From 487912cfb0be72b18a4797fc81af750960c33eb1 Mon Sep 17 00:00:00 2001 From: Martin Diehl Date: Sat, 29 Jan 2022 15:05:07 +0100 Subject: [PATCH] following Python notation --- src/grid/discretization_grid.f90 | 140 ++++++------- src/grid/grid_damage_spectral.f90 | 36 ++-- src/grid/grid_mech_FEM.f90 | 54 ++--- src/grid/grid_mech_spectral_basic.f90 | 32 +-- src/grid/grid_mech_spectral_polarisation.f90 | 50 ++--- src/grid/grid_thermal_spectral.f90 | 30 +-- src/grid/spectral_utilities.f90 | 200 +++++++++---------- 7 files changed, 271 insertions(+), 271 deletions(-) diff --git a/src/grid/discretization_grid.f90 b/src/grid/discretization_grid.f90 index 8de2de6ef..67f735a0d 100644 --- a/src/grid/discretization_grid.f90 +++ b/src/grid/discretization_grid.f90 @@ -27,10 +27,10 @@ module discretization_grid private integer, dimension(3), public, protected :: & - grid !< (global) grid + cells !< (global) cells integer, public, protected :: & - grid3, & !< (local) grid in 3rd direction - grid3Offset !< (local) grid offset in 3rd direction + cells3, & !< (local) cells in 3rd direction + cells3Offset !< (local) cells offset in 3rd direction real(pReal), dimension(3), public, protected :: & geomSize !< (global) physical size real(pReal), public, protected :: & @@ -55,7 +55,7 @@ subroutine discretization_grid_init(restart) mySize, & !< domain size of this process origin !< (global) distance to origin integer, dimension(3) :: & - myGrid !< domain grid of this process + myGrid !< domain cells of this process integer, dimension(:), allocatable :: & materialAt, materialAt_global @@ -77,7 +77,7 @@ subroutine discretization_grid_init(restart) if (worldrank == 0) then fileContent = IO_read(interface_geomFile) - call readVTI(grid,geomSize,origin,materialAt_global,fileContent) + call readVTI(cells,geomSize,origin,materialAt_global,fileContent) fname = interface_geomFile if (scan(fname,'/') /= 0) fname = fname(scan(fname,'/',.true.)+1:) call results_openJobFile(parallel=.false.) @@ -88,37 +88,37 @@ subroutine discretization_grid_init(restart) end if - call MPI_Bcast(grid,3_MPI_INTEGER_KIND,MPI_INTEGER,0_MPI_INTEGER_KIND,MPI_COMM_WORLD, err_MPI) + call MPI_Bcast(cells,3_MPI_INTEGER_KIND,MPI_INTEGER,0_MPI_INTEGER_KIND,MPI_COMM_WORLD, err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' - if (grid(1) < 2) call IO_error(844, ext_msg='cells(1) must be larger than 1') + if (cells(1) < 2) call IO_error(844, ext_msg='cells(1) must be larger than 1') call MPI_Bcast(geomSize,3_MPI_INTEGER_KIND,MPI_DOUBLE,0_MPI_INTEGER_KIND,MPI_COMM_WORLD, err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call MPI_Bcast(origin,3_MPI_INTEGER_KIND,MPI_DOUBLE,0_MPI_INTEGER_KIND,MPI_COMM_WORLD, err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' - print'(/,1x,a,3(i12,1x))', 'cells a b c: ', grid + print'(/,1x,a,3(i12,1x))', 'cells a b c: ', cells print '(1x,a,3(es12.5,1x))', 'size x y z: ', geomSize print '(1x,a,3(es12.5,1x))', 'origin x y z: ', origin - if (worldsize>grid(3)) call IO_error(894, ext_msg='number of processes exceeds grid(3)') + if (worldsize>cells(3)) call IO_error(894, ext_msg='number of processes exceeds cells(3)') call fftw_mpi_init - devNull = fftw_mpi_local_size_3d(int(grid(3),C_INTPTR_T), & - int(grid(2),C_INTPTR_T), & - int(grid(1),C_INTPTR_T)/2+1, & + devNull = fftw_mpi_local_size_3d(int(cells(3),C_INTPTR_T), & + int(cells(2),C_INTPTR_T), & + int(cells(1),C_INTPTR_T)/2+1, & PETSC_COMM_WORLD, & - z, & ! domain grid size along z - z_offset) ! domain grid offset along z + z, & ! domain cells size along z + z_offset) ! domain cells offset along z if (z==0_C_INTPTR_T) call IO_error(894, ext_msg='Cannot distribute MPI processes') - grid3 = int(z) - grid3Offset = int(z_offset) - size3 = geomSize(3)*real(grid3,pReal) /real(grid(3),pReal) - size3Offset = geomSize(3)*real(grid3Offset,pReal)/real(grid(3),pReal) - myGrid = [grid(1:2),grid3] + cells3 = int(z) + cells3Offset = int(z_offset) + size3 = geomSize(3)*real(cells3,pReal) /real(cells(3),pReal) + size3Offset = geomSize(3)*real(cells3Offset,pReal)/real(cells(3),pReal) + myGrid = [cells(1:2),cells3] mySize = [geomSize(1:2),size3] - call MPI_Gather(product(grid(1:2))*grid3Offset, 1_MPI_INTEGER_KIND,MPI_INTEGER,displs,& + call MPI_Gather(product(cells(1:2))*cells3Offset, 1_MPI_INTEGER_KIND,MPI_INTEGER,displs,& 1_MPI_INTEGER_KIND,MPI_INTEGER,0_MPI_INTEGER_KIND,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call MPI_Gather(product(myGrid), 1_MPI_INTEGER_KIND,MPI_INTEGER,sendcounts,& @@ -131,10 +131,10 @@ subroutine discretization_grid_init(restart) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call discretization_init(materialAt, & - IPcoordinates0(myGrid,mySize,grid3Offset), & - Nodes0(myGrid,mySize,grid3Offset),& - merge((grid(1)+1) * (grid(2)+1) * (grid3+1),& ! write top layer... - (grid(1)+1) * (grid(2)+1) * grid3,& ! ...unless not last process + IPcoordinates0(myGrid,mySize,cells3Offset), & + Nodes0(myGrid,mySize,cells3Offset),& + merge((cells(1)+1) * (cells(2)+1) * (cells3+1),& ! write top layer... + (cells(1)+1) * (cells(2)+1) * cells3,& ! ...unless not last process worldrank+1==worldsize)) !