , 1. ], basis = {'improper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -1. , 0. ], [ 1. , -1. , 0. ],
[ 0. , np.sqrt(2.), 0. ] ]), [ 0. , np.sqrt(2.) , 0. ] ]),
'proper':np.array([ [ 0. , 0. , 1. ], 'proper':np.array([ [ 0. , 0. , 1. ],
[-1. , 1. , 0. ], [-1. , 1. , 0. ],
[ np.sqrt(2.) , 0. , 0. ] ]), [ np.sqrt(2.) , 0. , 0. ] ]),
} }
elif self.lattice == 'orthorhombic': elif self.lattice == 'orthorhombic':
basis = {'improper':np.array([ [ 0., 0., 1.], basis = {'improper':np.array([ [ 0., 0., 1.],
[ 1., 0., 0.], [ 1., 0., 0.],
[ 0., 1., 0.] ]), [ 0., 1., 0.] ]),
'proper':np.array([ [ 0., 0., 1.], 'proper':np.array([ [ 0., 0., 1.],
[-1., 0., 0.], [-1., 0., 0.],
[ 0., 1., 0.] ]), [ 0., 1., 0.] ]),
} }
else: else:
basis = {'improper':np.zeros((3,3),dtype=float), basis = {'improper': np.zeros((3,3),dtype=float),
'proper':np.zeros((3,3),dtype=float), 'proper': np.zeros((3,3),dtype=float),
} }
if np.all(basis == 0.0): if np.all(basis == 0.0):
@ -845,14 +847,14 @@ class Orientation:
self.symmetry = Symmetry(symmetry) self.symmetry = Symmetry(symmetry)
def __copy__(self): def __copy__(self):
"""copy""" """Copy"""
return self.__class__(quaternion=self.quaternion,symmetry=self.symmetry.lattice) return self.__class__(quaternion=self.quaternion,symmetry=self.symmetry.lattice)
copy = __copy__ copy = __copy__
def __repr__(self): def __repr__(self):
"""value as all implemented representations""" """Value as all implemented representations"""
return 'Symmetry: %s\n' % (self.symmetry) + \ return 'Symmetry: %s\n' % (self.symmetry) + \
'Quaternion: %s\n' % (self.quaternion) + \ 'Quaternion: %s\n' % (self.quaternion) + \
'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \ 'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \
@ -937,7 +939,7 @@ class Orientation:
axis, axis,
proper = False, proper = False,
SST = True): SST = True):
"""axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)""" """Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)"""
if SST: # pole requested to be within SST if SST: # pole requested to be within SST
for i,q in enumerate(self.symmetry.equivalentQuaternions(self.quaternion)): # test all symmetric equivalent quaternions for i,q in enumerate(self.symmetry.equivalentQuaternions(self.quaternion)): # test all symmetric equivalent quaternions
pole = q.conjugated()*axis # align crystal direction to axis pole = q.conjugated()*axis # align crystal direction to axis
@ -963,7 +965,7 @@ class Orientation:
orientations, orientations,
multiplicity = []): multiplicity = []):
""" """
average orientation Average orientation
ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman. ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman.
Averaging Quaternions, Averaging Quaternions,
@ -996,7 +998,7 @@ class Orientation:
direction, direction,
targetSymmetry = None): targetSymmetry = None):
""" """
orientation relationship Orientation relationship
positive number: fcc --> bcc positive number: fcc --> bcc
negative number: bcc --> fcc negative number: bcc --> fcc

View File

@ -13,7 +13,6 @@ import numpy as np
import py_post # MSC closed source module to access marc result files import py_post # MSC closed source module to access marc result files
class MARC_POST(): class MARC_POST():
import re
def __init__(self): def __init__(self):
self.projdir='./' self.projdir='./'
@ -383,7 +382,6 @@ class VTK_WRITER():
to plot semi-transparent iso-surfaces. to plot semi-transparent iso-surfaces.
""" """
import re
def __init__(self): def __init__(self):
self.p=MARC_POST() # self.p self.p=MARC_POST() # self.p

View File

@ -1,6 +1,5 @@
# -*- coding: UTF-8 no BOM -*- # -*- coding: UTF-8 no BOM -*-
import os,sys,shutil import os,sys,shutil
import logging,logging.config import logging,logging.config
import damask import damask
@ -191,7 +190,7 @@ class Test():
def copy(self, mapA, mapB, def copy(self, mapA, mapB,
A = [], B = []): A = [], B = []):
""" """
copy list of files from (mapped) source to target. Copy list of files from (mapped) source to target.
mapA/B is one of self.fileInX. mapA/B is one of self.fileInX.
""" """
@ -382,7 +381,7 @@ class Test():
line0 += 1 line0 += 1
for i in range(dataLength): for i in range(dataLength):
if not perLine: norm[i] = [np.max(norm[i]) for j in xrange(line0-len(skipLines))] if not perLine: norm[i] = [np.max(norm[i]) for j in range(line0-len(skipLines))]
data[i] = np.reshape(data[i],[line0-len(skipLines),length[i]]) data[i] = np.reshape(data[i],[line0-len(skipLines),length[i]])
if any(norm[i]) == 0.0 or absTol[i]: if any(norm[i]) == 0.0 or absTol[i]:
norm[i] = [1.0 for j in range(line0-len(skipLines))] norm[i] = [1.0 for j in range(line0-len(skipLines))]
@ -425,7 +424,7 @@ class Test():
stdTol = 1.0e-6, stdTol = 1.0e-6,
preFilter = 1.0e-9): preFilter = 1.0e-9):
""" """
calculate statistics of tables Calculate statistics of tables
threshold can be used to ignore small values (a negative number disables this feature) threshold can be used to ignore small values (a negative number disables this feature)
""" """
@ -478,7 +477,7 @@ class Test():
rtol = 1e-5, rtol = 1e-5,
atol = 1e-8, atol = 1e-8,
debug = False): debug = False):
"""compare multiple tables with np.allclose""" """Compare multiple tables with np.allclose"""
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
files = [str(files)] files = [str(files)]

View File

@ -1,6 +1,5 @@
# -*- coding: UTF-8 no BOM -*- # -*- coding: UTF-8 no BOM -*-
# damask utility functions
import sys,time,random,threading,os,subprocess,shlex import sys,time,random,threading,os,subprocess,shlex
import numpy as np import numpy as np
from optparse import Option from optparse import Option
@ -36,7 +35,7 @@ class bcolors:
# ----------------------------- # -----------------------------
def srepr(arg,glue = '\n'): def srepr(arg,glue = '\n'):
"""joins arguments as individual lines""" """Joins arguments as individual lines"""
if (not hasattr(arg, "strip") and if (not hasattr(arg, "strip") and
hasattr(arg, "__getitem__") or hasattr(arg, "__getitem__") or
hasattr(arg, "__iter__")): hasattr(arg, "__iter__")):
@ -45,21 +44,21 @@ def srepr(arg,glue = '\n'):
# ----------------------------- # -----------------------------
def croak(what, newline = True): def croak(what, newline = True):
"""writes formated to stderr""" """Writes formated to stderr"""
sys.stderr.write(srepr(what,glue = '\n') + ('\n' if newline else '')) sys.stderr.write(srepr(what,glue = '\n') + ('\n' if newline else ''))
sys.stderr.flush() sys.stderr.flush()
# ----------------------------- # -----------------------------
def report(who = None, def report(who = None,
what = None): what = None):
"""reports script and file name""" """Reports script and file name"""
croak( (emph(who)+': ' if who else '') + (what if what else '') ) croak( (emph(who)+': ' if who else '') + (what if what else '') )
# ----------------------------- # -----------------------------
def report_geom(info, def report_geom(info,
what = ['grid','size','origin','homogenization','microstructures']): what = ['grid','size','origin','homogenization','microstructures']):
"""reports (selected) geometry information""" """Reports (selected) geometry information"""
output = { output = {
'grid' : 'grid a b c: {}'.format(' x '.join(map(str,info['grid' ]))), 'grid' : 'grid a b c: {}'.format(' x '.join(map(str,info['grid' ]))),
'size' : 'size x y z: {}'.format(' x '.join(map(str,info['size' ]))), 'size' : 'size x y z: {}'.format(' x '.join(map(str,info['size' ]))),
@ -71,24 +70,24 @@ def report_geom(info,
# ----------------------------- # -----------------------------
def emph(what): def emph(what):
"""boldens string""" """Boldens string"""
return bcolors.BOLD+srepr(what)+bcolors.ENDC return bcolors.BOLD+srepr(what)+bcolors.ENDC
# ----------------------------- # -----------------------------
def deemph(what): def deemph(what):
"""dims string""" """Dims string"""
return bcolors.DIM+srepr(what)+bcolors.ENDC return bcolors.DIM+srepr(what)+bcolors.ENDC
# ----------------------------- # -----------------------------
def delete(what): def delete(what):
"""dims string""" """Dims string"""
return bcolors.DIM+srepr(what)+bcolors.ENDC return bcolors.DIM+srepr(what)+bcolors.ENDC
# ----------------------------- # -----------------------------
def execute(cmd, def execute(cmd,
streamIn = None, streamIn = None,
wd = './'): wd = './'):
"""executes a command in given directory and returns stdout and stderr for optional stdin""" """Executes a command in given directory and returns stdout and stderr for optional stdin"""
initialPath = os.getcwd() initialPath = os.getcwd()
os.chdir(wd) os.chdir(wd)
process = subprocess.Popen(shlex.split(cmd), process = subprocess.Popen(shlex.split(cmd),
@ -127,7 +126,7 @@ def gridIndex(location,res):
# ----------------------------- # -----------------------------
class extendableOption(Option): class extendableOption(Option):
""" """
used for definition of new option parser action 'extend', which enables to take multiple option arguments Used for definition of new option parser action 'extend', which enables to take multiple option arguments
taken from online tutorial http://docs.python.org/library/optparse.html taken from online tutorial http://docs.python.org/library/optparse.html
""" """
@ -146,7 +145,7 @@ class extendableOption(Option):
# ----------------------------- # -----------------------------
class backgroundMessage(threading.Thread): class backgroundMessage(threading.Thread):
"""reporting with animation to indicate progress""" """Reporting with animation to indicate progress"""
choices = {'bounce': ['_', 'o', 'O', '°', '', '', '°', 'O', 'o', '_'], choices = {'bounce': ['_', 'o', 'O', '°', '', '', '°', 'O', 'o', '_'],
'spin': ['', '', '', ''], 'spin': ['', '', '', ''],
@ -168,7 +167,7 @@ class backgroundMessage(threading.Thread):
} }
def __init__(self,symbol = None,wait = 0.1): def __init__(self,symbol = None,wait = 0.1):
"""sets animation symbol""" """Sets animation symbol"""
super(backgroundMessage, self).__init__() super(backgroundMessage, self).__init__()
self._stop = threading.Event() self._stop = threading.Event()
self.message = '' self.message = ''
@ -179,7 +178,7 @@ class backgroundMessage(threading.Thread):
self.waittime = wait self.waittime = wait
def __quit__(self): def __quit__(self):
"""cleans output""" """Cleans output"""
length = len(self.symbols[self.counter] + self.gap + self.message) length = len(self.symbols[self.counter] + self.gap + self.message)
sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length) sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length)
sys.stderr.write('') sys.stderr.write('')
@ -282,7 +281,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
return grad return grad
def _int2extFunc(bounds): def _int2extFunc(bounds):
"""transform internal parameters into external parameters.""" """Transform internal parameters into external parameters."""
local = [_int2extLocal(b) for b in bounds] local = [_int2extLocal(b) for b in bounds]
def _transform_i2e(p_int): def _transform_i2e(p_int):
p_ext = np.empty_like(p_int) p_ext = np.empty_like(p_int)
@ -291,7 +290,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
return _transform_i2e return _transform_i2e
def _ext2intFunc(bounds): def _ext2intFunc(bounds):
"""transform external parameters into internal parameters.""" """Transform external parameters into internal parameters."""
local = [_ext2intLocal(b) for b in bounds] local = [_ext2intLocal(b) for b in bounds]
def _transform_e2i(p_ext): def _transform_e2i(p_ext):
p_int = np.empty_like(p_ext) p_int = np.empty_like(p_ext)
@ -300,7 +299,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
return _transform_e2i return _transform_e2i
def _int2extLocal(bound): def _int2extLocal(bound):
"""transform a single internal parameter to an external parameter.""" """Transform a single internal parameter to an external parameter."""
lower, upper = bound lower, upper = bound
if lower is None and upper is None: # no constraints if lower is None and upper is None: # no constraints
return lambda x: x return lambda x: x
@ -312,7 +311,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
return lambda x: lower + ((upper - lower)/2.0)*(np.sin(x) + 1.0) return lambda x: lower + ((upper - lower)/2.0)*(np.sin(x) + 1.0)
def _ext2intLocal(bound): def _ext2intLocal(bound):
"""transform a single external parameter to an internal parameter.""" """Transform a single external parameter to an internal parameter."""
lower, upper = bound lower, upper = bound
if lower is None and upper is None: # no constraints if lower is None and upper is None: # no constraints
return lambda x: x return lambda x: x

