avoid early return + use numpy names

This commit is contained in:
Martin Diehl 2020-03-09 14:17:05 +01:00
parent 105853004a
commit 4a93f2206d
2 changed files with 59 additions and 82 deletions

View File

@ -544,7 +544,6 @@ module subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,instance,of)
real(pReal):: dot_gamma_sb
real(pReal), dimension(3,3) :: eigVectors, P_sb
real(pReal), dimension(3) :: eigValues
logical :: error
real(pReal), dimension(3,6), parameter :: &
sb_sComposition = &
reshape(real([&
@ -589,7 +588,7 @@ module subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,instance,of)
shearBandingContribution: if(dNeq0(prm%sbVelocity)) then
BoltzmannRatio = prm%sbQedge/(kB*T)
call math_eigenValuesVectorsSym(Mp,eigValues,eigVectors,error)
call math_eigh33(Mp,eigValues,eigVectors) ! is Mp symmetric by design?
do i = 1,6
P_sb = 0.5_pReal * math_outer(matmul(eigVectors,sb_sComposition(1:3,i)),&

View File

@ -74,9 +74,17 @@ module math
],[2,9]) !< arrangement in Plain notation
interface math_eye
module procedure math_identity2nd
end interface math_eye
!--------------------------
! only for compatibility reasons
interface math_mul33xx33
module procedure math_tensordot
end interface math_mul33xx33
!--------------------------
!---------------------------------------------------------------------------------------------------
private :: &
@ -883,22 +891,22 @@ end function math_sampleGaussVar
!> @brief eigenvalues and eigenvectors of symmetric matrix m
! ToDo: has wrong oder of arguments
!--------------------------------------------------------------------------------------------------
subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
subroutine math_eigh(m,w,v,error)
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)), intent(out) :: values
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: vectors
real(pReal), dimension(size(m,1)), intent(out) :: w
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: v
logical, intent(out) :: error
integer :: ierr
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
external :: &
dsyev
vectors = m ! copy matrix to input (doubles as output) array
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,size(work,1),ierr)
v = m ! copy matrix to input (doubles as output) array
call dsyev('V','U',size(m,1),v,size(m,1),w,work,size(work,1),ierr)
error = (ierr /= 0)
end subroutine math_eigenValuesVectorsSym
end subroutine math_eigh
!--------------------------------------------------------------------------------------------------
@ -909,77 +917,45 @@ end subroutine math_eigenValuesVectorsSym
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
! ToDo: has wrong oder of arguments
!--------------------------------------------------------------------------------------------------
subroutine math_eigenValuesVectorsSym33(m,values,vectors)
subroutine math_eigh33(m,w,v)
real(pReal), dimension(3,3),intent(in) :: m
real(pReal), dimension(3), intent(out) :: values
real(pReal), dimension(3,3),intent(out) :: vectors
real(pReal), dimension(3), intent(out) :: w
real(pReal), dimension(3,3),intent(out) :: v
real(pReal) :: T, U, norm, threshold
logical :: error
values = math_eigenvaluesSym33(m)
w = math_eigvalsh33(m)
vectors(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), &
v(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), &
m(1, 3) * m(1, 2) - m(2, 3) * m(1, 1), &
m(1, 2)**2]
T = maxval(abs(values))
T = maxval(abs(w))
U = max(T, T**2)
threshold = sqrt(5.68e-14_pReal * U**2)
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
vectors(2,2) + m(2, 3) * values(1), &
(m(1,1) - values(1)) * (m(2,2) - values(1)) - vectors(3,2)]
norm = norm2(vectors(1:3, 1))
v(1:3,1) = [ v(1,2) + m(1, 3) * w(1), &
v(2,2) + m(2, 3) * w(1), &
(m(1,1) - w(1)) * (m(2,2) - w(1)) - v(3,2)]
norm = norm2(v(1:3, 1))
fallback1: if(norm < threshold) then
call math_eigenValuesVectorsSym(m,values,vectors,error)
return
call math_eigh(m,w,v,error)
else fallback1
v(1:3,1) = v(1:3, 1) / norm
v(1:3,2) = [ v(1,2) + m(1, 3) * w(2), &
v(2,2) + m(2, 3) * w(2), &
(m(1,1) - w(2)) * (m(2,2) - w(2)) - v(3,2)]
norm = norm2(v(1:3, 2))
fallback2: if(norm < threshold) then
call math_eigh(m,w,v,error)
else fallback2
v(1:3,2) = v(1:3, 2) / norm
v(1:3,3) = math_cross(v(1:3,1),v(1:3,2))
endif fallback2
endif fallback1
vectors(1:3,1) = vectors(1:3, 1) / norm