-------------------------------------------------------------------------------------------------- @@ -142,7 +142,7 @@ subroutine discretization_grid_init(restart) if (.not. restart) then call results_openJobFile call results_closeGroup(results_addGroup('geometry')) - call results_addAttribute('cells', grid, '/geometry') + call results_addAttribute('cells', cells, '/geometry') call results_addAttribute('size', geomSize,'/geometry') call results_addAttribute('origin',origin, '/geometry') call results_closeJobFile @@ -170,13 +170,13 @@ end subroutine discretization_grid_init !> @brief Parse vtk image data (.vti) !> @details https://vtk.org/Wiki/VTK_XML_Formats !-------------------------------------------------------------------------------------------------- -subroutine readVTI(grid,geomSize,origin,material, & +subroutine readVTI(cells,geomSize,origin,material, & fileContent) integer, dimension(3), intent(out) :: & - grid ! grid (across all processes!) + cells ! cells (across all processes!) real(pReal), dimension(3), intent(out) :: & - geomSize, & ! size (across all processes!) + geomSize, & ! size (across all processes!) origin ! origin (across all processes!) integer, dimension(:), intent(out), allocatable :: & material @@ -190,7 +190,7 @@ subroutine readVTI(grid,geomSize,origin,material, & s - grid = -1 + cells = -1 geomSize = -1.0_pReal inFile = .false. @@ -215,7 +215,7 @@ subroutine readVTI(grid,geomSize,origin,material, & if (.not. inImage) then if (index(fileContent(startPos:endPos),' @brief Calculate undeformed position of IPs/cell centers (pretend to be an element) !--------------------------------------------------------------------------------------------------- -function IPcoordinates0(grid,geomSize,grid3Offset) +function IPcoordinates0(cells,geomSize,cells3Offset) - integer, dimension(3), intent(in) :: grid ! grid (for this process!) + integer, dimension(3), intent(in) :: cells ! cells (for this process!) real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!) - integer, intent(in) :: grid3Offset ! grid(3) offset + integer, intent(in) :: cells3Offset ! cells(3) offset - real(pReal), dimension(3,product(grid)) :: ipCoordinates0 + real(pReal), dimension(3,product(cells)) :: ipCoordinates0 integer :: & a,b,c, & @@ -516,9 +516,9 @@ function IPcoordinates0(grid,geomSize,grid3Offset) i = 0 - do c = 1, grid(3); do b = 1, grid(2); do a = 1, grid(1) + do c = 1, cells(3); do b = 1, cells(2); do a = 1, cells(1) i = i + 1 - IPcoordinates0(1:3,i) = geomSize/real(grid,pReal) * (real([a,b,grid3Offset+c],pReal) -0.5_pReal) + IPcoordinates0(1:3,i) = geomSize/real(cells,pReal) * (real([a,b,cells3Offset+c],pReal) -0.5_pReal) end do; end do; end do end function IPcoordinates0 @@ -527,22 +527,22 @@ end function IPcoordinates0 !--------------------------------------------------------------------------------------------------- !> @brief Calculate position of undeformed nodes (pretend to be an element) !--------------------------------------------------------------------------------------------------- -pure function nodes0(grid,geomSize,grid3Offset) +pure function nodes0(cells,geomSize,cells3Offset) - integer, dimension(3), intent(in) :: grid ! grid (for this process!) + integer, dimension(3), intent(in) :: cells ! cells (for this process!) real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!) - integer, intent(in) :: grid3Offset ! grid(3) offset + integer, intent(in) :: cells3Offset ! cells(3) offset - real(pReal), dimension(3,product(grid+1)) :: nodes0 + real(pReal), dimension(3,product(cells+1)) :: nodes0 integer :: & a,b,c, & n n = 0 - do c = 0, grid3; do b = 0, grid(2); do a = 0, grid(1) + do c = 0, cells3; do b = 0, cells(2); do a = 0, cells(1) n = n + 1 - nodes0(1:3,n) = geomSize/real(grid,pReal) * real([a,b,grid3Offset+c],pReal) + nodes0(1:3,n) = geomSize/real(cells,pReal) * real([a,b,cells3Offset+c],pReal) end do; end do; end do end function nodes0 @@ -551,17 +551,17 @@ end function nodes0 !-------------------------------------------------------------------------------------------------- !> @brief Calculate IP interface areas !-------------------------------------------------------------------------------------------------- -pure function cellSurfaceArea(geomSize,grid) +pure function cellSurfaceArea(geomSize,cells) real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!) - integer, dimension(3), intent(in) :: grid ! grid (for this process!) + integer, dimension(3), intent(in) :: cells ! cells (for this process!) - real(pReal), dimension(6,1,product(grid)) :: cellSurfaceArea + real(pReal), dimension(6,1,product(cells)) :: cellSurfaceArea - cellSurfaceArea(1:2,1,:) = geomSize(2)/real(grid(2)) * geomSize(3)/real(grid(3)) - cellSurfaceArea(3:4,1,:) = geomSize(3)/real(grid(3)) * geomSize(1)/real(grid(1)) - cellSurfaceArea(5:6,1,:) = geomSize(1)/real(grid(1)) * geomSize(2)/real(grid(2)) + cellSurfaceArea(1:2,1,:) = geomSize(2)/real(cells(2)) * geomSize(3)/real(cells(3)) + cellSurfaceArea(3:4,1,:) = geomSize(3)/real(cells(3)) * geomSize(1)/real(cells(1)) + cellSurfaceArea(5:6,1,:) = geomSize(1)/real(cells(1)) * geomSize(2)/real(cells(2)) end function cellSurfaceArea @@ -588,42 +588,42 @@ end function cellSurfaceNormal !