View File

@ -28,7 +28,7 @@ def runFit(exponent, eqStress, dimension, criterion):
nParas = nParas-nExpo nParas = nParas-nExpo
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:nParas] fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:nParas]
for i in xrange(nParas): for i in range(nParas):
temp = fitCriteria[criterion]['bound'][dDim][i] temp = fitCriteria[criterion]['bound'][dDim][i]
if fitCriteria[criterion]['bound'][dDim][i] == (None,None): if fitCriteria[criterion]['bound'][dDim][i] == (None,None):
Guess.append(1.0) Guess.append(1.0)
@ -42,8 +42,8 @@ def runFit(exponent, eqStress, dimension, criterion):
myLoad = Loadcase(options.load[0],options.load[1],options.load[2], myLoad = Loadcase(options.load[0],options.load[1],options.load[2],
nSet = 10, dimension = dimension, vegter = options.criterion=='vegter') nSet = 10, dimension = dimension, vegter = options.criterion=='vegter')
stressAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))] stressAll= [np.zeros(0,'d').reshape(0,0) for i in range(int(options.yieldValue[2]))]
strainAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))] strainAll= [np.zeros(0,'d').reshape(0,0) for i in range(int(options.yieldValue[2]))]
myFit = Criterion(exponent,eqStress, dimension, criterion) myFit = Criterion(exponent,eqStress, dimension, criterion)
for t in range(options.threads): for t in range(options.threads):
@ -57,12 +57,12 @@ def runFit(exponent, eqStress, dimension, criterion):
def principalStresses(sigmas): def principalStresses(sigmas):
""" """
computes principal stresses (i.e. eigenvalues) for a set of Cauchy stresses. Computes principal stresses (i.e. eigenvalues) for a set of Cauchy stresses.
sorted in descending order. sorted in descending order.
""" """
lambdas=np.zeros(0,'d') lambdas=np.zeros(0,'d')
for i in xrange(np.shape(sigmas)[1]): for i in range(np.shape(sigmas)[1]):
eigenvalues = np.linalg.eigvalsh(sym6toT33(sigmas[:,i])) eigenvalues = np.linalg.eigvalsh(sym6toT33(sigmas[:,i]))
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3)) lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3))
@ -82,7 +82,7 @@ def principalStress(p):
t1 + t2*np.cos(phi+np.pi*2.0/3.0), t1 + t2*np.cos(phi+np.pi*2.0/3.0),
t1 + t2*np.cos(phi+np.pi*4.0/3.0)]) t1 + t2*np.cos(phi+np.pi*4.0/3.0)])
def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False): def principalStrs_Der(p, s, dim, Karafillis=False):
"""Derivative of principal stress with respect to stress""" """Derivative of principal stress with respect to stress"""
third = 1.0/3.0 third = 1.0/3.0
third2 = 2.0*third third2 = 2.0*third
@ -111,31 +111,31 @@ def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False):
dSdI = np.array([dSidIj(phi),dSidIj(phi+np.pi*2.0/3.0),dSidIj(phi+np.pi*4.0/3.0)]) # i=1,2,3; j=1,2,3 dSdI = np.array([dSidIj(phi),dSidIj(phi+np.pi*2.0/3.0),dSidIj(phi+np.pi*4.0/3.0)]) # i=1,2,3; j=1,2,3
# calculate the derivation of principal stress with regards to the anisotropic coefficients # calculate the derivation of principal stress with regards to the anisotropic coefficients
one = np.ones_like(s1); zero = np.zeros_like(s1); num = len(s1) one = np.ones_like(s); zero = np.zeros_like(s); num = len(s)
dIdp = np.array([[one, one, one, zero, zero, zero], dIdp = np.array([[one, one, one, zero, zero, zero],
[p[1]+p[2], p[2]+p[0], p[0]+p[1], -2.0*p[3], -2.0*p[4], -2.0*p[5]], [p[1]+p[2], p[2]+p[0], p[0]+p[1], -2.0*p[3], -2.0*p[4], -2.0*p[5]],
[p[1]*p[2]-p[4]**2, p[2]*p[0]-p[5]**2, p[0]*p[1]-p[3]**2, [p[1]*p[2]-p[4]**2, p[2]*p[0]-p[5]**2, p[0]*p[1]-p[3]**2,
-2.0*p[3]*p[2]+2.0*p[4]*p[5], -2.0*p[4]*p[0]+2.0*p[5]*p[3], -2.0*p[5]*p[1]+2.0*p[3]*p[4]] ]) -2.0*p[3]*p[2]+2.0*p[4]*p[5], -2.0*p[4]*p[0]+2.0*p[5]*p[3], -2.0*p[5]*p[1]+2.0*p[3]*p[4]] ])
if Karafillis: if Karafillis:
dpdc = np.array([[zero,s1-s3,s1-s2], [s2-s3,zero,s2-s1], [s3-s2,s3-s1,zero]])/3.0 dpdc = np.array([[zero,s[0]-s[2],s[0]-s[1]], [s[1]-s[2],zero,s[1]-s[0]], [s[2]-s[1],s[2]-s[0],zero]])/3.0
dSdp = np.array([np.dot(dSdI[:,:,i],dIdp[:,:,i]).T for i in xrange(num)]).T dSdp = np.array([np.dot(dSdI[:,:,i],dIdp[:,:,i]).T for i in range(num)]).T
if dim == 2: if dim == 2:
temp = np.vstack([dSdp[:,3]*s4]).T.reshape(num,1,3).T temp = np.vstack([dSdp[:,3]*s[3]]).T.reshape(num,1,3).T
else: else:
temp = np.vstack([dSdp[:,3]*s4,dSdp[:,4]*s5,dSdp[:,5]*s6]).T.reshape(num,3,3).T temp = np.vstack([dSdp[:,3]*s[3],dSdp[:,4]*s[4],dSdp[:,5]*s[5]]).T.reshape(num,3,3).T
return np.concatenate((np.array([np.dot(dSdp[:,0:3,i], dpdc[:,:,i]).T for i in xrange(num)]).T, return np.concatenate((np.array([np.dot(dSdp[:,0:3,i], dpdc[:,:,i]).T for i in range(num)]).T,
temp), axis=1) temp), axis=1)
else: else:
if dim == 2: if dim == 2:
dIdc=np.array([[-dIdp[i,0]*s2, -dIdp[i,1]*s1, -dIdp[i,1]*s3, dIdc=np.array([[-dIdp[i,0]*s[1], -dIdp[i,1]*s[0], -dIdp[i,1]*s[2],
-dIdp[i,2]*s2, -dIdp[i,2]*s1, -dIdp[i,0]*s3, -dIdp[i,2]*s[1], -dIdp[i,2]*s[0], -dIdp[i,0]*s[2],
dIdp[i,3]*s4 ] for i in xrange(3)]) dIdp[i,3]*s[3] ] for i in range(3)])
else: else:
dIdc=np.array([[-dIdp[i,0]*s2, -dIdp[i,1]*s1, -dIdp[i,1]*s3, dIdc=np.array([[-dIdp[i,0]*s[1], -dIdp[i,1]*s[0], -dIdp[i,1]*s[2],
-dIdp[i,2]*s2, -dIdp[i,2]*s1, -dIdp[i,0]*s3, -dIdp[i,2]*s[1], -dIdp[i,2]*s[0], -dIdp[i,0]*s[2],
dIdp[i,3]*s4, dIdp[i,4]*s5, dIdp[i,5]*s6 ] for i in xrange(3)]) dIdp[i,3]*s[3], dIdp[i,4]*s[4], dIdp[i,5]*s[5] ] for i in range(3)])
return np.array([np.dot(dSdI[:,:,i],dIdc[:,:,i]).T for i in xrange(num)]).T return np.array([np.dot(dSdI[:,:,i],dIdc[:,:,i]).T for i in range(num)]).T
def invariant(sigmas): def invariant(sigmas):
I = np.zeros(3) I = np.zeros(3)
@ -194,7 +194,7 @@ class Vegter(object):
refNormals = np.empty([13,2]) refNormals = np.empty([13,2])
refPts[12] = refPtsQtr[0] refPts[12] = refPtsQtr[0]
refNormals[12] = refNormalsQtr[0] refNormals[12] = refNormalsQtr[0]
for i in xrange(3): for i in range(3):
refPts[i] = refPtsQtr[i] refPts[i] = refPtsQtr[i]
refPts[i+3] = refPtsQtr[3-i][::-1] refPts[i+3] = refPtsQtr[3-i][::-1]
refPts[i+6] =-refPtsQtr[i] refPts[i+6] =-refPtsQtr[i]
@ -207,7 +207,7 @@ class Vegter(object):
def _getHingePoints(self): def _getHingePoints(self):
""" """
calculate the hinge point B according to the reference points A,C and the normals n,m Calculate the hinge point B according to the reference points A,C and the normals n,m
refPoints = np.array([[p1_x, p1_y], [p2_x, p2_y]]); refPoints = np.array([[p1_x, p1_y], [p2_x, p2_y]]);
refNormals = np.array([[n1_x, n1_y], [n2_x, n2_y]]) refNormals = np.array([[n1_x, n1_y], [n2_x, n2_y]])
@ -220,7 +220,7 @@ class Vegter(object):
B1 = (m2*(n1*A1 + n2*A2) - n2*(m1*C1 + m2*C2))/(n1*m2-m1*n2) B1 = (m2*(n1*A1 + n2*A2) - n2*(m1*C1 + m2*C2))/(n1*m2-m1*n2)
B2 = (n1*(m1*C1 + m2*C2) - m1*(n1*A1 + n2*A2))/(n1*m2-m1*n2) B2 = (n1*(m1*C1 + m2*C2) - m1*(n1*A1 + n2*A2))/(n1*m2-m1*n2)
return np.array([B1,B2]) return np.array([B1,B2])
return np.array([hingPoint(self.refPts[i:i+2],self.refNormals[i:i+2]) for i in xrange(len(self.refPts)-1)]) return np.array([hingPoint(self.refPts[i:i+2],self.refNormals[i:i+2]) for i in range(len(self.refPts)-1)])
def getBezier(self): def getBezier(self):
def bezier(R,H): def bezier(R,H):
@ -228,7 +228,7 @@ class Vegter(object):
for mu in np.linspace(0.0,1.0,self.nspace): for mu in np.linspace(0.0,1.0,self.nspace):
b.append(np.array(R[0]*np.ones_like(mu) + 2.0*mu*(H - R[0]) + mu**2*(R[0]+R[1] - 2.0*H))) b.append(np.array(R[0]*np.ones_like(mu) + 2.0*mu*(H - R[0]) + mu**2*(R[0]+R[1] - 2.0*H)))
return b return b
return np.array([bezier(self.refPts[i:i+2],self.hingePts[i]) for i in xrange(len(self.refPts)-1)]) return np.array([bezier(self.refPts[i:i+2],self.hingePts[i]) for i in range(len(self.refPts)-1)])
def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0): def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
"""0-pure shear; 1-uniaxial; 2-plane strain; 3-equi-biaxial""" """0-pure shear; 1-uniaxial; 2-plane strain; 3-equi-biaxial"""
@ -238,7 +238,7 @@ def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
lmatrix = np.empty([nset,nset]) lmatrix = np.empty([nset,nset])
theta = np.linspace(0.0,np.pi/2,nset) theta = np.linspace(0.0,np.pi/2,nset)
for i,th in enumerate(theta): for i,th in enumerate(theta):
lmatrix[i] = np.array([np.cos(2*j*th) for j in xrange(nset)]) lmatrix[i] = np.array([np.cos(2*j*th) for j in range(nset)])
return np.linalg.solve(lmatrix, r) return np.linalg.solve(lmatrix, r)
nps = len(stress) nps = len(stress)
@ -250,10 +250,10 @@ def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
strsSet = stress.reshape(nset,4,2) strsSet = stress.reshape(nset,4,2)
refPts = np.empty([4,2]) refPts = np.empty([4,2])
fouriercoeffs = np.array([np.cos(2.0*i*theta) for i in xrange(nset)]) fouriercoeffs = np.array([np.cos(2.0*i*theta) for i in range(nset)])
for i in xrange(2): for i in range(2):
refPts[3,i] = sum(strsSet[:,3,i])/nset refPts[3,i] = sum(strsSet[:,3,i])/nset
for j in xrange(3): for j in range(3):
refPts[j,i] = np.dot(getFourierParas(strsSet[:,j,i]), fouriercoeffs) refPts[j,i] = np.dot(getFourierParas(strsSet[:,j,i]), fouriercoeffs)
@ -752,9 +752,9 @@ def Yld2000(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
(4.0*D[0]-4.0*D[2]-4.0*D[1]+ D[3])*s11 + (8.0*D[1]-2.0*D[3]-2.0*D[0]+2.0*D[2])*s22, (4.0*D[0]-4.0*D[2]-4.0*D[1]+ D[3])*s11 + (8.0*D[1]-2.0*D[3]-2.0*D[0]+2.0*D[2])*s22,
9.0*D[4]*s12 ])/9.0 9.0*D[4]*s12 ])/9.0
def priStrs((sx,sy,sxy)): def priStrs(s):
temp = np.sqrt( (sx-sy)**2 + 4.0*sxy**2 ) temp = np.sqrt( (s[0]-s[1])**2 + 4.0*s[2]**2 )
return 0.5*(sx+sy + temp), 0.5*(sx+sy - temp) return 0.5*(s[0]+s[1] + temp), 0.5*(s[0]+s[1] - temp)
m2 = m/2.0; m21 = m2 - 1.0 m2 = m/2.0; m21 = m2 - 1.0
(X1,X2), (Y1,Y2) = priStrs(X), priStrs(Y) # Principal values of X, Y (X1,X2), (Y1,Y2) = priStrs(X), priStrs(Y) # Principal values of X, Y
phi1s, phi21s, phi22s = (X1-X2)**2, (2.0*Y2+Y1)**2, (2.0*Y1+Y2)**2 phi1s, phi21s, phi22s = (X1-X2)**2, (2.0*Y2+Y1)**2, (2.0*Y1+Y2)**2
@ -768,10 +768,11 @@ def Yld2000(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
drdl, drdm = r/m/left, r*math_ln(0.5*left)*(-1.0/m/m) #/(-m*m) drdl, drdm = r/m/left, r*math_ln(0.5*left)*(-1.0/m/m) #/(-m*m)
dldm = ( phi1*math_ln(phi1s) + phi21*math_ln(phi21s) + phi22*math_ln(phi22s) )*0.5 dldm = ( phi1*math_ln(phi1s) + phi21*math_ln(phi21s) + phi22*math_ln(phi22s) )*0.5
zero = np.zeros_like(s11); num = len(s11) zero = np.zeros_like(s11); num = len(s11)
def dPrincipalds((X1,X2,X12)): # derivative of principla with respect to stress def dPrincipalds(X):
temp = 1.0/np.sqrt( (X1-X2)**2 + 4.0*X12**2 ) """Derivative of principla with respect to stress"""
dP1dsi = 0.5*np.array([ 1.0+temp*(X1-X2), 1.0-temp*(X1-X2), temp*4.0*X12]) temp = 1.0/np.sqrt( (X[0]-X[1])**2 + 4.0*X[2]**2 )
dP2dsi = 0.5*np.array([ 1.0-temp*(X1-X2), 1.0+temp*(X1-X2), -temp*4.0*X12]) dP1dsi = 0.5*np.array([ 1.0+temp*(X[0]-X[1]), 1.0-temp*(X[0]-X[1]), temp*4.0*X[2]])
dP2dsi = 0.5*np.array([ 1.0-temp*(X[0]-X[1]), 1.0+temp*(X[0]-X[1]), -temp*4.0*X[2]])
return np.array([dP1dsi, dP2dsi]) return np.array([dP1dsi, dP2dsi])
dXdXi, dYdYi = dPrincipalds(X), dPrincipalds(Y) dXdXi, dYdYi = dPrincipalds(X), dPrincipalds(Y)
@ -782,14 +783,14 @@ def Yld2000(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
[ 4.0*s11-2.0*s22, -4.0*s11+8.0*s22, -4.0*s11+2.0*s22, s11-2.0*s22, zero ], #dY22dD [ 4.0*s11-2.0*s22, -4.0*s11+8.0*s22, -4.0*s11+2.0*s22, s11-2.0*s22, zero ], #dY22dD
[ zero, zero, zero, zero, 9.0*s12 ] ])/9.0 #dY12dD [ zero, zero, zero, zero, 9.0*s12 ] ])/9.0 #dY12dD
dXdC=np.array([np.dot(dXdXi[:,:,i], dXidC[:,:,i]).T for i in xrange(num)]).T dXdC=np.array([np.dot(dXdXi[:,:,i], dXidC[:,:,i]).T for i in range(num)]).T
dYdD=np.array([np.dot(dYdYi[:,:,i], dYidD[:,:,i]).T for i in xrange(num)]).T dYdD=np.array([np.dot(dYdYi[:,:,i], dYidD[:,:,i]).T for i in range(num)]).T
dldX = m*np.array([ phi1s**m21*(X1-X2), phi1s**m21*(X2-X1)]) dldX = m*np.array([ phi1s**m21*(X1-X2), phi1s**m21*(X2-X1)])
dldY = m*np.array([phi21s**m21*(2.0*Y2+Y1) + 2.0*phi22s**m21*(2.0*Y1+Y2), \ dldY = m*np.array([phi21s**m21*(2.0*Y2+Y1) + 2.0*phi22s**m21*(2.0*Y1+Y2), \
phi22s**m21*(2.0*Y1+Y2) + 2.0*phi21s**m21*(2.0*Y2+Y1) ]) phi22s**m21*(2.0*Y1+Y2) + 2.0*phi21s**m21*(2.0*Y2+Y1) ])
jC = drdl*np.array([np.dot(dldX[:,i], dXdC[:,:,i]) for i in xrange(num)]).T jC = drdl*np.array([np.dot(dldX[:,i], dXdC[:,:,i]) for i in range(num)]).T
jD = drdl*np.array([np.dot(dldY[:,i], dYdD[:,:,i]) for i in xrange(num)]).T jD = drdl*np.array([np.dot(dldY[:,i], dYdD[:,:,i]) for i in range(num)]).T
jm = drdl*dldm + drdm jm = drdl*dldm + drdm
if mFix[0]: return np.vstack((jC,jD)).T if mFix[0]: return np.vstack((jC,jD)).T
@ -817,7 +818,7 @@ def Yld200418p(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
p,q = ys(sdev, C), ys(sdev, D) p,q = ys(sdev, C), ys(sdev, D)
pLambdas, qLambdas = principalStress(p), principalStress(q) # no sort pLambdas, qLambdas = principalStress(p), principalStress(q) # no sort
m2 = m/2.0; x3 = xrange(3); num = len(sv) m2 = m/2.0; x3 = range(3); num = len(sv)
PiQj = np.array([(pLambdas[i,:]-qLambdas[j,:]) for i in x3 for j in x3]) PiQj = np.array([(pLambdas[i,:]-qLambdas[j,:]) for i in x3 for j in x3])
QiPj = np.array([(qLambdas[i,:]-pLambdas[j,:]) for i in x3 for j in x3]).reshape(3,3,num) QiPj = np.array([(qLambdas[i,:]-pLambdas[j,:]) for i in x3 for j in x3]).reshape(3,3,num)
PiQjs = PiQj**2 PiQjs = PiQj**2
@ -831,8 +832,8 @@ def Yld200418p(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
dldm = np.sum(PiQjs**m2*math_ln(PiQjs),axis=0)*0.5 dldm = np.sum(PiQjs**m2*math_ln(PiQjs),axis=0)*0.5
dPdc, dQdd = principalStrs_Der(p, sdev, dim), principalStrs_Der(q, sdev, dim) dPdc, dQdd = principalStrs_Der(p, sdev, dim), principalStrs_Der(q, sdev, dim)
PiQjs3d = ( PiQjs**(m2-1.0) ).reshape(3,3,num) PiQjs3d = ( PiQjs**(m2-1.0) ).reshape(3,3,num)
dldP = -m*np.array([np.diag(np.dot(PiQjs3d[:,:,i], QiPj [:,:,i])) for i in xrange(num)]).T dldP = -m*np.array([np.diag(np.dot(PiQjs3d[:,:,i], QiPj [:,:,i])) for i in range(num)]).T
dldQ = m*np.array([np.diag(np.dot(QiPj [:,:,i], PiQjs3d[:,:,i])) for i in xrange(num)]).T dldQ = m*np.array([np.diag(np.dot(QiPj [:,:,i], PiQjs3d[:,:,i])) for i in range(num)]).T
jm = drdl*dldm + drdm jm = drdl*dldm + drdm
jc = drdl*np.sum([dldP[i]*dPdc[i] for i in x3],axis=0) jc = drdl*np.sum([dldP[i]*dPdc[i] for i in x3],axis=0)
@ -851,9 +852,9 @@ def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
0<c<1, m are optional 0<c<1, m are optional
criteria are invalid input criteria are invalid input
""" """
ks = lambda (s1,s2,s3,s4,s5,s6),(c1,c2,c3,c4,c5,c6): np.array( [ ks = lambda s,c: np.array( [
((c2+c3)*s1-c3*s2-c2*s3)/3.0, ((c3+c1)*s2-c3*s1-c1*s3)/3.0, ((c[1]+c[2])*s[0]-c[2]*s[1]-c[1]*s[2])/3.0, ((c[2]+c[0])*s[1]-c[2]*s[0]-c[0]*s[2])/3.0,
((c1+c2)*s3-c2*s1-c1*s2)/3.0, c4*s4, c5*s5, c6*s6 ]) ((c[0]+c[1])*s[2]-c[1]*s[0]-c[0]*s[1])/3.0, c[3]*s[3], c[4]*s[4], c[5]*s[5] ])
if dim == 2: C1,c = np.append(paras[0:4],[0.0,0.0]), paras[4] if dim == 2: C1,c = np.append(paras[0:4],[0.0,0.0]), paras[4]
else: C1,c = paras[0:6], paras[6] else: C1,c = paras[0:6], paras[6]
if mFix[0]: m = mFix[1] if mFix[0]: m = mFix[1]
@ -887,7 +888,7 @@ def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
dldP = (1.0-c)*dphi1dP + c*dphi2dP*rm2 dldP = (1.0-c)*dphi1dP + c*dphi2dP*rm2
jm = drdl * dldm + drdm #drda*(-1.0/m/m) jm = drdl * dldm + drdm #drda*(-1.0/m/m)
jc1 = drdl * np.sum([dldP[i]*dPdc[i] for i in xrange(3)],axis=0) jc1 = drdl * np.sum([dldP[i]*dPdc[i] for i in range(3)],axis=0)
jc = drdl * (-phi1 + rm2*phi2) jc = drdl * (-phi1 + rm2*phi2)
if mFix[0]: return np.vstack((jc1,jc)).T if mFix[0]: return np.vstack((jc1,jc)).T
@ -1029,7 +1030,7 @@ thresholdParameter = ['totalshear','equivalentStrain']
#--------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------
class Loadcase(): class Loadcase():
"""generating load cases for the spectral solver""" """Generating load cases for the spectral solver"""
def __init__(self,finalStrain,incs,time,nSet=1,dimension=3,vegter=False): def __init__(self,finalStrain,incs,time,nSet=1,dimension=3,vegter=False):
self.finalStrain = finalStrain self.finalStrain = finalStrain
@ -1098,10 +1099,10 @@ class Loadcase():
' time %s'%self.time ' time %s'%self.time
def _vegterLoadcase(self): def _vegterLoadcase(self):
"""generate the stress points for Vegter criteria (incomplete/untested)""" """Generate the stress points for Vegter criteria (incomplete/untested)"""
theta = np.linspace(0.0,np.pi/2.0,self.nSet) theta = np.linspace(0.0,np.pi/2.0,self.nSet)
f = [0.0, 0.0, '*']*3; loadcase = [] f = [0.0, 0.0, '*']*3; loadcase = []
for i in xrange(self.nSet*4): loadcase.append(f) for i in range(self.nSet*4): loadcase.append(f)
# more to do for F # more to do for F
F = np.array([ [[1.1, 0.1], [0.1, 1.1]], # uniaxial tension F = np.array([ [[1.1, 0.1], [0.1, 1.1]], # uniaxial tension
@ -1111,12 +1112,12 @@ class Loadcase():
]) ])
for i,t in enumerate(theta): for i,t in enumerate(theta):
R = np.array([np.cos(t), np.sin(t), -np.sin(t), np.cos(t)]).reshape(2,2) R = np.array([np.cos(t), np.sin(t), -np.sin(t), np.cos(t)]).reshape(2,2)
for j in xrange(4): for j in range(4):
loadcase[i*4+j][0],loadcase[i*4+j][1],loadcase[i*4+j][3],loadcase[i*4+j][4] = np.dot(R.T,np.dot(F[j],R)).reshape(4) loadcase[i*4+j][0],loadcase[i*4+j][1],loadcase[i*4+j][3],loadcase[i*4+j][4] = np.dot(R.T,np.dot(F[j],R)).reshape(4)
return loadcase return loadcase
def _getLoadcase2dRandom(self): def _getLoadcase2dRandom(self):
"""generate random stress points for 2D tests""" """Generate random stress points for 2D tests"""
self.NgeneratedLoadCases+=1 self.NgeneratedLoadCases+=1
defgrad=['0', '0', '*']*3 defgrad=['0', '0', '*']*3
stress =['*', '*', '0']*3 stress =['*', '*', '0']*3
@ -1279,7 +1280,7 @@ def doSim(thread):
if l not in table.labels(raw = True): damask.util.croak('%s not found'%l) if l not in table.labels(raw = True): damask.util.croak('%s not found'%l)
s.release() s.release()
table.data_readArray(['%i_Cauchy'%(i+1) for i in xrange(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in xrange(9)]) table.data_readArray(['%i_Cauchy'%(i+1) for i in range(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in range(9)])
validity = np.zeros((int(options.yieldValue[2])), dtype=bool) # found data for desired threshold validity = np.zeros((int(options.yieldValue[2])), dtype=bool) # found data for desired threshold
yieldStress = np.empty((int(options.yieldValue[2]),6),'d') yieldStress = np.empty((int(options.yieldValue[2]),6),'d')

View File

@ -69,7 +69,7 @@ for name in filenames:
if columnMissing: continue if columnMissing: continue
# ------------------------------------------ assemble header --------------------------------------- # ------------------------------------------ assemble header ---------------------------------------
table.labels_append(['%i_coord'%(i+1) for i in xrange(3)]) # extend ASCII header with new labels table.labels_append(['%i_coord'%(i+1) for i in range(3)]) # extend ASCII header with new labels
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------

View File

@ -53,7 +53,7 @@ if options.labels is None or options.formulas is None:
if len(options.labels) != len(options.formulas): if len(options.labels) != len(options.formulas):
parser.error('number of labels ({}) and formulas ({}) do not match.'.format(len(options.labels),len(options.formulas))) parser.error('number of labels ({}) and formulas ({}) do not match.'.format(len(options.labels),len(options.formulas)))
for i in xrange(len(options.formulas)): for i in range(len(options.formulas)):
options.formulas[i] = options.formulas[i].replace(';',',') options.formulas[i] = options.formulas[i].replace(';',',')
# ------------------------------------- loop over input files -------------------------------------- # ------------------------------------- loop over input files --------------------------------------
@ -154,7 +154,7 @@ for name in filenames:
# ----------------------------------- line 1: assemble header -------------------------------------- # ----------------------------------- line 1: assemble header --------------------------------------
for newby in newbies: for newby in newbies:
table.labels_append(['{}_{}'.format(i+1,newby) for i in xrange(resultDim[newby])] table.labels_append(['{}_{}'.format(i+1,newby) for i in range(resultDim[newby])]
if resultDim[newby] > 1 else newby) if resultDim[newby] > 1 else newby)
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))

View File

@ -68,7 +68,7 @@ for name in filenames:
# ------------------------------------------ assemble header -------------------------------------- # ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['{}_Cauchy'.format(i+1) for i in xrange(9)]) # extend ASCII header with new labels table.labels_append(['{}_Cauchy'.format(i+1) for i in range(9)]) # extend ASCII header with new labels
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------