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
vectors(1:3,2) = [ vectors(1,2) + m(1, 3) * values(2), &
vectors(2,2) + m(2, 3) * values(2), &
(m(1,1) - values(2)) * (m(2,2) - values(2)) - vectors(3,2)]
norm = norm2(vectors(1:3, 2))
fallback2: if(norm < threshold) then
call math_eigenValuesVectorsSym(m,values,vectors,error)
return
endif fallback2
vectors(1:3,2) = vectors(1:3, 2) / norm
! Calculate third eigenvector according to v[2] = v[0] x v[1]
vectors(1:3,3) = math_cross(vectors(1:3,1),vectors(1:3,2))
end subroutine math_eigenValuesVectorsSym33
!--------------------------------------------------------------------------------------------------
!> @brief eigenvector basis of symmetric matrix m
!--------------------------------------------------------------------------------------------------
function math_eigenvectorBasisSym(m)
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)) :: values
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
real(pReal), dimension(size(m,1),size(m,1)) :: math_eigenvectorBasisSym
logical :: error
integer :: i
math_eigenvectorBasisSym = 0.0_pReal
call math_eigenValuesVectorsSym(m,values,vectors,error)
if(error) return
do i=1, size(m,1)
math_eigenvectorBasisSym = math_eigenvectorBasisSym &
+ sqrt(values(i)) * math_outer(vectors(:,i),vectors(:,i))
enddo
end function math_eigenvectorBasisSym
end subroutine math_eigh33
!--------------------------------------------------------------------------------------------------
@ -1136,10 +1112,10 @@ end function math_rotationalPart33
!> @brief Eigenvalues of symmetric matrix m
! will return NaN on error
!--------------------------------------------------------------------------------------------------
function math_eigenvaluesSym(m)
function math_eigvalsh(m)
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
real(pReal), dimension(size(m,1)) :: math_eigvalsh
real(pReal), dimension(size(m,1),size(m,1)) :: m_
integer :: ierr
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
@ -1147,10 +1123,10 @@ function math_eigenvaluesSym(m)
dsyev
m_= m ! copy matrix to input (will be destroyed)
call dsyev('N','U',size(m,1),m_,size(m,1),math_eigenvaluesSym,work,size(work,1),ierr)
if (ierr /= 0) math_eigenvaluesSym = IEEE_value(1.0_pReal,IEEE_quiet_NaN)
call dsyev('N','U',size(m,1),m_,size(m,1),math_eigvalsh,work,size(work,1),ierr)
if (ierr /= 0) math_eigvalsh = IEEE_value(1.0_pReal,IEEE_quiet_NaN)
end function math_eigenvaluesSym
end function math_eigvalsh
!--------------------------------------------------------------------------------------------------
@ -1160,31 +1136,34 @@ end function math_eigenvaluesSym
!> but apparently more stable solution and has general LAPACK powered version for arbritrary sized
!> matrices as fallback
!--------------------------------------------------------------------------------------------------
function math_eigenvaluesSym33(m)
function math_eigvalsh33(m)
real(pReal), intent(in), dimension(3,3) :: m
real(pReal), dimension(3) :: math_eigenvaluesSym33,invariants
real(pReal), dimension(3) :: math_eigvalsh33,invariants
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
invariants = math_invariantsSym33(m) ! invariants are coefficients in characteristic polynomial apart for the sign of c0 and c2 in http://arxiv.org/abs/physics/0610206
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal ! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
Q = product(invariants(1:2))/3.0_pReal &
- 2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal &
- invariants(3) ! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
if(all(abs([P,Q]) < TOL)) then
math_eigenvaluesSym33 = math_eigenvaluesSym(m)
math_eigvalsh33 = math_eigvalsh(m)
else
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
math_eigvalsh33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + invariants(1)/3.0_pReal
] &
+ invariants(1)/3.0_pReal
endif
end function math_eigenvaluesSym33
end function math_eigvalsh33
!--------------------------------------------------------------------------------------------------
@ -1344,7 +1323,6 @@ subroutine unitTest
if(any(dNeq(math_exp33(math_I3,0),math_I3))) &
call IO_error(0,ext_msg='math_exp33(math_I3,1)')
if(any(dNeq(math_exp33(math_I3,256),exp(1.0_pReal)*math_I3))) &
call IO_error(0,ext_msg='math_exp33(math_I3,256)')