-------------------------------------------------------------------------------------------------- !> @brief Build IP neighborhood relations !-------------------------------------------------------------------------------------------------- -pure function IPneighborhood(grid) +pure function IPneighborhood(cells) - integer, dimension(3), intent(in) :: grid ! grid (for this process!) + integer, dimension(3), intent(in) :: cells ! cells (for this process!) - integer, dimension(3,6,1,product(grid)) :: IPneighborhood !< 6 neighboring IPs as [element ID, IP ID, face ID] + integer, dimension(3,6,1,product(cells)) :: IPneighborhood !< 6 neighboring IPs as [element ID, IP ID, face ID] integer :: & x,y,z, & e e = 0 - do z = 0,grid(3)-1; do y = 0,grid(2)-1; do x = 0,grid(1)-1 + do z = 0,cells(3)-1; do y = 0,cells(2)-1; do x = 0,cells(1)-1 e = e + 1 ! element ID - IPneighborhood(1,1,1,e) = z * grid(1) * grid(2) & - + y * grid(1) & - + modulo(x+1,grid(1)) & + IPneighborhood(1,1,1,e) = z * cells(1) * cells(2) & + + y * cells(1) & + + modulo(x+1,cells(1)) & + 1 - IPneighborhood(1,2,1,e) = z * grid(1) * grid(2) & - + y * grid(1) & - + modulo(x-1,grid(1)) & + IPneighborhood(1,2,1,e) = z * cells(1) * cells(2) & + + y * cells(1) & + + modulo(x-1,cells(1)) & + 1 - IPneighborhood(1,3,1,e) = z * grid(1) * grid(2) & - + modulo(y+1,grid(2)) * grid(1) & + IPneighborhood(1,3,1,e) = z * cells(1) * cells(2) & + + modulo(y+1,cells(2)) * cells(1) & + x & + 1 - IPneighborhood(1,4,1,e) = z * grid(1) * grid(2) & - + modulo(y-1,grid(2)) * grid(1) & + IPneighborhood(1,4,1,e) = z * cells(1) * cells(2) & + + modulo(y-1,cells(2)) * cells(1) & + x & + 1 - IPneighborhood(1,5,1,e) = modulo(z+1,grid(3)) * grid(1) * grid(2) & - + y * grid(1) & + IPneighborhood(1,5,1,e) = modulo(z+1,cells(3)) * cells(1) * cells(2) & + + y * cells(1) & + x & + 1 - IPneighborhood(1,6,1,e) = modulo(z-1,grid(3)) * grid(1) * grid(2) & - + y * grid(1) & + IPneighborhood(1,6,1,e) = modulo(z-1,cells(3)) * cells(1) * cells(2) & + + y * cells(1) & + x & + 1 ! IP ID diff --git a/src/grid/grid_damage_spectral.f90 b/src/grid/grid_damage_spectral.f90 index 96b72dbcc..dc21a1a2c 100644 --- a/src/grid/grid_damage_spectral.f90 +++ b/src/grid/grid_damage_spectral.f90 @@ -106,9 +106,9 @@ subroutine grid_damage_spectral_init() !-------------------------------------------------------------------------------------------------- ! init fields - allocate(phi_current(grid(1),grid(2),grid3), source=1.0_pReal) - allocate(phi_lastInc(grid(1),grid(2),grid3), source=1.0_pReal) - allocate(phi_stagInc(grid(1),grid(2),grid3), source=1.0_pReal) + allocate(phi_current(cells(1),cells(2),cells3), source=1.0_pReal) + allocate(phi_lastInc(cells(1),cells(2),cells3), source=1.0_pReal) + allocate(phi_stagInc(cells(1),cells(2),cells3), source=1.0_pReal) !-------------------------------------------------------------------------------------------------- ! initialize solver specific parts of PETSc @@ -117,23 +117,23 @@ subroutine grid_damage_spectral_init() call SNESSetOptionsPrefix(SNES_damage,'damage_',err_PETSc) CHKERRQ(err_PETSc) localK = 0_pPetscInt - localK(worldrank) = int(grid3,pPetscInt) + localK(worldrank) = int(cells3,pPetscInt) call MPI_Allreduce(MPI_IN_PLACE,localK,worldsize,MPI_INTEGER,MPI_SUM,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call DMDACreate3D(PETSC_COMM_WORLD, & DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point - int(grid(1),pPetscInt),int(grid(2),pPetscInt),int(grid(3),pPetscInt), & ! global grid + int(cells(1),pPetscInt),int(cells(2),pPetscInt),int(cells(3),pPetscInt), & ! global cells 1_pPetscInt, 1_pPetscInt, int(worldsize,pPetscInt), & 1_pPetscInt, 0_pPetscInt, & ! #dof (phi, scalar), ghost boundary width (domain overlap) - [int(grid(1),pPetscInt)],[int(grid(2),pPetscInt)],localK, & ! local grid + [int(cells(1),pPetscInt)],[int(cells(2),pPetscInt)],localK, & ! local cells damage_grid,err_PETSc) ! handle, error CHKERRQ(err_PETSc) call DMsetFromOptions(damage_grid,err_PETSc) CHKERRQ(err_PETSc) call DMsetUp(damage_grid,err_PETSc) CHKERRQ(err_PETSc) - call DMCreateGlobalVector(damage_grid,solution_vec,err_PETSc) ! global solution vector (grid x 1, i.e. every def grad tensor) + call DMCreateGlobalVector(damage_grid,solution_vec,err_PETSc) ! global solution vector (cells x 1, i.e. every def grad tensor) CHKERRQ(err_PETSc) call DMDASNESSetFunctionLocal(damage_grid,INSERT_VALUES,formResidual,PETSC_NULL_SNES,err_PETSc) ! residual vector of same shape as solution vector CHKERRQ(err_PETSc) @@ -213,7 +213,7 @@ function grid_damage_spectral_solution(Delta_t) result(solution) !