View File

@ -17,7 +17,7 @@ def cell2node(cellData,grid):
nodeData = 0.0 nodeData = 0.0
datalen = np.array(cellData.shape[3:]).prod() datalen = np.array(cellData.shape[3:]).prod()
for i in xrange(datalen): for i in range(datalen):
node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i], node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i],
np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells
mode = 'wrap', mode = 'wrap',
@ -33,7 +33,7 @@ def cell2node(cellData,grid):
#-------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------
def deformationAvgFFT(F,grid,size,nodal=False,transformed=False): def deformationAvgFFT(F,grid,size,nodal=False,transformed=False):
"""calculate average cell center (or nodal) deformation for deformation gradient field specified in each grid cell""" """Calculate average cell center (or nodal) deformation for deformation gradient field specified in each grid cell"""
if nodal: if nodal:
x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]), x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]),
np.linspace(0,size[1],1+grid[1]), np.linspace(0,size[1],1+grid[1]),
@ -55,7 +55,7 @@ def deformationAvgFFT(F,grid,size,nodal=False,transformed=False):
#-------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------
def displacementFluctFFT(F,grid,size,nodal=False,transformed=False): def displacementFluctFFT(F,grid,size,nodal=False,transformed=False):
"""calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell""" """Calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
integrator = 0.5j * size / math.pi integrator = 0.5j * size / math.pi
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])), kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
@ -131,7 +131,7 @@ def volTetrahedron(coords):
def volumeMismatch(size,F,nodes): def volumeMismatch(size,F,nodes):
""" """
calculates the volume mismatch Calculates the volume mismatch
volume mismatch is defined as the difference between volume of reconstructed volume mismatch is defined as the difference between volume of reconstructed
(compatible) cube and determinant of defgrad at the FP (compatible) cube and determinant of defgrad at the FP
@ -142,9 +142,9 @@ def volumeMismatch(size,F,nodes):
#-------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------
# calculate actual volume and volume resulting from deformation gradient # calculate actual volume and volume resulting from deformation gradient
for k in xrange(grid[2]): for k in range(grid[2]):
for j in xrange(grid[1]): for j in range(grid[1]):
for i in xrange(grid[0]): for i in range(grid[0]):
coords[0,0:3] = nodes[k, j, i ,0:3] coords[0,0:3] = nodes[k, j, i ,0:3]
coords[1,0:3] = nodes[k ,j, i+1,0:3] coords[1,0:3] = nodes[k ,j, i+1,0:3]
coords[2,0:3] = nodes[k ,j+1,i+1,0:3] coords[2,0:3] = nodes[k ,j+1,i+1,0:3]
@ -190,9 +190,9 @@ def shapeMismatch(size,F,nodes,centres):
#-------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------
# compare deformed original and deformed positions to actual positions # compare deformed original and deformed positions to actual positions
for k in xrange(grid[2]): for k in range(grid[2]):
for j in xrange(grid[1]): for j in range(grid[1]):
for i in xrange(grid[0]): for i in range(grid[0]):
sMismatch[k,j,i] = \ sMismatch[k,j,i] = \
+ np.linalg.norm(nodes[k, j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[0,0:3]))\ + np.linalg.norm(nodes[k, j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[0,0:3]))\
+ np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\ + np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\
@ -288,7 +288,7 @@ for name in filenames:
np.zeros((table.data.shape[0], np.zeros((table.data.shape[0],
3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros 3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros
coords = [np.unique(table.data[:,9+i]) for i in xrange(3)] coords = [np.unique(table.data[:,9+i]) for i in range(3)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')
@ -324,9 +324,9 @@ for name in filenames:
volumeMismatch = volumeMismatch(size,table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),nodes) volumeMismatch = volumeMismatch(size,table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),nodes)
# ------------------------------------------ output data ------------------------------------------- # ------------------------------------------ output data -------------------------------------------
for i in xrange(grid[2]): for i in range(grid[2]):
for j in xrange(grid[1]): for j in range(grid[1]):
for k in xrange(grid[0]): for k in range(grid[0]):
table.data_read() table.data_read()
if options.shape: table.data_append(shapeMismatch[i,j,k]) if options.shape: table.data_append(shapeMismatch[i,j,k])
if options.volume: table.data_append(volumeMismatch[i,j,k]) if options.volume: table.data_append(volumeMismatch[i,j,k])

View File

@ -59,7 +59,7 @@ for name in filenames:
dims.append(dim) dims.append(dim)
columns.append(table.label_index(what)) columns.append(table.label_index(what))
table.labels_append('cum({})'.format(what) if dim == 1 else table.labels_append('cum({})'.format(what) if dim == 1 else
['{}_cum({})'.format(i+1,what) for i in xrange(dim)] ) # extend ASCII header with new labels ['{}_cum({})'.format(i+1,what) for i in range(dim)] ) # extend ASCII header with new labels
if remarks != []: damask.util.croak(remarks) if remarks != []: damask.util.croak(remarks)
if errors != []: if errors != []:

View File

@ -24,24 +24,24 @@ def curlFFT(geomdim,field):
# differentiation in Fourier space # differentiation in Fourier space
k_s = np.zeros([3],'i') k_s = np.zeros([3],'i')
TWOPIIMG = 2.0j*math.pi TWOPIIMG = 2.0j*math.pi
for i in xrange(grid[2]): for i in range(grid[2]):
k_s[0] = i k_s[0] = i
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
elif i > grid[2]//2: k_s[0] -= grid[2] elif i > grid[2]//2: k_s[0] -= grid[2]
for j in xrange(grid[1]): for j in range(grid[1]):
k_s[1] = j k_s[1] = j
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
elif j > grid[1]//2: k_s[1] -= grid[1] elif j > grid[1]//2: k_s[1] -= grid[1]
for k in xrange(grid[0]//2+1): for k in range(grid[0]//2+1):
k_s[2] = k k_s[2] = k
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
if dataType == 'tensor': if dataType == 'tensor':
for l in xrange(3): for l in range(3):
curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\ curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\
-field_fourier[i,j,k,l,1]*xi[2]) *TWOPIIMG -field_fourier[i,j,k,l,1]*xi[2]) *TWOPIIMG
curl_fourier[i,j,k,1,l] = (-field_fourier[i,j,k,l,2]*xi[0]\ curl_fourier[i,j,k,1,l] = (-field_fourier[i,j,k,l,2]*xi[0]\
@ -136,14 +136,14 @@ for name in filenames:
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for type, data in items.iteritems(): for type, data in items.iteritems():
for label in data['active']: for label in data['active']:
table.labels_append(['{}_curlFFT({})'.format(i+1,label) for i in xrange(data['dim'])]) # extend ASCII header with new labels table.labels_append(['{}_curlFFT({})'.format(i+1,label) for i in range(data['dim'])]) # extend ASCII header with new labels
table.head_write() table.head_write()
# --------------- figure out size and grid --------------------------------------------------------- # --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray() table.data_readArray()
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)] coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')

View File

@ -85,7 +85,7 @@ for name in filenames:
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for type, data in items.iteritems(): for type, data in items.iteritems():
for label in data['active']: for label in data['active']:
table.labels_append(['{}_dev({})'.format(i+1,label) for i in xrange(data['dim'])] + \ table.labels_append(['{}_dev({})'.format(i+1,label) for i in range(data['dim'])] + \
(['sph({})'.format(label)] if options.spherical else [])) # extend ASCII header with new labels (['sph({})'.format(label)] if options.spherical else [])) # extend ASCII header with new labels
table.head_write() table.head_write()

View File

@ -17,7 +17,7 @@ def cell2node(cellData,grid):
nodeData = 0.0 nodeData = 0.0
datalen = np.array(cellData.shape[3:]).prod() datalen = np.array(cellData.shape[3:]).prod()
for i in xrange(datalen): for i in range(datalen):
node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i], node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i],
np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells
mode = 'wrap', mode = 'wrap',
@ -33,7 +33,7 @@ def cell2node(cellData,grid):
#-------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------
def displacementAvgFFT(F,grid,size,nodal=False,transformed=False): def displacementAvgFFT(F,grid,size,nodal=False,transformed=False):
"""calculate average cell center (or nodal) displacement for deformation gradient field specified in each grid cell""" """Calculate average cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
if nodal: if nodal:
x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]), x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]),
np.linspace(0,size[1],1+grid[1]), np.linspace(0,size[1],1+grid[1]),
@ -55,7 +55,7 @@ def displacementAvgFFT(F,grid,size,nodal=False,transformed=False):
#-------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------
def displacementFluctFFT(F,grid,size,nodal=False,transformed=False): def displacementFluctFFT(F,grid,size,nodal=False,transformed=False):
"""calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell""" """Calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
integrator = 0.5j * size / math.pi integrator = 0.5j * size / math.pi
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])), kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
@ -167,7 +167,7 @@ for name in filenames:
np.zeros((table.data.shape[0], np.zeros((table.data.shape[0],
3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros 3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros
coords = [np.unique(table.data[:,9+i]) for i in xrange(3)] coords = [np.unique(table.data[:,9+i]) for i in range(3)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')
@ -196,16 +196,16 @@ for name in filenames:
table.labels_clear() table.labels_clear()
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append((['{}_pos' .format(i+1) for i in xrange(3)] if options.nodal else []) + table.labels_append((['{}_pos' .format(i+1) for i in range(3)] if options.nodal else []) +
['{}_avg({}).{}' .format(i+1,options.defgrad,options.pos) for i in xrange(3)] + ['{}_avg({}).{}' .format(i+1,options.defgrad,options.pos) for i in range(3)] +
['{}_fluct({}).{}'.format(i+1,options.defgrad,options.pos) for i in xrange(3)] ) ['{}_fluct({}).{}'.format(i+1,options.defgrad,options.pos) for i in range(3)] )
table.head_write() table.head_write()
# ------------------------------------------ output data ------------------------------------------- # ------------------------------------------ output data -------------------------------------------
Zrange = np.linspace(0,size[2],1+grid[2]) if options.nodal else xrange(grid[2]) Zrange = np.linspace(0,size[2],1+grid[2]) if options.nodal else range(grid[2])
Yrange = np.linspace(0,size[1],1+grid[1]) if options.nodal else xrange(grid[1]) Yrange = np.linspace(0,size[1],1+grid[1]) if options.nodal else range(grid[1])
Xrange = np.linspace(0,size[0],1+grid[0]) if options.nodal else xrange(grid[0]) Xrange = np.linspace(0,size[0],1+grid[0]) if options.nodal else range(grid[0])
for i,z in enumerate(Zrange): for i,z in enumerate(Zrange):
for j,y in enumerate(Yrange): for j,y in enumerate(Yrange):

View File

@ -21,23 +21,23 @@ def divFFT(geomdim,field):
# differentiation in Fourier space # differentiation in Fourier space
k_s = np.zeros([3],'i') k_s = np.zeros([3],'i')
TWOPIIMG = 2.0j*math.pi TWOPIIMG = 2.0j*math.pi
for i in xrange(grid[2]): for i in range(grid[2]):
k_s[0] = i k_s[0] = i
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
elif i > grid[2]//2: k_s[0] -= grid[2] elif i > grid[2]//2: k_s[0] -= grid[2]
for j in xrange(grid[1]): for j in range(grid[1]):
k_s[1] = j k_s[1] = j
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
elif j > grid[1]//2: k_s[1] -= grid[1] elif j > grid[1]//2: k_s[1] -= grid[1]
for k in xrange(grid[0]//2+1): for k in range(grid[0]//2+1):
k_s[2] = k k_s[2] = k
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
if n == 9: # tensor, 3x3 -> 3 if n == 9: # tensor, 3x3 -> 3
for l in xrange(3): for l in range(3):
div_fourier[i,j,k,l] = sum(field_fourier[i,j,k,l,0:3]*xi) *TWOPIIMG div_fourier[i,j,k,l] = sum(field_fourier[i,j,k,l,0:3]*xi) *TWOPIIMG
elif n == 3: # vector, 3 -> 1 elif n == 3: # vector, 3 -> 1
div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG
@ -123,14 +123,14 @@ for name in filenames:
for type, data in items.iteritems(): for type, data in items.iteritems():
for label in data['active']: for label in data['active']:
table.labels_append(['divFFT({})'.format(label) if type == 'vector' else table.labels_append(['divFFT({})'.format(label) if type == 'vector' else
'{}_divFFT({})'.format(i+1,label) for i in xrange(data['dim']//3)]) # extend ASCII header with new labels '{}_divFFT({})'.format(i+1,label) for i in range(data['dim']//3)]) # extend ASCII header with new labels
table.head_write() table.head_write()
# --------------- figure out size and grid --------------------------------------------------------- # --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray() table.data_readArray()
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)] coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')

View File

@ -20,13 +20,13 @@ def periodic_3Dpad(array, rimdim=(1,1,1)):
rimdim[2]:rimdim[2]+size[2]] = array rimdim[2]:rimdim[2]+size[2]] = array
p = np.zeros(3,'i') p = np.zeros(3,'i')
for side in xrange(3): for side in range(3):
for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]): for p[(side+2)%3] in range(padded.shape[(side+2)%3]):
for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]): for p[(side+1)%3] in range(padded.shape[(side+1)%3]):
for p[side%3] in xrange(rimdim[side%3]): for p[side%3] in range(rimdim[side%3]):
spot = (p-rimdim)%size spot = (p-rimdim)%size
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]): for p[side%3] in range(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]):
spot = (p-rimdim)%size spot = (p-rimdim)%size
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
return padded return padded
@ -178,7 +178,7 @@ for name in filenames:
table.data_readArray() table.data_readArray()
coords = [np.unique(table.data[:,coordCol+i]) for i in xrange(coordDim)] coords = [np.unique(table.data[:,coordCol+i]) for i in range(coordDim)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords)+[1]*(3-len(coords)),'i') grid = np.array(map(len,coords)+[1]*(3-len(coords)),'i')
@ -215,7 +215,7 @@ for name in filenames:
# ...reflects number of unique neighbors # ...reflects number of unique neighbors
uniques = np.where(diffToNeighbor[1:-1,1:-1,1:-1,0] != 0, 1,0) # initialize unique value counter (exclude myself [= 0]) uniques = np.where(diffToNeighbor[1:-1,1:-1,1:-1,0] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood for i in range(1,len(neighborhood)): # check remaining points in neighborhood
uniques += np.where(np.logical_and( uniques += np.where(np.logical_and(
diffToNeighbor[1:-1,1:-1,1:-1,i] != 0, # not myself? diffToNeighbor[1:-1,1:-1,1:-1,i] != 0, # not myself?
diffToNeighbor[1:-1,1:-1,1:-1,i] != diffToNeighbor[1:-1,1:-1,1:-1,i-1], diffToNeighbor[1:-1,1:-1,1:-1,i] != diffToNeighbor[1:-1,1:-1,1:-1,i-1],
@ -229,7 +229,7 @@ for name in filenames:
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3 distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
distance = distance.reshape([len(feature_list),grid.prod(),1],order='F') distance = distance.reshape([len(feature_list),grid.prod(),1],order='F')
for i in xrange(len(feature_list)): for i in range(len(feature_list)):
stack.append(distance[i,:]) stack.append(distance[i,:])
# ------------------------------------------ output result ----------------------------------------- # ------------------------------------------ output result -----------------------------------------

View File

@ -24,17 +24,17 @@ def gradFFT(geomdim,field):
# differentiation in Fourier space # differentiation in Fourier space
k_s = np.zeros([3],'i') k_s = np.zeros([3],'i')
TWOPIIMG = 2.0j*math.pi TWOPIIMG = 2.0j*math.pi
for i in xrange(grid[2]): for i in range(grid[2]):
k_s[0] = i k_s[0] = i
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
elif i > grid[2]//2: k_s[0] -= grid[2] elif i > grid[2]//2: k_s[0] -= grid[2]
for j in xrange(grid[1]): for j in range(grid[1]):
k_s[1] = j k_s[1] = j
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
elif j > grid[1]//2: k_s[1] -= grid[1] elif j > grid[1]//2: k_s[1] -= grid[1]
for k in xrange(grid[0]//2+1): for k in range(grid[0]//2+1):
k_s[2] = k k_s[2] = k
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011) if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
@ -126,14 +126,14 @@ for name in filenames:
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for type, data in items.iteritems(): for type, data in items.iteritems():
for label in data['active']: for label in data['active']:
table.labels_append(['{}_gradFFT({})'.format(i+1,label) for i in xrange(3 * data['dim'])]) # extend ASCII header with new labels table.labels_append(['{}_gradFFT({})'.format(i+1,label) for i in range(3 * data['dim'])]) # extend ASCII header with new labels
table.head_write() table.head_write()
# --------------- figure out size and grid --------------------------------------------------------- # --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray() table.data_readArray()
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)] coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')

View File

@ -108,7 +108,7 @@ for name in filenames:
# ------------------------------------------ assemble header --------------------------------------- # ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['{}_IPF_{:g}{:g}{:g}_{sym}'.format(i+1,*options.pole,sym = options.symmetry.lower()) for i in xrange(3)]) table.labels_append(['{}_IPF_{:g}{:g}{:g}_{sym}'.format(i+1,*options.pole,sym = options.symmetry.lower()) for i in range(3)])
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------

View File

@ -131,9 +131,9 @@ for name in filenames:
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for output in options.output: for output in options.output:
if output == 'quaternion': table.labels_append(['{}_{}_{}({})'.format(i+1,'quat',options.symmetry,label) for i in xrange(4)]) if output == 'quaternion': table.labels_append(['{}_{}_{}({})'.format(i+1,'quat',options.symmetry,label) for i in range(4)])
elif output == 'rodrigues': table.labels_append(['{}_{}_{}({})'.format(i+1,'rodr',options.symmetry,label) for i in xrange(3)]) elif output == 'rodrigues': table.labels_append(['{}_{}_{}({})'.format(i+1,'rodr',options.symmetry,label) for i in range(3)])
elif output == 'eulers': table.labels_append(['{}_{}_{}({})'.format(i+1,'eulr',options.symmetry,label) for i in xrange(3)]) elif output == 'eulers': table.labels_append(['{}_{}_{}({})'.format(i+1,'eulr',options.symmetry,label) for i in range(3)])
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------

View File

@ -69,7 +69,7 @@ for name in filenames:
# ------------------------------------------ assemble header -------------------------------------- # ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['%i_S'%(i+1) for i in xrange(9)]) # extend ASCII header with new labels table.labels_append(['{}_S'.format(i+1) for i in range(9)]) # extend ASCII header with new labels
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------

View File

@ -113,7 +113,7 @@ for name in filenames:
# ------------------------------------------ assemble header --------------------------------------- # ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['{}_pole_{}{}{}'.format(i+1,*options.pole) for i in xrange(2)]) table.labels_append(['{}_pole_{}{}{}'.format(i+1,*options.pole) for i in range(2)])
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------

View File

@ -199,7 +199,7 @@ if options.lattice in latticeChoices[:2]:
c_normal = slipSystems[options.lattice][:,3:] c_normal = slipSystems[options.lattice][:,3:]
elif options.lattice == latticeChoices[2]: elif options.lattice == latticeChoices[2]:
# convert 4 Miller index notation of hex to orthogonal 3 Miller index notation # convert 4 Miller index notation of hex to orthogonal 3 Miller index notation
for i in xrange(len(c_direction)): for i in range(len(c_direction)):
c_direction[i] = np.array([slipSystems['hex'][i,0]*1.5, c_direction[i] = np.array([slipSystems['hex'][i,0]*1.5,
(slipSystems['hex'][i,0] + 2.*slipSystems['hex'][i,1])*0.5*np.sqrt(3), (slipSystems['hex'][i,0] + 2.*slipSystems['hex'][i,1])*0.5*np.sqrt(3),
slipSystems['hex'][i,3]*options.CoverA, slipSystems['hex'][i,3]*options.CoverA,

View File

@ -57,8 +57,8 @@ for name in filenames:
if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type)) if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type))
else: else:
items[type]['column'].append(table.label_index(what)) items[type]['column'].append(table.label_index(what))
table.labels_append(['{}_eigval({})'.format(i+1,what) for i in xrange(3)]) # extend ASCII header with new labels table.labels_append(['{}_eigval({})'.format(i+1,what) for i in range(3)]) # extend ASCII header with new labels
table.labels_append(['{}_eigvec({})'.format(i+1,what) for i in xrange(9)]) # extend ASCII header with new labels table.labels_append(['{}_eigvec({})'.format(i+1,what) for i in range(9)]) # extend ASCII header with new labels
if remarks != []: damask.util.croak(remarks) if remarks != []: damask.util.croak(remarks)
if errors != []: if errors != []:

View File

@ -112,7 +112,7 @@ for name in filenames:
table.labels_append(['{}_{}({}){}'.format(i+1, # extend ASCII header with new labels table.labels_append(['{}_{}({}){}'.format(i+1, # extend ASCII header with new labels
theStrain, theStrain,
theStretch, theStretch,
what if what != 'f' else '') for i in xrange(9)]) what if what != 'f' else '') for i in range(9)])
if remarks != []: damask.util.croak(remarks) if remarks != []: damask.util.croak(remarks)
if errors != []: if errors != []:

View File

@ -79,7 +79,7 @@ incNum = int(asciiTable.data[asciiTable.label_index('inc'), 0])
fullTable = np.copy(asciiTable.data) # deep copy all data, just to be safe fullTable = np.copy(asciiTable.data) # deep copy all data, just to be safe
labels = asciiTable.labels() labels = asciiTable.labels()
labels_idx = [asciiTable.label_index(label) for label in labels] labels_idx = [asciiTable.label_index(label) for label in labels]
featuresDim = [labels_idx[i+1] - labels_idx[i] for i in xrange(len(labels)-1)] featuresDim = [labels_idx[i+1] - labels_idx[i] for i in range(len(labels)-1)]
featuresDim.append(fullTable.shape[1] - labels_idx[-1]) featuresDim.append(fullTable.shape[1] - labels_idx[-1])
# ----- figure out size and grid ----- # # ----- figure out size and grid ----- #
@ -113,7 +113,7 @@ h5f.add_data("Vz", Vz, cmd_log=cmd_log)
# add the rest of data from table # add the rest of data from table
labelsProcessed = ['inc'] labelsProcessed = ['inc']
for fi in xrange(len(labels)): for fi in range(len(labels)):
featureName = labels[fi] featureName = labels[fi]
# remove trouble maker "("" and ")" from label/feature name # remove trouble maker "("" and ")" from label/feature name
if "(" in featureName: if "(" in featureName:
@ -136,7 +136,7 @@ for fi in xrange(len(labels)):
# mshGridDim[2], # mshGridDim[2],
# dataset.shape[1])) # dataset.shape[1]))
# write out data # write out data
print "adding {}...".format(featureName) print("adding {}...".format(featureName))
h5f.add_data(featureName, dataset, cmd_log=cmd_log) h5f.add_data(featureName, dataset, cmd_log=cmd_log)
# write down the processed label # write down the processed label
labelsProcessed.append(featureName) labelsProcessed.append(featureName)

View File

@ -94,7 +94,7 @@ for name in filenames:
table.data_readArray() table.data_readArray()
if (any(options.grid) == 0 or any(options.size) == 0.0): if (any(options.grid) == 0 or any(options.size) == 0.0):
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)] coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')

View File

@ -127,12 +127,12 @@ for name in filenames:
weights=None if options.weight is None else table.data[:,2]) weights=None if options.weight is None else table.data[:,2])
if options.normCol: if options.normCol:
for x in xrange(options.bins[0]): for x in range(options.bins[0]):
sum = np.sum(grid[x,:]) sum = np.sum(grid[x,:])
if sum > 0.0: if sum > 0.0:
grid[x,:] /= sum grid[x,:] /= sum
if options.normRow: if options.normRow:
for y in xrange(options.bins[1]): for y in range(options.bins[1]):
sum = np.sum(grid[:,y]) sum = np.sum(grid[:,y])
if sum > 0.0: if sum > 0.0:
grid[:,y] /= sum grid[:,y] /= sum
@ -150,8 +150,8 @@ for name in filenames:
delta[2] = minmax[2,1]-minmax[2,0] delta[2] = minmax[2,1]-minmax[2,0]
for x in xrange(options.bins[0]): for x in range(options.bins[0]):
for y in xrange(options.bins[1]): for y in range(options.bins[1]):
result[x,y,:] = [minmax[0,0]+delta[0]/options.bins[0]*(x+0.5), result[x,y,:] = [minmax[0,0]+delta[0]/options.bins[0]*(x+0.5),
minmax[1,0]+delta[1]/options.bins[1]*(y+0.5), minmax[1,0]+delta[1]/options.bins[1]*(y+0.5),
min(1.0,max(0.0,(grid[x,y]-minmax[2,0])/delta[2]))] min(1.0,max(0.0,(grid[x,y]-minmax[2,0])/delta[2]))]

View File

@ -79,7 +79,7 @@ for name in filenames:
table.data_readArray(options.pos) table.data_readArray(options.pos)
table.data_rewind() table.data_rewind()
coords = [np.unique(table.data[:,i]) for i in xrange(3)] coords = [np.unique(table.data[:,i]) for i in range(3)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')
@ -99,9 +99,9 @@ for name in filenames:
data = np.zeros(outSize.tolist()+[len(table.labels(raw = True))]) data = np.zeros(outSize.tolist()+[len(table.labels(raw = True))])
p = np.zeros(3,'i') p = np.zeros(3,'i')
for p[2] in xrange(grid[2]): for p[2] in range(grid[2]):
for p[1] in xrange(grid[1]): for p[1] in range(grid[1]):
for p[0] in xrange(grid[0]): for p[0] in range(grid[0]):
d = p*packing d = p*packing
table.data_read() table.data_read()
data[d[0]:d[0]+packing[0], data[d[0]:d[0]+packing[0],
@ -110,9 +110,9 @@ for name in filenames:
: ] = np.tile(np.array(table.data_asFloat(),'d'),packing.tolist()+[1]) # tile to match blowUp voxel size : ] = np.tile(np.array(table.data_asFloat(),'d'),packing.tolist()+[1]) # tile to match blowUp voxel size
elementSize = size/grid/packing elementSize = size/grid/packing
elem = 1 elem = 1
for c in xrange(outSize[2]): for c in range(outSize[2]):
for b in xrange(outSize[1]): for b in range(outSize[1]):
for a in xrange(outSize[0]): for a in range(outSize[0]):
data[a,b,c,colCoord:colCoord+3] = [a+0.5,b+0.5,c+0.5]*elementSize data[a,b,c,colCoord:colCoord+3] = [a+0.5,b+0.5,c+0.5]*elementSize
if colElem != -1: data[a,b,c,colElem] = elem if colElem != -1: data[a,b,c,colElem] = elem
table.data = data[a,b,c,:].tolist() table.data = data[a,b,c,:].tolist()

View File

@ -2,7 +2,7 @@
# -*- coding: UTF-8 no BOM -*- # -*- coding: UTF-8 no BOM -*-
import os,sys import os,sys
import math # noqa import math # noqa
import numpy as np import numpy as np
from optparse import OptionParser, OptionGroup from optparse import OptionParser, OptionGroup
import damask import damask
@ -110,18 +110,18 @@ for name in filenames:
table.data_readArray() table.data_readArray()
rows,cols = table.data.shape rows,cols = table.data.shape
table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn
values,index = np.unique(table.data[:,grpColumn], return_index = True) # unique grpColumn values and their positions values,index = np.unique(table.data[:,grpColumn], return_index = True) # unique grpColumn values and their positions
index = np.append(index,rows) # add termination position index = np.append(index,rows) # add termination position
grpTable = np.empty((len(values), cols)) # initialize output grpTable = np.empty((len(values), cols)) # initialize output
for i in xrange(len(values)): # iterate over groups (unique values in grpColumn) for i in range(len(values)): # iterate over groups (unique values in grpColumn)
if options.periodic : if options.periodic :
grpTable[i] = periodicAverage(table.data[index[i]:index[i+1]],options.boundary) # apply periodicAverage mapping function grpTable[i] = periodicAverage(table.data[index[i]:index[i+1]],options.boundary) # apply periodicAverage mapping function
else : else :
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function
if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value
table.data = grpTable table.data = grpTable

View File

@ -56,7 +56,7 @@ parser.set_defaults(condition=None)
(options, filenames) = parser.parse_args() (options, filenames) = parser.parse_args()
# ----- parse formulas ----- # # ----- parse formulas ----- #
for i in xrange(len(options.formulas)): for i in range(len(options.formulas)):
options.formulas[i] = options.formulas[i].replace(';', ',') options.formulas[i] = options.formulas[i].replace(';', ',')
# ----- loop over input files ----- # # ----- loop over input files ----- #
@ -64,7 +64,7 @@ for name in filenames:
try: try:
h5f = damask.H5Table(name, new_file=False) h5f = damask.H5Table(name, new_file=False)
except: except:
print "!!!Cannot process {}".format(name) print("!!!Cannot process {}".format(name))
continue continue
damask.util.report(scriptName, name) damask.util.report(scriptName, name)

View File

@ -11,7 +11,7 @@ scriptID = ' '.join([scriptName, damask.version])
def getCauchy(f, p): def getCauchy(f, p):
"""return Cauchy stress for given f and p""" """Return Cauchy stress for given f and p"""
# [Cauchy] = (1/det(F)) * [P].[F_transpose] # [Cauchy] = (1/det(F)) * [P].[F_transpose]
f = f.reshape((3, 3)) f = f.reshape((3, 3))
p = p.reshape((3, 3)) p = p.reshape((3, 3))

View File

@ -119,7 +119,7 @@ for name in filenames:
# calculate the IPF color # calculate the IPF color
rgbArrays = np.zeros((orieData.shape[0], 3)) rgbArrays = np.zeros((orieData.shape[0], 3))
for ci in xrange(rgbArrays.shape[0]): for ci in range(rgbArrays.shape[0]):
if inputtype == 'eulers': if inputtype == 'eulers':
o = damask.Orientation(Eulers=np.array(orieData[ci, :])*toRadians, o = damask.Orientation(Eulers=np.array(orieData[ci, :])*toRadians,
symmetry=options.symmetry).reduced() symmetry=options.symmetry).reduced()

View File

@ -14,7 +14,7 @@ scriptID = ' '.join([scriptName, damask.version])
# ----- Helper functions ----- # # ----- Helper functions ----- #
def calcMises(what, tensor): def calcMises(what, tensor):
"""calculate von Mises equivalent""" """Calculate von Mises equivalent"""
dev = tensor - np.trace(tensor)/3.0*np.eye(3) dev = tensor - np.trace(tensor)/3.0*np.eye(3)
symdev = 0.5*(dev+dev.T) symdev = 0.5*(dev+dev.T)
return math.sqrt(np.sum(symdev*symdev.T) * return math.sqrt(np.sum(symdev*symdev.T) *
@ -61,7 +61,7 @@ for name in filenames:
# calculate von Mises equivalent row by row # calculate von Mises equivalent row by row
vmStress = np.zeros(tnsr.shape[0]) vmStress = np.zeros(tnsr.shape[0])
for ri in xrange(tnsr.shape[0]): for ri in range(tnsr.shape[0]):
stressTnsr = tnsr[ri, :].reshape(3, 3) stressTnsr = tnsr[ri, :].reshape(3, 3)
vmStress[ri] = calcMises('stress', stressTnsr) vmStress[ri] = calcMises('stress', stressTnsr)
@ -77,7 +77,7 @@ for name in filenames:
if options.strain is not None: if options.strain is not None:
tnsr = h5f.get_data(options.strain) tnsr = h5f.get_data(options.strain)
vmStrain = np.zeros(tnsr.shape[0]) vmStrain = np.zeros(tnsr.shape[0])
for ri in xrange(tnsr.shape[0]): for ri in range(tnsr.shape[0]):
strainTnsr = tnsr[ri, :].reshape(3, 3) strainTnsr = tnsr[ri, :].reshape(3, 3)
vmStrain[ri] = calcMises('strain', strainTnsr) vmStrain[ri] = calcMises('strain', strainTnsr)
label = "Mises{}".format(options.strain) label = "Mises{}".format(options.strain)

View File

@ -25,13 +25,13 @@ def operator(stretch, strain, eigenvalues):
def calcEPS(defgrads, stretchType, strainType): def calcEPS(defgrads, stretchType, strainType):
"""calculate specific type of strain tensor""" """Calculate specific type of strain tensor"""
eps = np.zeros(defgrads.shape) # initialize container eps = np.zeros(defgrads.shape) # initialize container
# TODO: # TODO:
# this loop can use some performance boost # this loop can use some performance boost
# (multi-threading?) # (multi-threading?)
for ri in xrange(defgrads.shape[0]): for ri in range(defgrads.shape[0]):
f = defgrads[ri, :].reshape(3, 3) f = defgrads[ri, :].reshape(3, 3)
U, S, Vh = np.linalg.svd(f) U, S, Vh = np.linalg.svd(f)
R = np.dot(U, Vh) # rotation of polar decomposition R = np.dot(U, Vh) # rotation of polar decomposition

View File

@ -29,7 +29,7 @@ scriptID = ' '.join([scriptName,damask.version])
# ----- HELPER FUNCTIONS -----# # ----- HELPER FUNCTIONS -----#
def addTopLvlCmt(xmlstr, topLevelCmt): def addTopLvlCmt(xmlstr, topLevelCmt):
"""add top level comment to string from ET""" """Add top level comment to string from ET"""
# a quick hack to add the top level comment to XML file # a quick hack to add the top level comment to XML file
# --> somehow Elementtree does not provide this functionality # --> somehow Elementtree does not provide this functionality
# --> by default # --> by default
@ -42,7 +42,7 @@ def addTopLvlCmt(xmlstr, topLevelCmt):
# MAIN # MAIN
# -------------------------------------------------------------------- # --------------------------------------------------------------------
msg = 'generate Xdmf wrapper for HDF5 file.' msg = 'Generate Xdmf wrapper for HDF5 file.'
parser = OptionParser(option_class=damask.extendableOption, parser = OptionParser(option_class=damask.extendableOption,
usage='%prog options [file[s]]', usage='%prog options [file[s]]',
description = msg, description = msg,
@ -108,7 +108,7 @@ labelsProcessed = ['Vx', 'Vy', 'Vz']
# walk through each attributes # walk through each attributes
for label in labels: for label in labels:
if label in labelsProcessed: continue if label in labelsProcessed: continue
print "adding {}...".format(label) print("adding {}...".format(label))
attr = ET.SubElement(grid, 'Attribute', attr = ET.SubElement(grid, 'Attribute',
Name=label, Name=label,
Type="None", Type="None",

View File

@ -21,24 +21,24 @@ scriptID = ' '.join([scriptName, damask.version])
# ----- HELPER FUNCTION ----- # # ----- HELPER FUNCTION ----- #
def getMeshFromXYZ(xyzArray, mode): def getMeshFromXYZ(xyzArray, mode):
"""calc Vx,Vy,Vz vectors for vtk rectangular mesh""" """Calc Vx,Vy,Vz vectors for vtk rectangular mesh"""
# NOTE: # NOTE:
# --> np.unique will automatically sort the list # --> np.unique will automatically sort the list
# --> although not exactly n(1), but since mesh dimension should # --> although not exactly n(1), but since mesh dimension should
# small anyway, so this is still light weight. # small anyway, so this is still light weight.
dim = xyzArray.shape[1] # 2D:2, 3D:3 dim = xyzArray.shape[1] # 2D:2, 3D:3
coords = [np.unique(xyzArray[:, i]) for i in xrange(dim)] coords = [np.unique(xyzArray[:, i]) for i in range(dim)]
if mode == 'cell': if mode == 'cell':
# since x, y, z might now have the same number of elements, # since x, y, z might now have the same number of elements,
# we have to deal with them individually # we have to deal with them individually
for ri in xrange(dim): for ri in range(dim):
vctr_pt = coords[ri] vctr_pt = coords[ri]
vctr_cell = np.empty(len(vctr_pt)+1) vctr_cell = np.empty(len(vctr_pt)+1)
# calculate first and last end point # calculate first and last end point
vctr_cell[0] = vctr_pt[0] - 0.5*abs(vctr_pt[1] - vctr_pt[0]) vctr_cell[0] = vctr_pt[0] - 0.5*abs(vctr_pt[1] - vctr_pt[0])
vctr_cell[-1] = vctr_pt[-1] + 0.5*abs(vctr_pt[-2] - vctr_pt[-1]) vctr_cell[-1] = vctr_pt[-1] + 0.5*abs(vctr_pt[-2] - vctr_pt[-1])
for cj in xrange(1, len(vctr_cell)-1): for cj in range(1, len(vctr_cell)-1):
vctr_cell[cj] = 0.5*(vctr_pt[cj-1] + vctr_pt[cj]) vctr_cell[cj] = 0.5*(vctr_pt[cj-1] + vctr_pt[cj])
# update the coords # update the coords
coords[ri] = vctr_cell coords[ri] = vctr_cell

View File

@ -168,8 +168,8 @@ for name in filenames:
im = Image.new('RGBA',imagesize) im = Image.new('RGBA',imagesize)
draw = ImageDraw.Draw(im) draw = ImageDraw.Draw(im)
for y in xrange(options.dimension[1]): for y in range(options.dimension[1]):
for x in xrange(options.dimension[0]): for x in range(options.dimension[0]):
draw.polygon([nodes[0,x ,y ,options.z], draw.polygon([nodes[0,x ,y ,options.z],
nodes[1,x ,y ,options.z], nodes[1,x ,y ,options.z],
nodes[0,x+1,y ,options.z], nodes[0,x+1,y ,options.z],

View File

@ -27,9 +27,9 @@ def outStdout(cmd,locals):
exec(cmd[3:]) exec(cmd[3:])
elif cmd[0:3] == '(?)': elif cmd[0:3] == '(?)':
cmd = eval(cmd[3:]) cmd = eval(cmd[3:])
print cmd print(cmd)
else: else:
print cmd print(cmd)
return return
@ -121,17 +121,17 @@ if options.inverse:
theMap = theMap.invert() theMap = theMap.invert()
if options.palettef: if options.palettef:
print theMap.export(format='raw',steps=options.colorcount) print(theMap.export(format='raw',steps=options.colorcount))
elif options.palette: elif options.palette:
for theColor in theMap.export(format='list',steps=options.colorcount): for theColor in theMap.export(format='list',steps=options.colorcount):
print '\t'.join(map(lambda x: str(int(255*x)),theColor)) print('\t'.join(map(lambda x: str(int(255*x)),theColor)))
else: # connect to Mentat and change colorMap else: # connect to Mentat and change colorMap
sys.path.append(damask.solver.Marc().libraryPath()) sys.path.append(damask.solver.Marc().libraryPath())
try: try:
import py_mentat import py_mentat
print 'waiting to connect...' print('waiting to connect...')
py_mentat.py_connect('',options.port) py_mentat.py_connect('',options.port)
print 'connected...' print('connected...')
mentat = True mentat = True
except: except:
sys.stderr.write('warning: no valid Mentat release found\n') sys.stderr.write('warning: no valid Mentat release found\n')