-------------------------------------------------------------------------------------------------- ! updating damage state ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 call homogenization_set_phi(phi_current(i,j,k),ce) end do; end do; end do @@ -255,7 +255,7 @@ subroutine grid_damage_spectral_forward(cutBack) call DMDAVecRestoreArrayF90(dm_local,solution_vec,phi_PETSc,err_PETSc) CHKERRQ(err_PETSc) ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 call homogenization_set_phi(phi_current(i,j,k),ce) end do; end do; end do @@ -289,12 +289,12 @@ subroutine formResidual(in,x_scal,r,dummy,err_PETSc) !-------------------------------------------------------------------------------------------------- ! evaluate polarization field scalarField_real = 0.0_pReal - scalarField_real(1:grid(1),1:grid(2),1:grid3) = phi_current + scalarField_real(1:cells(1),1:cells(2),1:cells3) = phi_current call utilities_FFTscalarForward call utilities_fourierScalarGradient !< calculate gradient of damage field call utilities_FFTvectorBackward ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 vectorField_real(1:3,i,j,k) = matmul(homogenization_K_phi(ce) - K_ref, vectorField_real(1:3,i,j,k)) end do; end do; end do @@ -302,7 +302,7 @@ subroutine formResidual(in,x_scal,r,dummy,err_PETSc) call utilities_fourierVectorDivergence !< calculate damage divergence in fourier field call utilities_FFTscalarBackward ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 scalarField_real(i,j,k) = params%Delta_t*(scalarField_real(i,j,k) + homogenization_f_phi(phi_current(i,j,k),ce)) & + homogenization_mu_phi(ce)*(phi_lastInc(i,j,k) - phi_current(i,j,k)) & @@ -315,14 +315,14 @@ subroutine formResidual(in,x_scal,r,dummy,err_PETSc) call utilities_fourierGreenConvolution(K_ref, mu_ref, params%Delta_t) call utilities_FFTscalarBackward - where(scalarField_real(1:grid(1),1:grid(2),1:grid3) > phi_lastInc) & - scalarField_real(1:grid(1),1:grid(2),1:grid3) = phi_lastInc - where(scalarField_real(1:grid(1),1:grid(2),1:grid3) < num%residualStiffness) & - scalarField_real(1:grid(1),1:grid(2),1:grid3) = num%residualStiffness + where(scalarField_real(1:cells(1),1:cells(2),1:cells3) > phi_lastInc) & + scalarField_real(1:cells(1),1:cells(2),1:cells3) = phi_lastInc + where(scalarField_real(1:cells(1),1:cells(2),1:cells3) < num%residualStiffness) & + scalarField_real(1:cells(1),1:cells(2),1:cells3) = num%residualStiffness !-------------------------------------------------------------------------------------------------- ! constructing residual - r = scalarField_real(1:grid(1),1:grid(2),1:grid3) - phi_current + r = scalarField_real(1:cells(1),1:cells(2),1:cells3) - phi_current err_PETSc = 0 end subroutine formResidual @@ -339,7 +339,7 @@ subroutine updateReference() K_ref = 0.0_pReal mu_ref = 0.0_pReal - do ce = 1, product(grid(1:2))*grid3 + do ce = 1, product(cells(1:2))*cells3 K_ref = K_ref + homogenization_K_phi(ce) mu_ref = mu_ref + homogenization_mu_phi(ce) end do diff --git a/src/grid/grid_mech_FEM.f90 b/src/grid/grid_mech_FEM.f90 index 6a3f1323d..cc082d2f5 100644 --- a/src/grid/grid_mech_FEM.f90 +++ b/src/grid/grid_mech_FEM.f90 @@ -153,9 +153,9 @@ subroutine grid_mechanical_FEM_init !-------------------------------------------------------------------------------------------------- ! allocate global fields - allocate(F (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) - allocate(P_current (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) - allocate(F_lastInc (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) + allocate(F (3,3,cells(1),cells(2),cells3),source = 0.0_pReal) + allocate(P_current (3,3,cells(1),cells(2),cells3),source = 0.0_pReal) + allocate(F_lastInc (3,3,cells(1),cells(2),cells3),source = 0.0_pReal) !-------------------------------------------------------------------------------------------------- ! initialize solver specific parts of PETSc @@ -164,16 +164,16 @@ subroutine grid_mechanical_FEM_init call SNESSetOptionsPrefix(SNES_mechanical,'mechanical_',err_PETSc) CHKERRQ(err_PETSc) localK = 0_pPetscInt - localK(worldrank) = int(grid3,pPetscInt) + localK(worldrank) = int(cells3,pPetscInt) call MPI_Allreduce(MPI_IN_PLACE,localK,worldsize,MPI_INTEGER,MPI_SUM,MPI_COMM_WORLD,err_MPI) if(err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call DMDACreate3d(PETSC_COMM_WORLD, & DM_BOUNDARY_PERIODIC, DM_BOUNDARY_PERIODIC, DM_BOUNDARY_PERIODIC, & DMDA_STENCIL_BOX, & - int(grid(1),pPetscInt),int(grid(2),pPetscInt),int(grid(3),pPetscInt), & ! global grid + int(cells(1),pPetscInt),int(cells(2),pPetscInt),int(cells(3),pPetscInt), & ! global cells 1_pPetscInt, 1_pPetscInt, int(worldsize,pPetscInt), & 3_pPetscInt, 1_pPetscInt, & ! #dof (u, vector), ghost boundary width (domain overlap) - [int(grid(1),pPetscInt)],[int(grid(2),pPetscInt)],localK, & ! local grid + [int(cells(1),pPetscInt)],[int(cells(2),pPetscInt)],localK, & ! local cells mechanical_grid,err_PETSc) CHKERRQ(err_PETSc) call DMsetFromOptions(mechanical_grid,err_PETSc) @@ -214,7 +214,7 @@ subroutine grid_mechanical_FEM_init call DMDAVecGetArrayF90(mechanical_grid,solution_lastInc,u_lastInc,err_PETSc) CHKERRQ(err_PETSc) - delta = geomSize/real(grid,pReal) ! grid spacing + delta = geomSize/real(cells,pReal) ! grid spacing detJ = product(delta) ! cell volume BMat = reshape(real([-1.0_pReal/delta(1),-1.0_pReal/delta(2),-1.0_pReal/delta(3), & @@ -255,11 +255,11 @@ subroutine grid_mechanical_FEM_init call HDF5_read(u_lastInc,groupHandle,'u_lastInc') elseif (interface_restartInc == 0) then restartRead - F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) ! initialize to identity - F = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) + F_lastInc = spread(spread(spread(math_I3,3,cells(1)),4,cells(2)),5,cells3) ! initialize to identity + F = spread(spread(spread(math_I3,3,cells(1)),4,cells(2)),5,cells3) endif restartRead - homogenization_F0 = reshape(F_lastInc, [3,3,product(grid(1:2))*grid3]) ! set starting condition for homogenization_mechanical_response + homogenization_F0 = reshape(F_lastInc, [3,3,product(cells(1:2))*cells3]) ! set starting condition for homogenization_mechanical_response call utilities_updateCoords(F) call utilities_constitutiveResponse(P_current,P_av,C_volAvg,devNull, & ! stress field, stress avg, global average of stiffness and (min+max)/2 F, & ! target F @@ -386,7 +386,7 @@ subroutine grid_mechanical_FEM_forward(cutBack,guess,Delta_t,Delta_t_old,t_remai F_lastInc = F - homogenization_F0 = reshape(F, [3,3,product(grid(1:2))*grid3]) + homogenization_F0 = reshape(F, [3,3,product(cells(1:2))*cells3]) endif !-------------------------------------------------------------------------------------------------- @@ -556,13 +556,13 @@ subroutine formResidual(da_local,x_local, & ! get deformation gradient call DMDAVecGetArrayF90(da_local,x_local,x_scal,err_PETSc) CHKERRQ(err_PETSc) - do k = grid3offset+1, grid3offset+grid3; do j = 1, grid(2); do i = 1, grid(1) + do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, cells(1) ctr = 0 do kk = -1, 0; do jj = -1, 0; do ii = -1, 0 ctr = ctr + 1 x_elem(ctr,1:3) = x_scal(0:2,i+ii,j+jj,k+kk) enddo; enddo; enddo - F(1:3,1:3,i,j,k-grid3offset) = params%rotation_BC%rotate(F_aim,active=.true.) + transpose(matmul(BMat,x_elem)) + F(1:3,1:3,i,j,k-cells3Offset) = params%rotation_BC%rotate(F_aim,active=.true.) + transpose(matmul(BMat,x_elem)) enddo; enddo; enddo call DMDAVecRestoreArrayF90(da_local,x_local,x_scal,err_PETSc) CHKERRQ(err_PETSc) @@ -589,14 +589,14 @@ subroutine formResidual(da_local,x_local, & call DMDAVecGetArrayF90(da_local,x_local,x_scal,err_PETSc) CHKERRQ(err_PETSc) ele = 0 - do k = grid3offset+1, grid3offset+grid3; do j = 1, grid(2); do i = 1, grid(1) + do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, cells(1) ctr = 0 do kk = -1, 0; do jj = -1, 0; do ii = -1, 0 ctr = ctr + 1 x_elem(ctr,1:3) = x_scal(0:2,i+ii,j+jj,k+kk) enddo; enddo; enddo ele = ele + 1 - f_elem = matmul(transpose(BMat),transpose(P_current(1:3,1:3,i,j,k-grid3offset)))*detJ + & + f_elem = matmul(transpose(BMat),transpose(P_current(1:3,1:3,i,j,k-cells3Offset)))*detJ + & matmul(HGMat,x_elem)*(homogenization_dPdF(1,1,1,1,ele) + & homogenization_dPdF(2,2,2,2,ele) + & homogenization_dPdF(3,3,3,3,ele))/3.0_pReal @@ -615,17 +615,17 @@ subroutine formResidual(da_local,x_local, & ! applying boundary conditions call DMDAVecGetArrayF90(da_local,f_local,r,err_PETSc) CHKERRQ(err_PETSc) - if (grid3offset == 0) then - r(0:2,0, 0, 0) = 0.0_pReal - r(0:2,grid(1),0, 0) = 0.0_pReal - r(0:2,0, grid(2),0) = 0.0_pReal - r(0:2,grid(1),grid(2),0) = 0.0_pReal + if (cells3Offset == 0) then + r(0:2,0, 0, 0) = 0.0_pReal + r(0:2,cells(1),0, 0) = 0.0_pReal + r(0:2,0, cells(2),0) = 0.0_pReal + r(0:2,cells(1),cells(2),0) = 0.0_pReal end if - if (grid3+grid3offset == grid(3)) then - r(0:2,0, 0, grid(3)) = 0.0_pReal - r(0:2,grid(1),0, grid(3)) = 0.0_pReal - r(0:2,0, grid(2),grid(3)) = 0.0_pReal - r(0:2,grid(1),grid(2),grid(3)) = 0.0_pReal + if (cells3+cells3Offset == cells(3)) then + r(0:2,0, 0, cells(3)) = 0.0_pReal + r(0:2,cells(1),0, cells(3)) = 0.0_pReal + r(0:2,0, cells(2),cells(3)) = 0.0_pReal + r(0:2,cells(1),cells(2),cells(3)) = 0.0_pReal end if call DMDAVecRestoreArrayF90(da_local,f_local,r,err_PETSc) CHKERRQ(err_PETSc) @@ -663,7 +663,7 @@ subroutine formJacobian(da_local,x_local,Jac_pre,Jac,dummy,err_PETSc) call MatZeroEntries(Jac,err_PETSc) CHKERRQ(err_PETSc) ce = 0 - do k = grid3offset+1, grid3offset+grid3; do j = 1, grid(2); do i = 1, grid(1) + do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, cells(1) ctr = 0 do kk = -1, 0; do jj = -1, 0; do ii = -1, 0 ctr = ctr + 1 @@ -719,7 +719,7 @@ subroutine formJacobian(da_local,x_local,Jac_pre,Jac,dummy,err_PETSc) call DMDAVecGetArrayF90(da_local,coordinates,x_scal,err_PETSc) CHKERRQ(err_PETSc) ce = 0 - do k = grid3offset+1, grid3offset+grid3; do j = 1, grid(2); do i = 1, grid(1) + do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, cells(1) ce = ce + 1 x_scal(0:2,i-1,j-1,k-1) = discretization_IPcoords(1:3,ce) enddo; enddo; enddo diff --git a/src/grid/grid_mech_spectral_basic.f90 b/src/grid/grid_mech_spectral_basic.f90 index c60c542d0..2afe9edc7 100644 --- a/src/grid/grid_mech_spectral_basic.f90 +++ b/src/grid/grid_mech_spectral_basic.f90 @@ -96,7 +96,7 @@ contains !