View File

@ -150,7 +150,7 @@ class MPIEspectral_result: # mimic py_post result object
self.expectedFileSize = self.dataOffset+self.N_increments*(self.tagLen+self.N_elements*self.N_element_scalars*8) self.expectedFileSize = self.dataOffset+self.N_increments*(self.tagLen+self.N_elements*self.N_element_scalars*8)
if options.legacy: self.expectedFileSize+=self.expectedFileSize//self.fourByteLimit*8 # add extra 8 bytes for additional headers at 4 GB limits if options.legacy: self.expectedFileSize+=self.expectedFileSize//self.fourByteLimit*8 # add extra 8 bytes for additional headers at 4 GB limits
if self.expectedFileSize != self.filesize: if self.expectedFileSize != self.filesize:
print '\n**\n* Unexpected file size. Incomplete simulation or file corrupted!\n**' print('\n**\n* Unexpected file size. Incomplete simulation or file corrupted!\n**')
def __str__(self): def __str__(self):
"""Summary of results file""" """Summary of results file"""
@ -288,8 +288,8 @@ class MPIEspectral_result: # mimic py_post result object
self.file.seek(incStart+where) self.file.seek(incStart+where)
value = struct.unpack('d',self.file.read(8))[0] value = struct.unpack('d',self.file.read(8))[0]
except: except:
print 'seeking',incStart+where print('seeking {}'.format(incStart+where))
print 'e',e,'idx',idx print('e {} idx {}'.format(e,idx))
sys.exit(1) sys.exit(1)
else: else:
@ -304,7 +304,7 @@ class MPIEspectral_result: # mimic py_post result object
try: try:
if where%self.fourByteLimit + 8 >= self.fourByteLimit: # danger of reading into fortran record footer at 4 byte limit if where%self.fourByteLimit + 8 >= self.fourByteLimit: # danger of reading into fortran record footer at 4 byte limit
data='' data=''
for i in xrange(8): for i in range(8):
self.file.seek(incStart+where+(where//self.fourByteLimit)*8+4) self.file.seek(incStart+where+(where//self.fourByteLimit)*8+4)
data += self.file.read(1) data += self.file.read(1)
where += 1 where += 1
@ -313,8 +313,8 @@ class MPIEspectral_result: # mimic py_post result object
self.file.seek(incStart+where+(where//self.fourByteLimit)*8+4) self.file.seek(incStart+where+(where//self.fourByteLimit)*8+4)
value = struct.unpack('d',self.file.read(8))[0] value = struct.unpack('d',self.file.read(8))[0]
except: except:
print 'seeking',incStart+where+(where//self.fourByteLimit)*8+4 print('seeking {}'.format(incStart+where+(where//self.fourByteLimit)*8+4))
print 'e',e,'idx',idx print('e {} idx {}'.format(e,idx))
sys.exit(1) sys.exit(1)
return [elemental_scalar(node,value) for node in self.element(e).items] return [elemental_scalar(node,value) for node in self.element(e).items]
@ -327,7 +327,7 @@ class MPIEspectral_result: # mimic py_post result object
# ----------------------------- # -----------------------------
def ipCoords(elemType, nodalCoordinates): def ipCoords(elemType, nodalCoordinates):
"""returns IP coordinates for a given element""" """Returns IP coordinates for a given element"""
nodeWeightsPerNode = { nodeWeightsPerNode = {
7: [ [27.0, 9.0, 3.0, 9.0, 9.0, 3.0, 1.0, 3.0], 7: [ [27.0, 9.0, 3.0, 9.0, 9.0, 3.0, 1.0, 3.0],
[ 9.0, 27.0, 9.0, 3.0, 3.0, 9.0, 3.0, 1.0], [ 9.0, 27.0, 9.0, 3.0, 3.0, 9.0, 3.0, 1.0],
@ -376,7 +376,7 @@ def ipCoords(elemType, nodalCoordinates):
# ----------------------------- # -----------------------------
def ipIDs(elemType): def ipIDs(elemType):
"""returns IP numbers for given element type""" """Returns IP numbers for given element type"""
ipPerNode = { ipPerNode = {
7: [ 1, 2, 4, 3, 5, 6, 8, 7 ], 7: [ 1, 2, 4, 3, 5, 6, 8, 7 ],
57: [ 1, 2, 4, 3, 5, 6, 8, 7 ], 57: [ 1, 2, 4, 3, 5, 6, 8, 7 ],
@ -392,7 +392,7 @@ def ipIDs(elemType):
# ----------------------------- # -----------------------------
def substituteLocation(string, mesh, coords): def substituteLocation(string, mesh, coords):
"""do variable interpolation in group and filter strings""" """Do variable interpolation in group and filter strings"""
substitute = string substitute = string
substitute = substitute.replace('elem', str(mesh[0])) substitute = substitute.replace('elem', str(mesh[0]))
substitute = substitute.replace('node', str(mesh[1])) substitute = substitute.replace('node', str(mesh[1]))
@ -407,7 +407,7 @@ def substituteLocation(string, mesh, coords):
# ----------------------------- # -----------------------------
def heading(glue,parts): def heading(glue,parts):
"""joins pieces from parts by glue. second to last entry in pieces tells multiplicity""" """Joins pieces from parts by glue. second to last entry in pieces tells multiplicity"""
header = [] header = []
for pieces in parts: for pieces in parts:
if pieces[-2] == 0: if pieces[-2] == 0:
@ -420,7 +420,7 @@ def heading(glue,parts):
# ----------------------------- # -----------------------------
def mapIncremental(label, mapping, N, base, new): def mapIncremental(label, mapping, N, base, new):
""" """
applies the function defined by "mapping" Applies the function defined by "mapping"
(can be either 'min','max','avg', 'sum', or user specified) (can be either 'min','max','avg', 'sum', or user specified)
to a list of data to a list of data
@ -450,7 +450,7 @@ def mapIncremental(label, mapping, N, base, new):
# ----------------------------- # -----------------------------
def OpenPostfile(name,type,nodal = False): def OpenPostfile(name,type,nodal = False):
"""open postfile with extrapolation mode 'translate'""" """Open postfile with extrapolation mode 'translate'"""
p = {\ p = {\
'spectral': MPIEspectral_result,\ 'spectral': MPIEspectral_result,\
'marc': post_open,\ 'marc': post_open,\
@ -463,7 +463,7 @@ def OpenPostfile(name,type,nodal = False):
# ----------------------------- # -----------------------------
def ParseOutputFormat(filename,what,me): def ParseOutputFormat(filename,what,me):
"""parse .output* files in order to get a list of outputs""" """Parse .output* files in order to get a list of outputs"""
content = [] content = []
format = {'outputs':{},'specials':{'brothers':[]}} format = {'outputs':{},'specials':{'brothers':[]}}
for prefix in ['']+map(str,range(1,17)): for prefix in ['']+map(str,range(1,17)):
@ -508,7 +508,7 @@ def ParseOutputFormat(filename,what,me):
# ----------------------------- # -----------------------------
def ParsePostfile(p,filename, outputFormat): def ParsePostfile(p,filename, outputFormat):
""" """
parse postfile in order to get position and labels of outputs Parse postfile in order to get position and labels of outputs
needs "outputFormat" for mapping of output names to postfile output indices needs "outputFormat" for mapping of output names to postfile output indices
""" """
@ -592,7 +592,7 @@ def ParsePostfile(p,filename, outputFormat):
try: try:
stat['LabelOfElementalScalar'][startIndex + offset] = label stat['LabelOfElementalScalar'][startIndex + offset] = label
except IndexError: except IndexError:
print 'trying to assign %s at position %i+%i'%(label,startIndex,offset) print('trying to assign {} at position {}+{}'.format(label,startIndex,offset))
sys.exit(1) sys.exit(1)
offset += 1 offset += 1
@ -821,8 +821,8 @@ bg.set_message('parsing .output files...')
for what in me: for what in me:
outputFormat[what] = ParseOutputFormat(filename, what, me[what]) outputFormat[what] = ParseOutputFormat(filename, what, me[what])
if '_id' not in outputFormat[what]['specials']: if '_id' not in outputFormat[what]['specials']:
print "\nsection '%s' not found in <%s>"%(me[what], what) print("\nsection '{}' not found in <{}>".format(me[what], what))
print '\n'.join(map(lambda x:' [%s]'%x, outputFormat[what]['specials']['brothers'])) print('\n'.join(map(lambda x:' [%s]'%x, outputFormat[what]['specials']['brothers'])))
bg.set_message('opening result file...') bg.set_message('opening result file...')
p = OpenPostfile(filename+extension,options.filetype,options.nodal) p = OpenPostfile(filename+extension,options.filetype,options.nodal)
@ -851,17 +851,17 @@ for opt in ['nodalScalar','elemScalar','elemTensor','homogenizationResult','crys
if options.info: if options.info:
if options.filetype == 'marc': if options.filetype == 'marc':
print '\n\nMentat release %s'%damask.solver.Marc().version('../../') print('\n\nMentat release {}'.format(damask.solver.Marc().version('../../')))
if options.filetype == 'spectral': if options.filetype == 'spectral':
print '\n\n',p print('\n\n{}'.format(p))
SummarizePostfile(stat) SummarizePostfile(stat)
print '\nUser Defined Outputs' print('\nUser Defined Outputs')
for what in me: for what in me:
print '\n ',what,':' print('\n {}:'.format(what))
for output in outputFormat[what]['outputs']: for output in outputFormat[what]['outputs']:
print ' ',output print(' {}'.format(output))
sys.exit(0) sys.exit(0)
@ -869,7 +869,7 @@ if options.info:
# --- build connectivity maps # --- build connectivity maps
elementsOfNode = {} elementsOfNode = {}
for e in xrange(stat['NumberOfElements']): for e in range(stat['NumberOfElements']):
if e%1000 == 0: if e%1000 == 0:
bg.set_message('connect elem %i...'%e) bg.set_message('connect elem %i...'%e)
for n in map(p.node_sequence,p.element(e).items): for n in map(p.node_sequence,p.element(e).items):
@ -892,7 +892,7 @@ groupCount = 0
memberCount = 0 memberCount = 0
if options.nodalScalar: if options.nodalScalar:
for n in xrange(stat['NumberOfNodes']): for n in range(stat['NumberOfNodes']):
if n%1000 == 0: if n%1000 == 0:
bg.set_message('scan node %i...'%n) bg.set_message('scan node %i...'%n)
myNodeID = p.node_id(n) myNodeID = p.node_id(n)
@ -927,7 +927,7 @@ if options.nodalScalar:
memberCount += 1 memberCount += 1
else: else:
for e in xrange(stat['NumberOfElements']): for e in range(stat['NumberOfElements']):
if e%1000 == 0: if e%1000 == 0:
bg.set_message('scan elem %i...'%e) bg.set_message('scan elem %i...'%e)
myElemID = p.element_id(e) myElemID = p.element_id(e)
@ -947,27 +947,27 @@ else:
# --- filter valid locations # --- filter valid locations
# generates an expression that is only true for the locations specified by options.filter # generates an expression that is only true for the locations specified by options.filter
filter = substituteLocation(options.filter, [myElemID,myNodeID,myIpID,myGrainID], myIpCoordinates[n]) filter = substituteLocation(options.filter, [myElemID,myNodeID,myIpID,myGrainID], myIpCoordinates[n])
if filter != '' and not eval(filter): # for all filter expressions that are not true:... if filter != '' and not eval(filter): # for all filter expressions that are not true:...
continue # ... ignore this data point and continue with next continue # ... ignore this data point and continue with next
# --- group data locations # --- group data locations
# generates a unique key for a group of separated data based on the separation criterium for the location # generates a unique key for a group of separated data based on the separation criterium for the location
grp = substituteLocation('#'.join(options.sep), [myElemID,myNodeID,myIpID,myGrainID], myIpCoordinates[n]) grp = substituteLocation('#'.join(options.sep), [myElemID,myNodeID,myIpID,myGrainID], myIpCoordinates[n])
if grp not in index: # create a new group if not yet present if grp not in index: # create a new group if not yet present
index[grp] = groupCount index[grp] = groupCount
groups.append([[0,0,0,0,0.0,0.0,0.0]]) # initialize with avg location groups.append([[0,0,0,0,0.0,0.0,0.0]]) # initialize with avg location
groupCount += 1 groupCount += 1
groups[index[grp]][0][:4] = mapIncremental('','unique', groups[index[grp]][0][:4] = mapIncremental('','unique',
len(groups[index[grp]])-1, len(groups[index[grp]])-1,
groups[index[grp]][0][:4], groups[index[grp]][0][:4],
[myElemID,myNodeID,myIpID,myGrainID]) # keep only if unique average location [myElemID,myNodeID,myIpID,myGrainID]) # keep only if unique average location
groups[index[grp]][0][4:] = mapIncremental('','avg', groups[index[grp]][0][4:] = mapIncremental('','avg',
len(groups[index[grp]])-1, len(groups[index[grp]])-1,
groups[index[grp]][0][4:], groups[index[grp]][0][4:],
myIpCoordinates[n]) # incrementally update average location myIpCoordinates[n]) # incrementally update average location
groups[index[grp]].append([myElemID,myNodeID,myIpID,myGrainID,n]) # append a new list defining each group member groups[index[grp]].append([myElemID,myNodeID,myIpID,myGrainID,n]) # append a new list defining each group member
memberCount += 1 memberCount += 1
@ -996,14 +996,14 @@ if 'none' not in map(str.lower, options.sort):
sortKeys = eval('lambda x:(%s)'%(','.join(theKeys))) sortKeys = eval('lambda x:(%s)'%(','.join(theKeys)))
bg.set_message('sorting groups...') bg.set_message('sorting groups...')
groups.sort(key = sortKeys) # in-place sorting to save mem groups.sort(key = sortKeys) # in-place sorting to save mem
# --------------------------- create output dir -------------------------------- # --------------------------- create output dir --------------------------------
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir)) dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
if not os.path.isdir(dirname): if not os.path.isdir(dirname):
os.mkdir(dirname,0755) os.mkdir(dirname,0o755)
fileOpen = False fileOpen = False
assembleHeader = True assembleHeader = True
@ -1049,7 +1049,7 @@ for incCount,position in enumerate(locations): # walk through locations
if options.separateFiles: if options.separateFiles:
if fileOpen: if fileOpen:
file.close() file.close() # noqa
fileOpen = False fileOpen = False
outFilename = eval('"'+eval("'%%s_inc%%0%ii%%s.txt'%(math.log10(max(increments+[1]))+1)")\ outFilename = eval('"'+eval("'%%s_inc%%0%ii%%s.txt'%(math.log10(max(increments+[1]))+1)")\
+'"%(dirname + os.sep + options.prefix + os.path.split(filename)[1],increments[incCount],options.suffix)') +'"%(dirname + os.sep + options.prefix + os.path.split(filename)[1],increments[incCount],options.suffix)')
@ -1070,15 +1070,15 @@ for incCount,position in enumerate(locations): # walk through locations
member = 0 member = 0
for group in groups: for group in groups:
N = 0 # group member counter N = 0 # group member counter
for (e,n,i,g,n_local) in group[1:]: # loop over group members for (e,n,i,g,n_local) in group[1:]: # loop over group members
member += 1 member += 1
if member%1000 == 0: if member%1000 == 0:
time_delta = ((len(locations)*memberCount)/float(member+incCount*memberCount)-1.0)*(time.time()-time_start) time_delta = ((len(locations)*memberCount)/float(member+incCount*memberCount)-1.0)*(time.time()-time_start)
bg.set_message('(%02i:%02i:%02i) processing point %i of %i from increment %i (position %i)...' bg.set_message('(%02i:%02i:%02i) processing point %i of %i from increment %i (position %i)...'
%(time_delta//3600,time_delta%3600//60,time_delta%60,member,memberCount,increments[incCount],position)) %(time_delta//3600,time_delta%3600//60,time_delta%60,member,memberCount,increments[incCount],position))
newby = [] # current member's data newby = [] # current member's data
if options.nodalScalar: if options.nodalScalar:
for label in options.nodalScalar: for label in options.nodalScalar:
@ -1126,7 +1126,7 @@ for incCount,position in enumerate(locations): # walk through locations
['Crystallite']*len(options.crystalliteResult) + ['Crystallite']*len(options.crystalliteResult) +
['Constitutive']*len(options.constitutiveResult) ['Constitutive']*len(options.constitutiveResult)
): ):
outputIndex = list(zip(*outputFormat[resultType]['outputs'])[0]).index(label) # find the position of this output in the outputFormat outputIndex = list(zip(*outputFormat[resultType]['outputs'])[0]).index(label) # find the position of this output in the outputFormat
length = int(outputFormat[resultType]['outputs'][outputIndex][1]) length = int(outputFormat[resultType]['outputs'][outputIndex][1])
thisHead = heading('_',[[component,''.join( label.split() )] for component in range(int(length>1),length+int(length>1))]) thisHead = heading('_',[[component,''.join( label.split() )] for component in range(int(length>1),length+int(length>1))])
if assembleHeader: header += thisHead if assembleHeader: header += thisHead
@ -1138,13 +1138,13 @@ for incCount,position in enumerate(locations): # walk through locations
'content':[ p.element_scalar(p.element_sequence(e),stat['IndexOfLabel'][head])[n_local].value 'content':[ p.element_scalar(p.element_sequence(e),stat['IndexOfLabel'][head])[n_local].value
for head in thisHead ]}) for head in thisHead ]})
except KeyError: except KeyError:
print '\nDAMASK outputs seem missing from "post" section of the *.dat file!' print('\nDAMASK outputs seem missing from "post" section of the *.dat file!')
sys.exit() sys.exit()
assembleHeader = False assembleHeader = False
if N == 0: if N == 0:
mappedResult = [float(x) for x in xrange(len(header))] # initialize with debug data (should get deleted by *N at N=0) mappedResult = [float(x) for x in range(len(header))] # init with debug data (should get deleted by *N at N=0)
pos = 0 pos = 0
for chunk in newby: for chunk in newby:

View File

@ -67,7 +67,7 @@ for name in filenames:
if index == -1: remarks.append('label "{}" not present...'.format(options.label[i])) if index == -1: remarks.append('label "{}" not present...'.format(options.label[i]))
else: else:
m = pattern[dimensions[i]>1].match(table.tags[index]) # isolate label name m = pattern[dimensions[i]>1].match(table.tags[index]) # isolate label name
for j in xrange(dimensions[i]): for j in range(dimensions[i]):
table.tags[index+j] = table.tags[index+j].replace(m.group(2),options.substitute[i]) # replace name with substitute table.tags[index+j] = table.tags[index+j].replace(m.group(2),options.substitute[i]) # replace name with substitute
if remarks != []: damask.util.croak(remarks) if remarks != []: damask.util.croak(remarks)

View File

@ -12,7 +12,7 @@ scriptID = ' '.join([scriptName,damask.version])
# ----------------------------- # -----------------------------
def getHeader(filename,sizeFastIndex,sizeSlowIndex,stepsize): def getHeader(filename,sizeFastIndex,sizeSlowIndex,stepsize):
"""returns header for ang file step size in micrometer""" """Returns header for ang file step size in micrometer"""
return '\n'.join([ \ return '\n'.join([ \
'# TEM_PIXperUM 1.000000', \ '# TEM_PIXperUM 1.000000', \
'# x-star 1.000000', \ '# x-star 1.000000', \
@ -48,7 +48,7 @@ def getHeader(filename,sizeFastIndex,sizeSlowIndex,stepsize):
# ----------------------------- # -----------------------------
def positiveRadians(angle): def positiveRadians(angle):
"""returns positive angle in radians from angle in degrees""" """Returns positive angle in radians from angle in degrees"""
angle = math.radians(float(angle)) angle = math.radians(float(angle))
while angle < 0.0: while angle < 0.0:
angle += 2.0 * math.pi angle += 2.0 * math.pi
@ -59,9 +59,9 @@ def positiveRadians(angle):
# ----------------------------- # -----------------------------
def getDataLine(angles,x,y,validData=True): def getDataLine(angles,x,y,validData=True):
""" """
returns string of one line in ang file Returns string of one line in ang file.
convention in ang file: y coordinate comes first and is fastest index Convention in ang file: y coordinate comes first and is fastest index
positions in micrometer positions in micrometer
""" """
info = {True: (9999.9, 1.0, 0,99999,0.0), info = {True: (9999.9, 1.0, 0,99999,0.0),
@ -295,13 +295,13 @@ for filename in filenames:
if options.verbose: sys.stdout.write("\nGENERATING POINTS FOR POINT GRID") if options.verbose: sys.stdout.write("\nGENERATING POINTS FOR POINT GRID")
points = vtk.vtkPoints() points = vtk.vtkPoints()
for k in xrange(Npoints[2]): for k in range(Npoints[2]):
for j in xrange(Npoints[0]): for j in range(Npoints[0]):
for i in xrange(Npoints[1]): # y is fastest index for i in range(Npoints[1]): # y is fastest index
rotatedpoint = np.array([rotatedbox[0][0] + (float(j) + 0.5) * options.resolution, rotatedpoint = np.array([rotatedbox[0][0] + (float(j) + 0.5) * options.resolution,
rotatedbox[1][0] + (float(i) + 0.5) * options.resolution, rotatedbox[1][0] + (float(i) + 0.5) * options.resolution,
rotatedbox[2][0] + (float(k) + 0.5) * options.distance ]) # point in rotated system rotatedbox[2][0] + (float(k) + 0.5) * options.distance ]) # point in rotated system
point = np.dot(R.T,rotatedpoint) # point in mesh system point = np.dot(R.T,rotatedpoint) # point in mesh system
points.InsertNextPoint(list(point)) points.InsertNextPoint(list(point))
if options.verbose: if options.verbose:
sys.stdout.write("\rGENERATING POINTS FOR POINT GRID %d%%" %(100*(Npoints[1]*(k*Npoints[0]+j)+i+1)/totalNpoints)) sys.stdout.write("\rGENERATING POINTS FOR POINT GRID %d%%" %(100*(Npoints[1]*(k*Npoints[0]+j)+i+1)/totalNpoints))
@ -315,7 +315,7 @@ for filename in filenames:
if options.verbose: sys.stdout.write("\nGENERATING VERTICES FOR POINT GRID") if options.verbose: sys.stdout.write("\nGENERATING VERTICES FOR POINT GRID")
vertices = vtk.vtkCellArray() vertices = vtk.vtkCellArray()
for i in xrange(totalNpoints): for i in range(totalNpoints):
vertex = vtk.vtkVertex() vertex = vtk.vtkVertex()
vertex.GetPointIds().SetId(0,i) # each vertex consists of exactly one (index 0) point with ID "i" vertex.GetPointIds().SetId(0,i) # each vertex consists of exactly one (index 0) point with ID "i"
vertices.InsertNextCell(vertex) vertices.InsertNextCell(vertex)
@ -378,7 +378,7 @@ for filename in filenames:
with open(angfilename,'w') as angfile: with open(angfilename,'w') as angfile:
if options.verbose: sys.stdout.write(" %s\n"%angfilename) if options.verbose: sys.stdout.write(" %s\n"%angfilename)
angfile.write(getHeader(filename,Npoints[1],Npoints[0],options.resolution*options.scale)) angfile.write(getHeader(filename,Npoints[1],Npoints[0],options.resolution*options.scale))
for i in xrange(sliceN*NpointsPerSlice,(sliceN+1)*NpointsPerSlice): # Iterate over points on slice for i in range(sliceN*NpointsPerSlice,(sliceN+1)*NpointsPerSlice): # Iterate over points on slice
# Get euler angles of closest IDs # Get euler angles of closest IDs