-------------------------------------------------------------------------------------------------- subroutine grid_mechanical_spectral_basic_init - real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: P + real(pReal), dimension(3,3,cells(1),cells(2),cells3) :: P PetscErrorCode :: err_PETSc integer(MPI_INTEGER_KIND) :: err_MPI PetscScalar, pointer, dimension(:,:,:,:) :: & @@ -153,8 +153,8 @@ subroutine grid_mechanical_spectral_basic_init !-------------------------------------------------------------------------------------------------- ! allocate global fields - allocate(F_lastInc(3,3,grid(1),grid(2),grid3),source = 0.0_pReal) - allocate(Fdot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) + allocate(F_lastInc(3,3,cells(1),cells(2),cells3),source = 0.0_pReal) + allocate(Fdot (3,3,cells(1),cells(2),cells3),source = 0.0_pReal) !-------------------------------------------------------------------------------------------------- ! initialize solver specific parts of PETSc @@ -163,23 +163,23 @@ subroutine grid_mechanical_spectral_basic_init call SNESSetOptionsPrefix(SNES_mechanical,'mechanical_',err_PETSc) CHKERRQ(err_PETSc) localK = 0_pPetscInt - localK(worldrank) = int(grid3,pPetscInt) + localK(worldrank) = int(cells3,pPetscInt) call MPI_Allreduce(MPI_IN_PLACE,localK,worldsize,MPI_INTEGER,MPI_SUM,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call DMDACreate3d(PETSC_COMM_WORLD, & DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point - int(grid(1),pPetscInt),int(grid(2),pPetscInt),int(grid(3),pPetscInt), & ! global grid + int(cells(1),pPetscInt),int(cells(2),pPetscInt),int(cells(3),pPetscInt), & ! global cells 1_pPetscInt, 1_pPetscInt, int(worldsize,pPetscInt), & 9_pPetscInt, 0_pPetscInt, & ! #dof (F, tensor), ghost boundary width (domain overlap) - [int(grid(1),pPetscInt)],[int(grid(2),pPetscInt)],localK, & ! local grid + [int(cells(1),pPetscInt)],[int(cells(2),pPetscInt)],localK, & ! local cells da,err_PETSc) ! handle, error CHKERRQ(err_PETSc) call DMsetFromOptions(da,err_PETSc) CHKERRQ(err_PETSc) call DMsetUp(da,err_PETSc) CHKERRQ(err_PETSc) - call DMcreateGlobalVector(da,solution_vec,err_PETSc) ! global solution vector (grid x 9, i.e. every def grad tensor) + call DMcreateGlobalVector(da,solution_vec,err_PETSc) ! global solution vector (cells x 9, i.e. every def grad tensor) CHKERRQ(err_PETSc) call DMDASNESsetFunctionLocal(da,INSERT_VALUES,formResidual,PETSC_NULL_SNES,err_PETSc) ! residual vector of same shape as solution vector CHKERRQ(err_PETSc) @@ -217,11 +217,11 @@ subroutine grid_mechanical_spectral_basic_init call HDF5_read(F_lastInc,groupHandle,'F_lastInc') elseif (interface_restartInc == 0) then restartRead - F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) ! initialize to identity - F = reshape(F_lastInc,[9,grid(1),grid(2),grid3]) + F_lastInc = spread(spread(spread(math_I3,3,cells(1)),4,cells(2)),5,cells3) ! initialize to identity + F = reshape(F_lastInc,[9,cells(1),cells(2),cells3]) end if restartRead - homogenization_F0 = reshape(F_lastInc, [3,3,product(grid(1:2))*grid3]) ! set starting condition for homogenization_mechanical_response + homogenization_F0 = reshape(F_lastInc, [3,3,product(cells(1:2))*cells3]) ! set starting condition for homogenization_mechanical_response call utilities_updateCoords(reshape(F,shape(F_lastInc))) call utilities_constitutiveResponse(P,P_av,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2 reshape(F,shape(F_lastInc)), & ! target F @@ -343,11 +343,11 @@ subroutine grid_mechanical_spectral_basic_forward(cutBack,guess,Delta_t,Delta_t_ end if Fdot = utilities_calculateRate(guess, & - F_lastInc,reshape(F,[3,3,grid(1),grid(2),grid3]),Delta_t_old, & + F_lastInc,reshape(F,[3,3,cells(1),cells(2),cells3]),Delta_t_old, & rotation_BC%rotate(F_aimDot,active=.true.)) - F_lastInc = reshape(F,[3,3,grid(1),grid(2),grid3]) + F_lastInc = reshape(F,[3,3,cells(1),cells(2),cells3]) - homogenization_F0 = reshape(F,[3,3,product(grid(1:2))*grid3]) + homogenization_F0 = reshape(F,[3,3,product(cells(1:2))*cells3]) end if !-------------------------------------------------------------------------------------------------- @@ -359,7 +359,7 @@ subroutine grid_mechanical_spectral_basic_forward(cutBack,guess,Delta_t,Delta_t_ + merge(.0_pReal,stress_BC%values,stress_BC%mask)*Delta_t F = reshape(utilities_forwardField(Delta_t,F_lastInc,Fdot, & ! estimate of F at end of time+Delta_t that matches rotated F_aim on average - rotation_BC%rotate(F_aim,active=.true.)),[9,grid(1),grid(2),grid3]) + rotation_BC%rotate(F_aim,active=.true.)),[9,cells(1),cells(2),cells3]) call DMDAVecRestoreArrayF90(da,solution_vec,F,err_PETSc) CHKERRQ(err_PETSc) @@ -530,7 +530,7 @@ subroutine formResidual(in, F, & !-------------------------------------------------------------------------------------------------- ! updated deformation gradient using fix point algorithm of basic scheme tensorField_real = 0.0_pReal - tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = r ! store fPK field for subsequent FFT forward transform + tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) = r ! store fPK field for subsequent FFT forward transform call utilities_FFTtensorForward ! FFT forward of global "tensorField_real" err_div = utilities_divergenceRMS() ! divRMS of tensorField_fourier for later use call utilities_fourierGammaConvolution(params%rotation_BC%rotate(deltaF_aim,active=.true.)) ! convolution of Gamma and tensorField_fourier @@ -538,7 +538,7 @@ subroutine formResidual(in, F, & !-------------------------------------------------------------------------------------------------- ! constructing residual - r = tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) ! Gamma*P gives correction towards div(P) = 0, so needs to be zero, too + r = tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) ! Gamma*P gives correction towards div(P) = 0, so needs to be zero, too end subroutine formResidual diff --git a/src/grid/grid_mech_spectral_polarisation.f90 b/src/grid/grid_mech_spectral_polarisation.f90 index 810047403..998b94e8a 100644 --- a/src/grid/grid_mech_spectral_polarisation.f90 +++ b/src/grid/grid_mech_spectral_polarisation.f90 @@ -107,7 +107,7 @@ contains !-------------------------------------------------------------------------------------------------- subroutine grid_mechanical_spectral_polarisation_init - real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: P + real(pReal), dimension(3,3,cells(1),cells(2),cells3) :: P PetscErrorCode :: err_PETSc integer(MPI_INTEGER_KIND) :: err_MPI PetscScalar, pointer, dimension(:,:,:,:) :: & @@ -171,10 +171,10 @@ subroutine grid_mechanical_spectral_polarisation_init !-------------------------------------------------------------------------------------------------- ! allocate global fields - allocate(F_lastInc (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) - allocate(Fdot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) - allocate(F_tau_lastInc(3,3,grid(1),grid(2),grid3),source = 0.0_pReal) - allocate(F_tauDot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) + allocate(F_lastInc (3,3,cells(1),cells(2),cells3),source = 0.0_pReal) + allocate(Fdot (3,3,cells(1),cells(2),cells3),source = 0.0_pReal) + allocate(F_tau_lastInc(3,3,cells(1),cells(2),cells3),source = 0.0_pReal) + allocate(F_tauDot (3,3,cells(1),cells(2),cells3),source = 0.0_pReal) !-------------------------------------------------------------------------------------------------- ! initialize solver specific parts of PETSc @@ -183,23 +183,23 @@ subroutine grid_mechanical_spectral_polarisation_init call SNESSetOptionsPrefix(SNES_mechanical,'mechanical_',err_PETSc) CHKERRQ(err_PETSc) localK = 0_pPetscInt - localK(worldrank) = int(grid3,pPetscInt) + localK(worldrank) = int(cells3,pPetscInt) call MPI_Allreduce(MPI_IN_PLACE,localK,worldsize,MPI_INTEGER,MPI_SUM,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call DMDACreate3d(PETSC_COMM_WORLD, & DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point - int(grid(1),pPetscInt),int(grid(2),pPetscInt),int(grid(3),pPetscInt), & ! global grid + int(cells(1),pPetscInt),int(cells(2),pPetscInt),int(cells(3),pPetscInt), & ! global cells 1_pPetscInt, 1_pPetscInt, int(worldsize,pPetscInt), & 18_pPetscInt, 0_pPetscInt, & ! #dof (2xtensor), ghost boundary width (domain overlap) - [int(grid(1),pPetscInt)],[int(grid(2),pPetscInt)],localK, & ! local grid + [int(cells(1),pPetscInt)],[int(cells(2),pPetscInt)],localK, & ! local cells da,err_PETSc) ! handle, error CHKERRQ(err_PETSc) call DMsetFromOptions(da,err_PETSc) CHKERRQ(err_PETSc) call DMsetUp(da,err_PETSc) CHKERRQ(err_PETSc) - call DMcreateGlobalVector(da,solution_vec,err_PETSc) ! global solution vector (grid x 18, i.e. every def grad tensor) + call DMcreateGlobalVector(da,solution_vec,err_PETSc) ! global solution vector (cells x 18, i.e. every def grad tensor) CHKERRQ(err_PETSc) call DMDASNESsetFunctionLocal(da,INSERT_VALUES,formResidual,PETSC_NULL_SNES,err_PETSc) ! residual vector of same shape as solution vector CHKERRQ(err_PETSc) @@ -241,13 +241,13 @@ subroutine grid_mechanical_spectral_polarisation_init call HDF5_read(F_tau_lastInc,groupHandle,'F_tau_lastInc') elseif (interface_restartInc == 0) then restartRead - F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) ! initialize to identity - F = reshape(F_lastInc,[9,grid(1),grid(2),grid3]) + F_lastInc = spread(spread(spread(math_I3,3,cells(1)),4,cells(2)),5,cells3) ! initialize to identity + F = reshape(F_lastInc,[9,cells(1),cells(2),cells3]) F_tau = 2.0_pReal*F F_tau_lastInc = 2.0_pReal*F_lastInc end if restartRead - homogenization_F0 = reshape(F_lastInc, [3,3,product(grid(1:2))*grid3]) ! set starting condition for homogenization_mechanical_response + homogenization_F0 = reshape(F_lastInc, [3,3,product(cells(1:2))*cells3]) ! set starting condition for homogenization_mechanical_response call utilities_updateCoords(reshape(F,shape(F_lastInc))) call utilities_constitutiveResponse(P,P_av,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2 