View File

@ -76,12 +76,12 @@ for name in filenames:
np.zeros((table.data.shape[0], np.zeros((table.data.shape[0],
3-table.data.shape[1]),dtype='f'))) # fill coords up to 3D with zeros 3-table.data.shape[1]),dtype='f'))) # fill coords up to 3D with zeros
coords = [np.unique(table.data[:,i]) for i in xrange(3)] coords = [np.unique(table.data[:,i]) for i in range(3)]
if options.mode == 'cell': if options.mode == 'cell':
coords = [0.5 * np.array([3.0 * coords[i][0] - coords[i][0 + int(len(coords[i]) > 1)]] + \ coords = [0.5 * np.array([3.0 * coords[i][0] - coords[i][0 + int(len(coords[i]) > 1)]] + \
[coords[i][j-1] + coords[i][j] for j in xrange(1,len(coords[i]))] + \ [coords[i][j-1] + coords[i][j] for j in range(1,len(coords[i]))] + \
[3.0 * coords[i][-1] - coords[i][-1 - int(len(coords[i]) > 1)]]) for i in xrange(3)] [3.0 * coords[i][-1] - coords[i][-1 - int(len(coords[i]) > 1)]]) for i in range(3)]
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')
N = grid.prod() if options.mode == 'point' else (grid-1).prod() N = grid.prod() if options.mode == 'point' else (grid-1).prod()

View File

@ -14,13 +14,13 @@ def ParseOutputFormat(filename,what,me):
outputmetafile = filename+'.output'+what outputmetafile = filename+'.output'+what
try: try:
file = open(outputmetafile) myFile = open(outputmetafile)
except: except:
print('Could not open file %s'%outputmetafile) print('Could not open file %s'%outputmetafile)
raise raise
else: else:
content = file.readlines() content = myFile.readlines()
file.close() myFile.close()
tag = '' tag = ''
tagID = 0 tagID = 0
@ -51,7 +51,7 @@ def ParseOutputFormat(filename,what,me):
parser = OptionParser(option_class=damask.extendableOption, usage='%prog [option(s)] Abaqus.Inputfile(s)', description = """ parser = OptionParser(option_class=damask.extendableOption, usage='%prog [option(s)] Abaqus.Inputfile(s)', description = """
Transfer the output variables requested in the material.config to Transfer the output variables requested in the material.config to
properly labelled user defined variables within the Abaqus input file (*.inp). properly labelled user-defined variables within the Abaqus input file (*.inp).
Requires the files Requires the files
<modelname_jobname>.output<Homogenization/Crystallite/Constitutive> <modelname_jobname>.output<Homogenization/Crystallite/Constitutive>
@ -60,7 +60,7 @@ that are written during the first run of the model.
Specify which user block format you want to apply by stating the homogenization, crystallite, and phase identifiers. Specify which user block format you want to apply by stating the homogenization, crystallite, and phase identifiers.
Or have an existing set of user variables copied over from another *.inp file. Or have an existing set of user variables copied over from another *.inp file.
""", version= scriptID) """, version = scriptID)
parser.add_option('-m', dest='number', type='int', metavar = 'int', parser.add_option('-m', dest='number', type='int', metavar = 'int',
help='maximum requested User Defined Variable [%default]') help='maximum requested User Defined Variable [%default]')
@ -84,7 +84,7 @@ parser.set_defaults(number = 0,
(options, files) = parser.parse_args() (options, files) = parser.parse_args()
if not files: if not files:
parser.error('no file(s) specified...') parser.error('no file(s) specified.')
me = { 'Homogenization': options.homog, me = { 'Homogenization': options.homog,
'Crystallite': options.cryst, 'Crystallite': options.cryst,
@ -92,18 +92,18 @@ me = { 'Homogenization': options.homog,
} }
for file in files: for myFile in files:
print '\033[1m'+scriptName+'\033[0m: '+file+'\n' damask.util.report(scriptName,myFile)
if options.useFile: if options.useFile:
formatFile = os.path.splitext(options.useFile)[0] formatFile = os.path.splitext(options.useFile)[0]
else: else:
formatFile = os.path.splitext(file)[0] formatFile = os.path.splitext(myFile)[0]
file = os.path.splitext(file)[0]+'.inp' myFile = os.path.splitext(myFile)[0]+'.inp'
if not os.path.lexists(file): if not os.path.lexists(myFile):
print file,'not found' print('{} not found'.format(myFile))
continue continue
print('Scanning format files of: %s'%formatFile) print('Scanning format files of: {}'.format(formatFile))
if options.number < 1: if options.number < 1:
outputFormat = {} outputFormat = {}
@ -111,8 +111,8 @@ for file in files:
for what in me: for what in me:
outputFormat[what] = ParseOutputFormat(formatFile,what,me[what]) outputFormat[what] = ParseOutputFormat(formatFile,what,me[what])
if '_id' not in outputFormat[what]['specials']: if '_id' not in outputFormat[what]['specials']:
print "'%s' not found in <%s>"%(me[what],what) print("'{}' not found in <{}>".format(me[what],what))
print '\n'.join(map(lambda x:' '+x,outputFormat[what]['specials']['brothers'])) print('\n'.join(map(lambda x:' '+x,outputFormat[what]['specials']['brothers'])))
sys.exit(1) sys.exit(1)
UserVars = ['HomogenizationCount'] UserVars = ['HomogenizationCount']
@ -140,11 +140,11 @@ for file in files:
UserVars += ['%i_%s'%(grain+1,var[0]) for i in range(var[1])] UserVars += ['%i_%s'%(grain+1,var[0]) for i in range(var[1])]
# Now change *.inp file(s) # Now change *.inp file(s)
print('Adding labels to: %s'%file) print('Adding labels to: {}'.format(myFile))
inFile = open(file) inFile = open(myFile)
input = inFile.readlines() input = inFile.readlines()
inFile.close() inFile.close()
output = open(file,'w') output = open(myFile,'w')
thisSection = '' thisSection = ''
if options.damaskOption: if options.damaskOption:
output.write('$damask {0}\n'.format(options.damaskOption)) output.write('$damask {0}\n'.format(options.damaskOption))
@ -154,14 +154,15 @@ for file in files:
if m: if m:
lastSection = thisSection lastSection = thisSection
thisSection = m.group(1) thisSection = m.group(1)
if (lastSection.upper() == '*DEPVAR' and thisSection.upper() == '*USER'): #Abaqus keyword can be upper or lower case if (lastSection.upper() == '*DEPVAR' and thisSection.upper() == '*USER'): # Abaqus keyword can be upper or lower case
if options.number > 0: if options.number > 0:
output.write('%i\n'%options.number) #Abaqus needs total number of SDVs in the line after *Depvar keyword output.write('{}\n'.format(options.number)) # Abaqus needs total number of SDVs in the line after *Depvar keyword
else: else:
output.write('%i\n'%len(UserVars)) output.write('{}\n'.format(len(UserVars)))
for i in range(len(UserVars)): for i in range(len(UserVars)):
output.write('%i,"%i%s","%i%s"\n'%(i+1,0,UserVars[i],0,UserVars[i])) #index,output variable key,output variable description output.write('%i,"%i%s","%i%s"\n'%(i+1,0,UserVars[i],0,UserVars[i])) #index,output variable key,output variable description
if (thisSection.upper() != '*DEPVAR' or not re.match('\s*\d',line)): if (thisSection.upper() != '*DEPVAR' or not re.match('\s*\d',line)):
output.write(line) output.write(line)
output.close() output.close()

View File

@ -93,12 +93,12 @@ for name in filenames:
microstructure_cropped = np.zeros(newInfo['grid'],datatype) microstructure_cropped = np.zeros(newInfo['grid'],datatype)
microstructure_cropped.fill(options.fill if options.real or options.fill > 0 else microstructure.max()+1) microstructure_cropped.fill(options.fill if options.real or options.fill > 0 else microstructure.max()+1)
xindex = list(set(xrange(options.offset[0],options.offset[0]+newInfo['grid'][0])) & \ xindex = list(set(range(options.offset[0],options.offset[0]+newInfo['grid'][0])) & \
set(xrange(info['grid'][0]))) set(range(info['grid'][0])))
yindex = list(set(xrange(options.offset[1],options.offset[1]+newInfo['grid'][1])) & \ yindex = list(set(range(options.offset[1],options.offset[1]+newInfo['grid'][1])) & \
set(xrange(info['grid'][1]))) set(range(info['grid'][1])))
zindex = list(set(xrange(options.offset[2],options.offset[2]+newInfo['grid'][2])) & \ zindex = list(set(range(options.offset[2],options.offset[2]+newInfo['grid'][2])) & \
set(xrange(info['grid'][2]))) set(range(info['grid'][2])))
translate_x = [i - options.offset[0] for i in xindex] translate_x = [i - options.offset[0] for i in xindex]
translate_y = [i - options.offset[1] for i in yindex] translate_y = [i - options.offset[1] for i in yindex]
translate_z = [i - options.offset[2] for i in zindex] translate_z = [i - options.offset[2] for i in zindex]

View File

@ -125,10 +125,10 @@ for name in filenames:
Y = options.periods*2.0*math.pi*(np.arange(options.grid[1])+0.5)/options.grid[1] Y = options.periods*2.0*math.pi*(np.arange(options.grid[1])+0.5)/options.grid[1]
Z = options.periods*2.0*math.pi*(np.arange(options.grid[2])+0.5)/options.grid[2] Z = options.periods*2.0*math.pi*(np.arange(options.grid[2])+0.5)/options.grid[2]
for z in xrange(options.grid[2]): for z in range(options.grid[2]):
for y in xrange(options.grid[1]): for y in range(options.grid[1]):
table.data_clear() table.data_clear()
for x in xrange(options.grid[0]): for x in range(options.grid[0]):
table.data_append(options.microstructure[options.threshold < surface[options.type](X[x],Y[y],Z[z])]) table.data_append(options.microstructure[options.threshold < surface[options.type](X[x],Y[y],Z[z])])
table.data_write() table.data_write()

View File

@ -105,8 +105,8 @@ microstructure = np.where(radius < float(options.canal),1,0) + np.where(radius >
alphaOfGrain = np.zeros(info['grid'][0]*info['grid'][1],'d') alphaOfGrain = np.zeros(info['grid'][0]*info['grid'][1],'d')
betaOfGrain = np.zeros(info['grid'][0]*info['grid'][1],'d') betaOfGrain = np.zeros(info['grid'][0]*info['grid'][1],'d')
for y in xrange(info['grid'][1]): for y in range(info['grid'][1]):
for x in xrange(info['grid'][0]): for x in range(info['grid'][0]):
if microstructure[y,x] == 0: if microstructure[y,x] == 0:
microstructure[y,x] = info['microstructures'] microstructure[y,x] = info['microstructures']
alphaOfGrain[info['microstructures']] = alpha[y,x] alphaOfGrain[info['microstructures']] = alpha[y,x]
@ -129,7 +129,7 @@ header.append('(constituent)\tphase 1\ttexture 1\tfraction 1.0')
header.append('[interstitial]') header.append('[interstitial]')
header.append('crystallite %i'%options.crystallite) header.append('crystallite %i'%options.crystallite)
header.append('(constituent)\tphase 2\ttexture 2\tfraction 1.0') header.append('(constituent)\tphase 2\ttexture 2\tfraction 1.0')
for i in xrange(3,info['microstructures']): for i in range(3,info['microstructures']):
header.append('[Grain%s]'%(str(i).zfill(formatwidth))) header.append('[Grain%s]'%(str(i).zfill(formatwidth)))
header.append('crystallite %i'%options.crystallite) header.append('crystallite %i'%options.crystallite)
header.append('(constituent)\tphase 3\ttexture %s\tfraction 1.0'%(str(i).rjust(formatwidth))) header.append('(constituent)\tphase 3\ttexture %s\tfraction 1.0'%(str(i).rjust(formatwidth)))
@ -137,7 +137,7 @@ for i in xrange(3,info['microstructures']):
header.append('<texture>') header.append('<texture>')
header.append('[canal]') header.append('[canal]')
header.append('[interstitial]') header.append('[interstitial]')
for i in xrange(3,info['microstructures']): for i in range(3,info['microstructures']):
header.append('[Grain%s]'%(str(i).zfill(formatwidth))) header.append('[Grain%s]'%(str(i).zfill(formatwidth)))
header.append('(gauss)\tphi1 %g\tPhi %g\tphi2 0\tscatter 0.0\tfraction 1.0'\ header.append('(gauss)\tphi1 %g\tPhi %g\tphi2 0\tscatter 0.0\tfraction 1.0'\
%(alphaOfGrain[i],betaOfGrain[i])) %(alphaOfGrain[i],betaOfGrain[i]))

View File

@ -163,7 +163,7 @@ for name in filenames:
# --------------- figure out size and grid --------------------------------------------------------- # --------------- figure out size and grid ---------------------------------------------------------
coords = [np.unique(table.data[:,i]) for i in xrange(3)] coords = [np.unique(table.data[:,i]) for i in range(3)]
mincorner = np.array(map(min,coords)) mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords)) maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i') grid = np.array(map(len,coords),'i')
@ -217,9 +217,9 @@ for name in filenames:
tick = time.clock() tick = time.clock()
if options.verbose: bg.set_message('assigning grain IDs...') if options.verbose: bg.set_message('assigning grain IDs...')
for z in xrange(grid[2]): for z in range(grid[2]):
for y in xrange(grid[1]): for y in range(grid[1]):
for x in xrange(grid[0]): for x in range(grid[0]):
if (myPos+1)%(N/500.) < 1: if (myPos+1)%(N/500.) < 1:
time_delta = (time.clock()-tick) * (N - myPos) / myPos time_delta = (time.clock()-tick) * (N - myPos) / myPos
if options.verbose: bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...' if options.verbose: bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'

View File

@ -13,7 +13,7 @@ scriptID = ' '.join([scriptName,damask.version])
def meshgrid2(*arrs): def meshgrid2(*arrs):
"""code inspired by http://stackoverflow.com/questions/1827489/numpy-meshgrid-in-3d""" """Code inspired by http://stackoverflow.com/questions/1827489/numpy-meshgrid-in-3d"""
arrs = tuple(reversed(arrs)) arrs = tuple(reversed(arrs))
arrs = tuple(arrs) arrs = tuple(arrs)
lens = np.array(map(len, arrs)) lens = np.array(map(len, arrs))
@ -240,7 +240,7 @@ for name in filenames:
if np.any(info['size'] <= 0.0) \ if np.any(info['size'] <= 0.0) \
and np.all(info['grid'] < 1): errors.append('invalid size x y z.') and np.all(info['grid'] < 1): errors.append('invalid size x y z.')
else: else:
for i in xrange(3): for i in range(3):
if info['size'][i] <= 0.0: # any invalid size? if info['size'][i] <= 0.0: # any invalid size?
info['size'][i] = float(info['grid'][i])/max(info['grid']) # normalize to grid info['size'][i] = float(info['grid'][i])/max(info['grid']) # normalize to grid
remarks.append('rescaling size {} to {}...'.format({0:'x',1:'y',2:'z'}[i],info['size'][i])) remarks.append('rescaling size {} to {}...'.format({0:'x',1:'y',2:'z'}[i],info['size'][i]))

View File

@ -95,7 +95,7 @@ for name in filenames:
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
for smoothIter in xrange(options.N): for smoothIter in range(options.N):
periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]/2:-grid[0]/2, periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]/2:-grid[0]/2,
grid[1]/2:-grid[1]/2, grid[1]/2:-grid[1]/2,
grid[2]/2:-grid[2]/2] # periodically extend the microstructure grid[2]/2:-grid[2]/2] # periodically extend the microstructure

View File

@ -76,7 +76,7 @@ for name in filenames:
items = table.data items = table.data
if len(items) > 2: if len(items) > 2:
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0]) if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2])) elif items[1].lower() == 'to': items = range(int(items[0]),1+int(items[2]))
else: items = map(int,items) else: items = map(int,items)
else: items = map(int,items) else: items = map(int,items)

View File

@ -92,10 +92,10 @@ for name in filenames:
newInfo['size'] = np.where(newInfo['size'] <= 0.0, info['size'],newInfo['size']) newInfo['size'] = np.where(newInfo['size'] <= 0.0, info['size'],newInfo['size'])
multiplicity = [] multiplicity = []
for j in xrange(3): for j in range(3):
multiplicity.append([]) multiplicity.append([])
last = 0 last = 0
for i in xrange(info['grid'][j]): for i in range(info['grid'][j]):
this = int((i+1)*float(newInfo['grid'][j])/info['grid'][j]) this = int((i+1)*float(newInfo['grid'][j])/info['grid'][j])
multiplicity[j].append(this-last) multiplicity[j].append(this-last)
last = this last = this

View File

@ -63,7 +63,7 @@ for name in filenames:
table.info_clear() table.info_clear()
table.info_append(extra_header + [scriptID + '\t' + ' '.join(sys.argv[1:])]) table.info_append(extra_header + [scriptID + '\t' + ' '.join(sys.argv[1:])])
table.labels_clear() table.labels_clear()
table.labels_append(['{}_{}'.format(1+i,'pos') for i in xrange(3)]+['microstructure']) table.labels_append(['{}_{}'.format(1+i,'pos') for i in range(3)]+['microstructure'])
table.head_write() table.head_write()
table.output_flush() table.output_flush()

View File

@ -46,7 +46,7 @@ parser.set_defaults(origin = (0.0,0.0,0.0),
datatype = 'f' if options.real else 'i' datatype = 'f' if options.real else 'i'
sub = {} sub = {}
for i in xrange(len(options.substitute)/2): # split substitution list into "from" -> "to" for i in range(len(options.substitute)/2): # split substitution list into "from" -> "to"
sub[int(options.substitute[i*2])] = int(options.substitute[i*2+1]) sub[int(options.substitute[i*2])] = int(options.substitute[i*2+1])
# --- loop over input files ---------------------------------------------------------------------- # --- loop over input files ----------------------------------------------------------------------
@ -82,7 +82,7 @@ for name in filenames:
# --- read data ---------------------------------------------------------------------------------- # --- read data ----------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid'],datatype) # read microstructure microstructure = table.microstructure_read(info['grid'],datatype) # read microstructure
# --- do work ------------------------------------------------------------------------------------ # --- do work ------------------------------------------------------------------------------------

View File

@ -19,7 +19,7 @@ def integerFactorization(i):
return j return j
def binAsBins(bin,intervals): def binAsBins(bin,intervals):
"""explode compound bin into 3D bins list""" """Explode compound bin into 3D bins list"""
bins = [0]*3 bins = [0]*3
bins[0] = (bin//(intervals[1] * intervals[2])) % intervals[0] bins[0] = (bin//(intervals[1] * intervals[2])) % intervals[0]
bins[1] = (bin//intervals[2]) % intervals[1] bins[1] = (bin//intervals[2]) % intervals[1]
@ -27,17 +27,17 @@ def binAsBins(bin,intervals):
return bins return bins
def binsAsBin(bins,intervals): def binsAsBin(bins,intervals):
"""implode 3D bins into compound bin""" """Implode 3D bins into compound bin"""
return (bins[0]*intervals[1] + bins[1])*intervals[2] + bins[2] return (bins[0]*intervals[1] + bins[1])*intervals[2] + bins[2]
def EulersAsBins(Eulers,intervals,deltas,center): def EulersAsBins(Eulers,intervals,deltas,center):
"""return list of Eulers translated into 3D bins list""" """Return list of Eulers translated into 3D bins list"""
return [int((euler+(0.5-center)*delta)//delta)%interval \ return [int((euler+(0.5-center)*delta)//delta)%interval \
for euler,delta,interval in zip(Eulers,deltas,intervals) \ for euler,delta,interval in zip(Eulers,deltas,intervals) \
] ]
def binAsEulers(bin,intervals,deltas,center): def binAsEulers(bin,intervals,deltas,center):
"""compound bin number translated into list of Eulers""" """Compound bin number translated into list of Eulers"""
Eulers = [0.0]*3 Eulers = [0.0]*3
Eulers[2] = (bin%intervals[2] + center)*deltas[2] Eulers[2] = (bin%intervals[2] + center)*deltas[2]
Eulers[1] = (bin//intervals[2]%intervals[1] + center)*deltas[1] Eulers[1] = (bin//intervals[2]%intervals[1] + center)*deltas[1]
@ -45,7 +45,7 @@ def binAsEulers(bin,intervals,deltas,center):
return Eulers return Eulers
def directInvRepetitions(probability,scale): def directInvRepetitions(probability,scale):
"""calculate number of samples drawn by direct inversion""" """Calculate number of samples drawn by direct inversion"""
nDirectInv = 0 nDirectInv = 0
for bin in range(len(probability)): # loop over bins for bin in range(len(probability)): # loop over bins
nDirectInv += int(round(probability[bin]*scale)) # calc repetition nDirectInv += int(round(probability[bin]*scale)) # calc repetition
@ -270,7 +270,7 @@ for name in filenames:
ODF['limit'] = np.radians(limits[1,:]) # right hand limits in radians ODF['limit'] = np.radians(limits[1,:]) # right hand limits in radians
ODF['center'] = 0.0 if all(limits[0,:]<1e-8) else 0.5 # vertex or cell centered ODF['center'] = 0.0 if all(limits[0,:]<1e-8) else 0.5 # vertex or cell centered
ODF['interval'] = np.array(map(len,[np.unique(table.data[:,i]) for i in xrange(3)]),'i') # steps are number of distict values ODF['interval'] = np.array(map(len,[np.unique(table.data[:,i]) for i in range(3)]),'i') # steps are number of distict values
ODF['nBins'] = ODF['interval'].prod() ODF['nBins'] = ODF['interval'].prod()
ODF['delta'] = np.radians(np.array(limits[1,0:3]-limits[0,0:3])/(ODF['interval']-1)) # step size ODF['delta'] = np.radians(np.array(limits[1,0:3]-limits[0,0:3])/(ODF['interval']-1)) # step size
@ -349,7 +349,7 @@ for name in filenames:
'#-------------------#', '#-------------------#',
] ]
for i,ID in enumerate(xrange(nSamples)): for i,ID in enumerate(range(nSamples)):
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)), materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
'crystallite %i'%options.crystallite, 'crystallite %i'%options.crystallite,
'(constituent) phase %i texture %s fraction 1.0'%(options.phase,str(ID+1).rjust(formatwidth)), '(constituent) phase %i texture %s fraction 1.0'%(options.phase,str(ID+1).rjust(formatwidth)),
@ -361,7 +361,7 @@ for name in filenames:
'#-------------------#', '#-------------------#',
] ]
for ID in xrange(nSamples): for ID in range(nSamples):
eulers = Orientations[ID] eulers = Orientations[ID]
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)), materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),

View File

@ -1,13 +1,6 @@
#!/usr/bin/env python2.7 #!/usr/bin/env python2.7
# -*- coding: UTF-8 no BOM -*- # -*- coding: UTF-8 no BOM -*-
"""
Writes meaningful labels to the marc input file (*.dat)
output is based on the files
<modelname_jobname>.output<Homogenization/Crystallite/Constitutive>
that are written during the first run of the model.
"""
import sys,os,re import sys,os,re
from optparse import OptionParser from optparse import OptionParser
import damask import damask
@ -21,13 +14,13 @@ def ParseOutputFormat(filename,what,me):
outputmetafile = filename+'.output'+what outputmetafile = filename+'.output'+what
try: try:
file = open(outputmetafile) myFile = open(outputmetafile)
except: except:
print('Could not open file %s'%outputmetafile) print('Could not open file %s'%outputmetafile)
raise raise
else: else:
content = file.readlines() content = myFile.readlines()
file.close() myFile.close()
tag = '' tag = ''
tagID = 0 tagID = 0
@ -109,15 +102,15 @@ me = { 'Homogenization': options.homog,
} }
for file in files: for myFile in files:
print '\033[1m'+scriptName+'\033[0m: '+file+'\n' print('\033[1m'+scriptName+'\033[0m: '+myFile+'\n')
if options.useFile != '': if options.useFile != '':
formatFile = os.path.splitext(options.useFile)[0] formatFile = os.path.splitext(options.useFile)[0]
else: else:
formatFile = os.path.splitext(file)[0] formatFile = os.path.splitext(myFile)[0]
file = os.path.splitext(file)[0]+'.dat' myFile = os.path.splitext(myFile)[0]+'.dat'
if not os.path.lexists(file): if not os.path.lexists(myFile):
print file,'not found' print('{} not found'.format(myFile))
continue continue
print('Scanning format files of: %s'%formatFile) print('Scanning format files of: %s'%formatFile)
@ -128,8 +121,8 @@ for file in files:
for what in me: for what in me:
outputFormat[what] = ParseOutputFormat(formatFile,what,me[what]) outputFormat[what] = ParseOutputFormat(formatFile,what,me[what])
if '_id' not in outputFormat[what]['specials']: if '_id' not in outputFormat[what]['specials']:
print "'%s' not found in <%s>"%(me[what],what) print("'{}' not found in <{}>"%(me[what],what))
print '\n'.join(map(lambda x:' '+x,outputFormat[what]['specials']['brothers'])) print('\n'.join(map(lambda x:' '+x,outputFormat[what]['specials']['brothers'])))
sys.exit(1) sys.exit(1)
UserVars = ['HomogenizationCount'] UserVars = ['HomogenizationCount']
@ -157,11 +150,11 @@ for file in files:
UserVars += ['%i_%s'%(grain+1,var[0]) for i in range(var[1])] UserVars += ['%i_%s'%(grain+1,var[0]) for i in range(var[1])]
# Now change *.dat file(s) # Now change *.dat file(s)
print('Adding labels to: %s'%file) print('Adding labels to: %s'%myFile)
inFile = open(file) inFile = open(myFile)
input = inFile.readlines() input = inFile.readlines()
inFile.close() inFile.close()
output = open(file,'w') output = open(myFile,'w')
thisSection = '' thisSection = ''
if options.damaskOption: if options.damaskOption:
output.write('$damask {0}\n'.format(options.damaskOption)) output.write('$damask {0}\n'.format(options.damaskOption))

View File

@ -58,14 +58,14 @@ def servoLink():
} }
Nnodes = py_mentat.py_get_int("nnodes()") Nnodes = py_mentat.py_get_int("nnodes()")
NodeCoords = np.zeros((Nnodes,3),dtype='d') NodeCoords = np.zeros((Nnodes,3),dtype='d')
for node in xrange(Nnodes): for node in range(Nnodes):
NodeCoords[node,0] = py_mentat.py_get_float("node_x(%i)"%(node+1)) NodeCoords[node,0] = py_mentat.py_get_float("node_x(%i)"%(node+1))
NodeCoords[node,1] = py_mentat.py_get_float("node_y(%i)"%(node+1)) NodeCoords[node,1] = py_mentat.py_get_float("node_y(%i)"%(node+1))
NodeCoords[node,2] = py_mentat.py_get_float("node_z(%i)"%(node+1)) NodeCoords[node,2] = py_mentat.py_get_float("node_z(%i)"%(node+1))
box['min'] = NodeCoords.min(axis=0) # find the bounding box box['min'] = NodeCoords.min(axis=0) # find the bounding box
box['max'] = NodeCoords.max(axis=0) box['max'] = NodeCoords.max(axis=0)
box['delta'] = box['max']-box['min'] box['delta'] = box['max']-box['min']
for coord in xrange(3): # calc the dimension of the bounding box for coord in range(3): # calc the dimension of the bounding box
if box['delta'][coord] != 0.0: if box['delta'][coord] != 0.0:
for extremum in ['min','max']: for extremum in ['min','max']:
rounded = round(box[extremum][coord]*1e+15/box['delta'][coord]) * \ rounded = round(box[extremum][coord]*1e+15/box['delta'][coord]) * \
@ -76,12 +76,12 @@ def servoLink():
#------------------------------------------------------------------------------------------------- #-------------------------------------------------------------------------------------------------
# loop over all nodes # loop over all nodes
for node in xrange(Nnodes): for node in range(Nnodes):
key = {} key = {}
maxFlag = [False, False, False] maxFlag = [False, False, False]
Nmax = 0 Nmax = 0
Nmin = 0 Nmin = 0
for coord in xrange(3): # for each direction for coord in range(3): # for each direction
if box['delta'][coord] != 0.0: if box['delta'][coord] != 0.0:
rounded = round(NodeCoords[node,coord]*1e+15/box['delta'][coord]) * \ rounded = round(NodeCoords[node,coord]*1e+15/box['delta'][coord]) * \
1e-15*box['delta'][coord] # rounding to 1e-15 of dimension 1e-15*box['delta'][coord] # rounding to 1e-15 of dimension
@ -102,18 +102,18 @@ def servoLink():
if key['z'] not in baseNode[key['x']][key['y']].keys(): if key['z'] not in baseNode[key['x']][key['y']].keys():
baseNode[key['x']][key['y']][key['z']] = 0 baseNode[key['x']][key['y']][key['z']] = 0
baseNode[key['x']][key['y']][key['z']] = node+1 # remember the base node id baseNode[key['x']][key['y']][key['z']] = node+1 # remember the base node id
if Nmax > 0 and Nmax >= Nmin: # node is on at least as many front than back faces if Nmax > 0 and Nmax >= Nmin: # node is on at least as many front than back faces
if any([maxFlag[i] and active[i] for i in xrange(3)]): if any([maxFlag[i] and active[i] for i in range(3)]):
linkNodes.append({'id': node+1,'coord': NodeCoords[node], 'faceMember': [maxFlag[i] and active[i] for i in xrange(3)]}) linkNodes.append({'id': node+1,'coord': NodeCoords[node], 'faceMember': [maxFlag[i] and active[i] for i in range(3)]})
baseCorner = baseNode["%.8e"%box['min'][0]]["%.8e"%box['min'][1]]["%.8e"%box['min'][2]] # detect ultimate base node baseCorner = baseNode["%.8e"%box['min'][0]]["%.8e"%box['min'][1]]["%.8e"%box['min'][2]] # detect ultimate base node
for node in linkNodes: # loop over all linked nodes for node in linkNodes: # loop over all linked nodes
linkCoord = [node['coord']] # start list of control node coords with my coords linkCoord = [node['coord']] # start list of control node coords with my coords
for dir in xrange(3): # check for each direction for dir in range(3): # check for each direction
if node['faceMember'][dir]: # me on this front face if node['faceMember'][dir]: # me on this front face
linkCoord[0][dir] = box['min'][dir] # project me onto rear face along dir linkCoord[0][dir] = box['min'][dir] # project me onto rear face along dir
linkCoord.append(np.array(box['min'])) # append base corner linkCoord.append(np.array(box['min'])) # append base corner

View File

@ -13,7 +13,7 @@ scriptID = ' '.join([scriptName,damask.version])
try: # check for Python Image Lib try: # check for Python Image Lib
from PIL import Image,ImageDraw from PIL import Image,ImageDraw
ImageCapability = True ImageCapability = True
except: except ImportError:
ImageCapability = False ImageCapability = False
sys.path.append(damask.solver.Marc().libraryPath()) sys.path.append(damask.solver.Marc().libraryPath())
@ -21,7 +21,7 @@ sys.path.append(damask.solver.Marc().libraryPath())
try: # check for MSC.Mentat Python interface try: # check for MSC.Mentat Python interface
import py_mentat import py_mentat
MentatCapability = True MentatCapability = True
except: except ImportError:
MentatCapability = False MentatCapability = False
@ -42,9 +42,9 @@ def outStdout(cmd,locals):
exec(cmd[3:]) exec(cmd[3:])
elif cmd[0:3] == '(?)': elif cmd[0:3] == '(?)':
cmd = eval(cmd[3:]) cmd = eval(cmd[3:])
print cmd print(cmd)
else: else:
print cmd print(cmd)
return return
@ -84,7 +84,7 @@ def rcbOrientationParser(content,idcolumn):
return grains return grains
def rcbParser(content,M,size,tolerance,idcolumn,segmentcolumn): def rcbParser(content,M,size,tolerance,idcolumn,segmentcolumn):
"""parser for TSL-OIM reconstructed boundary files""" """Parser for TSL-OIM reconstructed boundary files"""
# find bounding box # find bounding box
boxX = [1.*sys.maxint,-1.*sys.maxint] boxX = [1.*sys.maxint,-1.*sys.maxint]
boxY = [1.*sys.maxint,-1.*sys.maxint] boxY = [1.*sys.maxint,-1.*sys.maxint]
@ -333,21 +333,21 @@ def rcbParser(content,M,size,tolerance,idcolumn,segmentcolumn):
for neighbors in grainNeighbors: for neighbors in grainNeighbors:
rcData['neighbors'].append(neighbors) rcData['neighbors'].append(neighbors)
for legs in grains['legs']: # loop over grains for legs in grains['legs']: # loop over grains
rcData['grain'].append(legs) # store list of boundary segments rcData['grain'].append(legs) # store list of boundary segments
myNeighbors = {} myNeighbors = {}
for leg in legs: # test each boundary segment for leg in legs: # test each boundary segment
if leg < len(grainNeighbors): # a valid segment index? if leg < len(grainNeighbors): # a valid segment index?
for side in range(2): # look at both sides of the segment for side in range(2): # look at both sides of the segment
if grainNeighbors[leg][side] in myNeighbors: # count occurrence of grain IDs if grainNeighbors[leg][side] in myNeighbors: # count occurrence of grain IDs
myNeighbors[grainNeighbors[leg][side]] += 1 myNeighbors[grainNeighbors[leg][side]] += 1
else: else:
myNeighbors[grainNeighbors[leg][side]] = 1 myNeighbors[grainNeighbors[leg][side]] = 1
if myNeighbors: # do I have any neighbors (i.e., non-bounding box segment) if myNeighbors: # do I have any neighbors (i.e., non-bounding box segment)
candidateGrains = sorted(myNeighbors.iteritems(), key=lambda (k,v): (v,k), reverse=True) # sort grain counting candidateGrains = sorted(myNeighbors.iteritems(), key=lambda p: (p[1],p[0]), reverse=True) # sort grain counting
# most frequent one not yet seen? # most frequent one not yet seen?
rcData['grainMapping'].append(candidateGrains[0 if candidateGrains[0][0] not in rcData['grainMapping'] else 1][0]) # must be me then rcData['grainMapping'].append(candidateGrains[0 if candidateGrains[0][0] not in rcData['grainMapping'] else 1][0]) # must be me then
# special case of bi-crystal situation... # special case of bi-crystal situation...
damask.util.croak(' found {} grains'.format(len(rcData['grain']))) damask.util.croak(' found {} grains'.format(len(rcData['grain'])))
@ -647,7 +647,6 @@ def job(grainNumber,grainMapping,twoD):
"*job_param univ_gas_const 8.314472", "*job_param univ_gas_const 8.314472",
"*job_param planck_radiation_2 1.4387752e-2", "*job_param planck_radiation_2 1.4387752e-2",
"*job_param speed_light_vacuum 299792458", "*job_param speed_light_vacuum 299792458",
# "*job_usersub_file /san/%s/FEM/DAMASK/code/mpie_cpfem_marc2010.f90 | subroutine definition"%(pwd.getpwuid(os.geteuid())[0].rpartition("\\")[2]),
"*job_option user_source:compile_save", "*job_option user_source:compile_save",
] ]
@ -729,7 +728,7 @@ def image(name,imgsize,marginX,marginY,rcData):
# ------------------------- # -------------------------
def inside(x,y,points): def inside(x,y,points):
"""tests whether point(x,y) is within polygon described by points""" """Tests whether point(x,y) is within polygon described by points"""
inside = False inside = False
npoints=len(points) npoints=len(points)
(x1,y1) = points[npoints-1] # start with last point of points (x1,y1) = points[npoints-1] # start with last point of points
@ -750,8 +749,8 @@ def inside(x,y,points):
return inside return inside
# ------------------------- # -------------------------
def fftbuild(rcData,height,xframe,yframe,resolution,extrusion): def fftbuild(rcData,height,xframe,yframe,grid,extrusion):
"""build array of grain numbers""" """Build array of grain numbers"""
maxX = -1.*sys.maxint maxX = -1.*sys.maxint
maxY = -1.*sys.maxint maxY = -1.*sys.maxint
for line in rcData['point']: # find data range for line in rcData['point']: # find data range
@ -760,14 +759,14 @@ def fftbuild(rcData,height,xframe,yframe,resolution,extrusion):
maxY = max(maxY, y) maxY = max(maxY, y)
xsize = maxX+2*xframe # add framsize xsize = maxX+2*xframe # add framsize
ysize = maxY+2*yframe ysize = maxY+2*yframe
xres = int(round(resolution/2.0)*2) # use only even resolution xres = int(grid)
yres = int(round(xres/xsize*ysize/2.0)*2) # calculate other resolutions yres = int(xres/xsize*ysize)
zres = extrusion zres = extrusion
zsize = extrusion*min([xsize/xres,ysize/yres]) zsize = extrusion*min([xsize/xres,ysize/yres])
fftdata = {'fftpoints':[], \ fftdata = {'fftpoints':[], \
'resolution':(xres,yres,zres), \ 'grid':(xres,yres,zres), \
'dimension':(xsize,ysize,zsize)} 'size':(xsize,ysize,zsize)}
frameindex=len(rcData['grain'])+1 # calculate frame index as largest grain index plus one frameindex=len(rcData['grain'])+1 # calculate frame index as largest grain index plus one
dx = xsize/(xres) # calculate step sizes dx = xsize/(xres) # calculate step sizes
@ -841,8 +840,8 @@ parser.add_option('-x', '--xmargin', type='float', metavar = 'float',
dest='xmargin',help='margin in x in units of patch size [%default]') dest='xmargin',help='margin in x in units of patch size [%default]')
parser.add_option('-y', '--ymargin', type='float', metavar = 'float', parser.add_option('-y', '--ymargin', type='float', metavar = 'float',
dest='ymargin', help='margin in y in units of patch size [%default]') dest='ymargin', help='margin in y in units of patch size [%default]')
parser.add_option('-r', '--resolution', type='int', metavar = 'int', parser.add_option('-g', '--grid', type='int', metavar = 'int',
dest='resolution',help='number of Fourier points/Finite Elements across patch size + x_margin [%default]') dest='grid',help='number of Fourier points/Finite Elements across patch size + x_margin [%default]')
parser.add_option('-z', '--extrusion', type='int', metavar = 'int', parser.add_option('-z', '--extrusion', type='int', metavar = 'int',
dest='extrusion', help='number of repetitions in z-direction [%default]') dest='extrusion', help='number of repetitions in z-direction [%default]')
parser.add_option('-i', '--imagesize', type='int', metavar = 'int', parser.add_option('-i', '--imagesize', type='int', metavar = 'int',
@ -861,7 +860,7 @@ parser.set_defaults(output = [],
port = 40007, port = 40007,
xmargin = 0.0, xmargin = 0.0,
ymargin = 0.0, ymargin = 0.0,
resolution = 64, grid = 64,
extrusion = 2, extrusion = 2,
imgsize = 512, imgsize = 512,
M = (0.0,1.0,1.0,0.0), # M_11, M_12, M_21, M_22. x,y in RCB is y,x of Eulers!! M = (0.0,1.0,1.0,0.0), # M_11, M_12, M_21, M_22. x,y in RCB is y,x of Eulers!!
@ -903,14 +902,14 @@ rcData = rcbParser(boundarySegments,options.M,options.size,options.tolerance,opt
Minv = np.linalg.inv(np.array(options.M).reshape(2,2)) Minv = np.linalg.inv(np.array(options.M).reshape(2,2))
if 'rcb' in options.output: if 'rcb' in options.output:
print """# Header: print('# Header:\n'+
# '# \n'+
# Column 1-3: right hand average orientation (phi1, PHI, phi2 in radians) '# Column 1-3: right hand average orientation (phi1, PHI, phi2 in radians)\n'+
# Column 4-6: left hand average orientation (phi1, PHI, phi2 in radians) '# Column 4-6: left hand average orientation (phi1, PHI, phi2 in radians)\n'+
# Column 7: length (in microns) '# Column 7: length (in microns)\n'+
# Column 8: trace angle (in degrees) '# Column 8: trace angle (in degrees)\n'+
# Column 9-12: x,y coordinates of endpoints (in microns) '# Column 9-12: x,y coordinates of endpoints (in microns)\n'+
# Column 13-14: IDs of right hand and left hand grains""" '# Column 13-14: IDs of right hand and left hand grains')
for i,(left,right) in enumerate(rcData['neighbors']): for i,(left,right) in enumerate(rcData['neighbors']):
if rcData['segment'][i]: if rcData['segment'][i]:
first = np.dot(Minv,np.array([rcData['bounds'][0][0]+rcData['point'][rcData['segment'][i][0]][0]/rcData['scale'], first = np.dot(Minv,np.array([rcData['bounds'][0][0]+rcData['point'][rcData['segment'][i][0]][0]/rcData['scale'],
@ -919,12 +918,12 @@ if 'rcb' in options.output:
second = np.dot(Minv,np.array([rcData['bounds'][0][0]+rcData['point'][rcData['segment'][i][1]][0]/rcData['scale'], second = np.dot(Minv,np.array([rcData['bounds'][0][0]+rcData['point'][rcData['segment'][i][1]][0]/rcData['scale'],
rcData['bounds'][0][1]+rcData['point'][rcData['segment'][i][1]][1]/rcData['scale'], rcData['bounds'][0][1]+rcData['point'][rcData['segment'][i][1]][1]/rcData['scale'],
])) ]))
print ' '.join(map(str,orientationData[left-1]+orientationData[right-1])), print(' '.join(map(str,orientationData[left-1]+orientationData[right-1]))+
print np.linalg.norm(first-second), str(np.linalg.norm(first-second))+
print '0', '0'+
print ' '.join(map(str,first)), ' '.join(map(str,first))+
print ' '.join(map(str,second)), ' '.join(map(str,second))+
print ' '.join(map(str,[left,right])) ' '.join(map(str,[left,right])))
# ----- write image ----- # ----- write image -----
@ -934,29 +933,68 @@ if 'image' in options.output and options.imgsize > 0:
else: else:
damask.util.croak('...no image drawing possible (PIL missing)...') damask.util.croak('...no image drawing possible (PIL missing)...')
# ----- generate material.config -----
if any(output in options.output for output in ['spectral','mentat']):
config = []
config.append('<microstructure>')
for i,grain in enumerate(rcData['grainMapping']):
config+=['[grain{}]'.format(grain),
'crystallite\t1',
'(constituent)\tphase 1\ttexture {}\tfraction 1.0'.format(i+1)]
if (options.xmargin > 0.0):
config+=['[x-margin]',
'crystallite\t1',
'(constituent)\tphase 2\ttexture {}\tfraction 1.0\n'.format(len(rcData['grainMapping'])+1)]
if (options.ymargin > 0.0):
config+=['[y-margin]',
'crystallite\t1',
'(constituent)\tphase 2\ttexture {}\tfraction 1.0\n'.format(len(rcData['grainMapping'])+1)]
if (options.xmargin > 0.0 and options.ymargin > 0.0):
config+=['[xy-margin]',
'crystallite\t1',
'(constituent)\tphase 2\ttexture {}\tfraction 1.0\n'.format(len(rcData['grainMapping'])+1)]
if (options.xmargin > 0.0 or options.ymargin > 0.0):
config.append('[margin]')
config.append('<texture>')
for grain in rcData['grainMapping']:
config+=['[grain{}]'.format(grain),
'(gauss)\tphi1\t%f\tphi\t%f\tphi2\t%f\tscatter\t%f\tfraction\t1.0'\
%(math.degrees(orientationData[grain-1][0]),math.degrees(orientationData[grain-1][1]),\
math.degrees(orientationData[grain-1][2]),options.scatter)]
if (options.xmargin > 0.0 or options.ymargin > 0.0):
config+=['[margin]',
'(random)\t\tscatter\t0.0\tfraction\t1.0']
# ----- write spectral geom ----- # ----- write spectral geom -----
if 'spectral' in options.output: if 'spectral' in options.output:
fftdata = fftbuild(rcData, options.size, options.xmargin, options.ymargin, options.resolution, options.extrusion) fftdata = fftbuild(rcData, options.size, options.xmargin, options.ymargin, options.grid, options.extrusion)
geomFile = open(myName+'_'+str(int(fftdata['resolution'][0]))+'.geom','w') # open geom file for writing table = damask.ASCIItable(outname = myName+'_'+str(int(fftdata['grid'][0]))+'.geom',
geomFile.write('3\theader\n') # write header info labeled = False,
geomFile.write('grid a %i b %i c %i\n'%(fftdata['resolution'])) # grid resolution buffered = False)
geomFile.write('size x %f y %f z %f\n'%(fftdata['dimension'])) # size table.labels_clear()
geomFile.write('homogenization 1\n') # homogenization table.info_clear()
for z in xrange(fftdata['resolution'][2]): # z repetions table.info_append([
for y in xrange(fftdata['resolution'][1]): # each x-row separately scriptID + ' ' + ' '.join(sys.argv[1:]),
geomFile.write('\t'.join(map(str,fftdata['fftpoints'][ y *fftdata['resolution'][0]: "grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=fftdata['grid']),
(y+1)*fftdata['resolution'][0]]))+'\n') # grain indexes, x-row per line "size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=fftdata['size']),
geomFile.close() # close geom file "homogenization\t1",
])
table.info_append(config)
table.head_write()
damask.util.croak('assigned {} out of {} (2D) Fourier points...' table.data = np.array(fftdata['fftpoints']*options.extrusion).\
.format(len(fftdata['fftpoints']), reshape(fftdata['grid'][1]*fftdata['grid'][2],fftdata['grid'][0])
int(fftdata['resolution'][0])*int(fftdata['resolution'][1]))) formatwidth = 1+int(math.log10(np.max(table.data)))
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
table.close()
# ----- write Mentat procedure -----
if 'mentat' in options.output: if 'mentat' in options.output:
if MentatCapability: if MentatCapability:
rcData['offsetPoints'] = 1+4 # gage definition generates 4 points rcData['offsetPoints'] = 1+4 # gage definition generates 4 points
@ -964,19 +1002,19 @@ if 'mentat' in options.output:
cmds = [\ cmds = [\
init(), init(),
sample(options.size,rcData['dimension'][1]/rcData['dimension'][0],12,options.xmargin,options.ymargin), sample(options.size,rcData['dimension'][1]/rcData['size'][0],12,options.xmargin,options.ymargin),
patch(options.size,options.resolution,options.mesh,rcData), patch(options.size,options.grid,options.mesh,rcData),
gage(options.mesh,rcData), gage(options.mesh,rcData),
] ]
if not options.twoD: if not options.twoD:
cmds += [expand3D(options.size*(1.0+2.0*options.xmargin)/options.resolution*options.extrusion,options.extrusion),] cmds += [expand3D(options.size*(1.0+2.0*options.xmargin)/options.grid*options.extrusion,options.extrusion),]
cmds += [\ cmds += [\
cleanUp(options.size), cleanUp(options.size),
materials(), materials(),
initial_conditions(len(rcData['grain']),rcData['grainMapping']), initial_conditions(len(rcData['grain']),rcData['grainMapping']),
boundary_conditions(options.strainrate,options.size*(1.0+2.0*options.xmargin)/options.resolution*options.extrusion,\ boundary_conditions(options.strainrate,options.size*(1.0+2.0*options.xmargin)/options.grid*options.extrusion,\
options.size,rcData['dimension'][1]/rcData['dimension'][0],options.xmargin,options.ymargin), options.size,rcData['dimension'][1]/rcData['dimension'][0],options.xmargin,options.ymargin),
loadcase(options.strain/options.strainrate,options.increments,0.01), loadcase(options.strain/options.strainrate,options.increments,0.01),
job(len(rcData['grain']),rcData['grainMapping'],options.twoD), job(len(rcData['grain']),rcData['grainMapping'],options.twoD),
@ -996,51 +1034,5 @@ if 'mentat' in options.output:
else: else:
damask.util.croak('...no interaction with Mentat possible...') damask.util.croak('...no interaction with Mentat possible...')
with open(myName+'.config','w') as configFile:
# ----- write config data to file ----- configFile.write('\n'.join(config))
if 'mentat' in options.output or 'spectral' in options.output:
output = ''
output += '\n\n<homogenization>\n' + \
'\n[SX]\n' + \
'type\tisostrain\n' + \
'Ngrains\t1\n' + \
'\n\n<microstructure>\n'
for i,grain in enumerate(rcData['grainMapping']):
output += '\n[grain %i]\n'%grain + \
'crystallite\t1\n' + \
'(constituent)\tphase 1\ttexture %i\tfraction 1.0\n'%(i+1)
if (options.xmargin > 0.0):
output += '\n[x-margin]\n' + \
'crystallite\t1\n' + \
'(constituent)\tphase 2\ttexture %i\tfraction 1.0\n'%(len(rcData['grainMapping'])+1)
if (options.ymargin > 0.0):
output += '\n[y-margin]\n' + \
'crystallite\t1\n' + \
'(constituent)\tphase 2\ttexture %i\tfraction 1.0\n'%(len(rcData['grainMapping'])+1)
if (options.xmargin > 0.0 and options.ymargin > 0.0):
output += '\n[margin edge]\n' + \
'crystallite\t1\n' + \
'(constituent)\tphase 2\ttexture %i\tfraction 1.0\n'%(len(rcData['grainMapping'])+1)
output += '\n\n<crystallite>\n' + \
'\n[fillMeIn]\n' + \
'\n\n<phase>\n' + \
'\n[patch]\n'
if (options.xmargin > 0.0 or options.ymargin > 0.0):
output += '\n[margin]\n'
output += '\n\n<texture>\n\n'
for grain in rcData['grainMapping']:
output += '\n[grain %i]\n'%grain + \
'(gauss)\tphi1\t%f\tphi\t%f\tphi2\t%f\tscatter\t%f\tfraction\t1.0\n'\
%(math.degrees(orientationData[grain-1][0]),math.degrees(orientationData[grain-1][1]),\
math.degrees(orientationData[grain-1][2]),options.scatter)
if (options.xmargin > 0.0 or options.ymargin > 0.0):
output += '\n[margin]\n' + \
'(random)\t\tscatter\t0.0\tfraction\t1.0\n'
configFile = open(myName+'.config','w')
configFile.write(output)
configFile.close()

View File

@ -4,7 +4,6 @@
import threading,time,os,sys,random import threading,time,os,sys,random
import numpy as np import numpy as np
from optparse import OptionParser from optparse import OptionParser
from operator import mul
from cStringIO import StringIO from cStringIO import StringIO
import damask import damask
@ -65,7 +64,7 @@ class myThread (threading.Thread):
NmoveGrains = random.randrange(1,maxSeeds) NmoveGrains = random.randrange(1,maxSeeds)
selectedMs = [] selectedMs = []
direction = [] direction = []
for i in xrange(NmoveGrains): for i in range(NmoveGrains):
selectedMs.append(random.randrange(1,nMicrostructures)) selectedMs.append(random.randrange(1,nMicrostructures))
direction.append(np.array(((random.random()-0.5)*delta[0], direction.append(np.array(((random.random()-0.5)*delta[0],
@ -110,7 +109,7 @@ class myThread (threading.Thread):
currentData=np.bincount(perturbedGeomTable.data.astype(int).ravel())[1:]/points currentData=np.bincount(perturbedGeomTable.data.astype(int).ravel())[1:]/points
currentError=[] currentError=[]
currentHist=[] currentHist=[]
for i in xrange(nMicrostructures): # calculate the deviation in all bins per histogram for i in range(nMicrostructures): # calculate the deviation in all bins per histogram
currentHist.append(np.histogram(currentData,bins=target[i]['bins'])[0]) currentHist.append(np.histogram(currentData,bins=target[i]['bins'])[0])
currentError.append(np.sqrt(np.square(np.array(target[i]['histogram']-currentHist[i])).sum())) currentError.append(np.sqrt(np.square(np.array(target[i]['histogram']-currentHist[i])).sum()))
@ -122,12 +121,12 @@ class myThread (threading.Thread):
bestMatch = match bestMatch = match
#--- count bin classes with no mismatch ---------------------------------------------------------------------- #--- count bin classes with no mismatch ----------------------------------------------------------------------
myMatch=0 myMatch=0
for i in xrange(nMicrostructures): for i in range(nMicrostructures):
if currentError[i] > 0.0: break if currentError[i] > 0.0: break
myMatch = i+1 myMatch = i+1
if myNmicrostructures == nMicrostructures: if myNmicrostructures == nMicrostructures:
for i in xrange(min(nMicrostructures,myMatch+options.bins)): for i in range(min(nMicrostructures,myMatch+options.bins)):
if currentError[i] > target[i]['error']: # worse fitting, next try if currentError[i] > target[i]['error']: # worse fitting, next try
randReset = True randReset = True
break break
@ -146,7 +145,7 @@ class myThread (threading.Thread):
for line in perturbedSeedsVFile: for line in perturbedSeedsVFile:
currentSeedsFile.write(line) currentSeedsFile.write(line)
bestSeedsVFile.write(line) bestSeedsVFile.write(line)
for j in xrange(nMicrostructures): # save new errors for all bins for j in range(nMicrostructures): # save new errors for all bins
target[j]['error'] = currentError[j] target[j]['error'] = currentError[j]
if myMatch > match: # one or more new bins have no deviation if myMatch > match: # one or more new bins have no deviation
damask.util.croak( 'Stage {:d} cleared'.format(myMatch)) damask.util.croak( 'Stage {:d} cleared'.format(myMatch))
@ -160,7 +159,7 @@ class myThread (threading.Thread):
bestSeedsVFile = StringIO() bestSeedsVFile = StringIO()
for line in perturbedSeedsVFile: for line in perturbedSeedsVFile:
bestSeedsVFile.write(line) bestSeedsVFile.write(line)
for j in xrange(nMicrostructures): for j in range(nMicrostructures):
target[j]['error'] = currentError[j] target[j]['error'] = currentError[j]
randReset = True randReset = True
else: #--- not all grains are tessellated else: #--- not all grains are tessellated
@ -219,8 +218,7 @@ if options.randomSeed is None:
damask.util.croak(options.randomSeed) damask.util.croak(options.randomSeed)
delta = (options.scale/options.grid[0],options.scale/options.grid[1],options.scale/options.grid[2]) delta = (options.scale/options.grid[0],options.scale/options.grid[1],options.scale/options.grid[2])
baseFile=os.path.splitext(os.path.basename(options.seedFile))[0] baseFile=os.path.splitext(os.path.basename(options.seedFile))[0]
points = float(reduce(mul,options.grid)) points = np.array(options.grid).prod().astype('float')
# ----------- calculate target distribution and bin edges # ----------- calculate target distribution and bin edges
targetGeomFile = os.path.splitext(os.path.basename(options.target))[0]+'.geom' targetGeomFile = os.path.splitext(os.path.basename(options.target))[0]+'.geom'
@ -231,7 +229,7 @@ nMicrostructures = info['microstructures']
targetVolFrac = np.bincount(targetGeomTable.microstructure_read(info['grid']))[1:nMicrostructures+1]/\ targetVolFrac = np.bincount(targetGeomTable.microstructure_read(info['grid']))[1:nMicrostructures+1]/\
float(info['grid'].prod()) float(info['grid'].prod())
target=[] target=[]
for i in xrange(1,nMicrostructures+1): for i in range(1,nMicrostructures+1):
targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries
target.append({'histogram':targetHist,'bins':targetBins}) target.append({'histogram':targetHist,'bins':targetBins})
@ -260,7 +258,7 @@ info,devNull = initialGeomTable.head_getGeom()
if info['microstructures'] != nMicrostructures: damask.util.croak('error. Microstructure count mismatch') if info['microstructures'] != nMicrostructures: damask.util.croak('error. Microstructure count mismatch')
initialData = np.bincount(initialGeomTable.microstructure_read(info['grid']))/points initialData = np.bincount(initialGeomTable.microstructure_read(info['grid']))/points
for i in xrange(nMicrostructures): for i in range(nMicrostructures):
initialHist = np.histogram(initialData,bins=target[i]['bins'])[0] initialHist = np.histogram(initialData,bins=target[i]['bins'])[0]
target[i]['error']=np.sqrt(np.square(np.array(target[i]['histogram']-initialHist)).sum()) target[i]['error']=np.sqrt(np.square(np.array(target[i]['histogram']-initialHist)).sum())
@ -269,7 +267,7 @@ if target[0]['error'] > 0.0:
target[0]['error'] *=((target[0]['bins'][0]-np.min(initialData))**2.0+ target[0]['error'] *=((target[0]['bins'][0]-np.min(initialData))**2.0+
(target[0]['bins'][1]-np.max(initialData))**2.0)**0.5 (target[0]['bins'][1]-np.max(initialData))**2.0)**0.5
match=0 match=0
for i in xrange(nMicrostructures): for i in range(nMicrostructures):
if target[i]['error'] > 0.0: break if target[i]['error'] > 0.0: break
match = i+1 match = i+1

View File

@ -105,12 +105,12 @@ for name in filenames:
grid = np.zeros(3,'i') grid = np.zeros(3,'i')
n = 0 n = 0
for i in xrange(Nx): for i in range(Nx):
for j in xrange(Ny): for j in range(Ny):
grid[0] = round((i+0.5)*box[0]*info['grid'][0]/Nx-0.5)+offset[0] grid[0] = round((i+0.5)*box[0]*info['grid'][0]/Nx-0.5)+offset[0]
grid[1] = round((j+0.5)*box[1]*info['grid'][1]/Ny-0.5)+offset[1] grid[1] = round((j+0.5)*box[1]*info['grid'][1]/Ny-0.5)+offset[1]
damask.util.croak('x,y coord on surface: {},{}...'.format(*grid[:2])) damask.util.croak('x,y coord on surface: {},{}...'.format(*grid[:2]))
for k in xrange(Nz): for k in range(Nz):
grid[2] = k + offset[2] grid[2] = k + offset[2]
grid %= info['grid'] grid %= info['grid']
seeds[n,0:3] = (0.5+grid)/info['grid'] # normalize coordinates to box seeds[n,0:3] = (0.5+grid)/info['grid'] # normalize coordinates to box

View File

@ -14,12 +14,12 @@ scriptID = ' '.join([scriptName,damask.version])
# ------------------------------------------ aux functions --------------------------------- # ------------------------------------------ aux functions ---------------------------------
def kdtree_search(cloud, queryPoints): def kdtree_search(cloud, queryPoints):
"""find distances to nearest neighbor among cloud (N,d) for each of the queryPoints (n,d)""" """Find distances to nearest neighbor among cloud (N,d) for each of the queryPoints (n,d)"""
n = queryPoints.shape[0] n = queryPoints.shape[0]
distances = np.zeros(n,dtype=float) distances = np.zeros(n,dtype=float)
tree = spatial.cKDTree(cloud) tree = spatial.cKDTree(cloud)
for i in xrange(n): for i in range(n):
distances[i], index = tree.query(queryPoints[i]) distances[i], index = tree.query(queryPoints[i])
return distances return distances
@ -227,8 +227,8 @@ for name in filenames:
"randomSeed\t{}".format(options.randomSeed), "randomSeed\t{}".format(options.randomSeed),
]) ])
table.labels_clear() table.labels_clear()
table.labels_append( ['{dim}_{label}'.format(dim = 1+k,label = 'pos') for k in xrange(3)] + table.labels_append( ['{dim}_{label}'.format(dim = 1+k,label = 'pos') for k in range(3)] +
['{dim}_{label}'.format(dim = 1+k,label = 'euler') for k in xrange(3)] + ['{dim}_{label}'.format(dim = 1+k,label = 'euler') for k in range(3)] +
['microstructure'] + ['microstructure'] +
(['weight'] if options.weights else [])) (['weight'] if options.weights else []))
table.head_write() table.head_write()