reshape(F,shape(F_lastInc)), & ! target F @@ -379,15 +379,15 @@ subroutine grid_mechanical_spectral_polarisation_forward(cutBack,guess,Delta_t,D end if Fdot = utilities_calculateRate(guess, & - F_lastInc,reshape(F,[3,3,grid(1),grid(2),grid3]),Delta_t_old, & + F_lastInc,reshape(F,[3,3,cells(1),cells(2),cells3]),Delta_t_old, & rotation_BC%rotate(F_aimDot,active=.true.)) F_tauDot = utilities_calculateRate(guess, & - F_tau_lastInc,reshape(F_tau,[3,3,grid(1),grid(2),grid3]), Delta_t_old, & + F_tau_lastInc,reshape(F_tau,[3,3,cells(1),cells(2),cells3]), Delta_t_old, & rotation_BC%rotate(F_aimDot,active=.true.)) - F_lastInc = reshape(F, [3,3,grid(1),grid(2),grid3]) - F_tau_lastInc = reshape(F_tau,[3,3,grid(1),grid(2),grid3]) + F_lastInc = reshape(F, [3,3,cells(1),cells(2),cells3]) + F_tau_lastInc = reshape(F_tau,[3,3,cells(1),cells(2),cells3]) - homogenization_F0 = reshape(F,[3,3,product(grid(1:2))*grid3]) + homogenization_F0 = reshape(F,[3,3,product(cells(1:2))*cells3]) end if !-------------------------------------------------------------------------------------------------- @@ -400,12 +400,12 @@ subroutine grid_mechanical_spectral_polarisation_forward(cutBack,guess,Delta_t,D F = reshape(utilities_forwardField(Delta_t,F_lastInc,Fdot, & ! estimate of F at end of time+Delta_t that matches rotated F_aim on average rotation_BC%rotate(F_aim,active=.true.)),& - [9,grid(1),grid(2),grid3]) + [9,cells(1),cells(2),cells3]) if (guess) then F_tau = reshape(Utilities_forwardField(Delta_t,F_tau_lastInc,F_taudot), & - [9,grid(1),grid(2),grid3]) ! does not have any average value as boundary condition + [9,cells(1),cells(2),cells3]) ! does not have any average value as boundary condition else - do k = 1, grid3; do j = 1, grid(2); do i = 1, grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1, cells(1) F_lambda33 = reshape(F_tau(1:9,i,j,k)-F(1:9,i,j,k),[3,3]) F_lambda33 = math_I3 & + math_mul3333xx33(S_scale,0.5_pReal*matmul(F_lambda33, & @@ -597,7 +597,7 @@ subroutine formResidual(in, FandF_tau, & !-------------------------------------------------------------------------------------------------- ! tensorField_real = 0.0_pReal - do k = 1, grid3; do j = 1, grid(2); do i = 1, grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1, cells(1) tensorField_real(1:3,1:3,i,j,k) = & num%beta*math_mul3333xx33(C_scale,F(1:3,1:3,i,j,k) - math_I3) -& num%alpha*matmul(F(1:3,1:3,i,j,k), & @@ -612,7 +612,7 @@ subroutine formResidual(in, FandF_tau, & !-------------------------------------------------------------------------------------------------- ! constructing residual - r_F_tau = num%beta*F - tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) + r_F_tau = num%beta*F - tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) !-------------------------------------------------------------------------------------------------- ! evaluate constitutive response @@ -629,14 +629,14 @@ subroutine formResidual(in, FandF_tau, & params%stress_mask))) ! calculate divergence tensorField_real = 0.0_pReal - tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = r_F !< stress field in disguise + tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) = r_F !< stress field in disguise call utilities_FFTtensorForward err_div = utilities_divergenceRMS() !< root mean squared error in divergence of stress !-------------------------------------------------------------------------------------------------- ! constructing residual e = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1, grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1, cells(1) e = e + 1 r_F(1:3,1:3,i,j,k) = & math_mul3333xx33(math_invSym3333(homogenization_dPdF(1:3,1:3,1:3,1:3,e) + C_scale), & @@ -648,7 +648,7 @@ subroutine formResidual(in, FandF_tau, & !-------------------------------------------------------------------------------------------------- ! calculating curl tensorField_real = 0.0_pReal - tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = F + tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) = F call utilities_FFTtensorForward err_curl = utilities_curlRMS() diff --git a/src/grid/grid_thermal_spectral.f90 b/src/grid/grid_thermal_spectral.f90 index f102cf2c1..193d0ecd6 100644 --- a/src/grid/grid_thermal_spectral.f90 +++ b/src/grid/grid_thermal_spectral.f90 @@ -101,12 +101,12 @@ subroutine grid_thermal_spectral_init(T_0) !-------------------------------------------------------------------------------------------------- ! init fields - allocate(T_current(grid(1),grid(2),grid3), source=T_0) - allocate(T_lastInc(grid(1),grid(2),grid3), source=T_0) - allocate(T_stagInc(grid(1),grid(2),grid3), source=T_0) + allocate(T_current(cells(1),cells(2),cells3), source=T_0) + allocate(T_lastInc(cells(1),cells(2),cells3), source=T_0) + allocate(T_stagInc(cells(1),cells(2),cells3), source=T_0) ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 call homogenization_thermal_setField(T_0,0.0_pReal,ce) end do; end do; end do @@ -118,23 +118,23 @@ subroutine grid_thermal_spectral_init(T_0) call SNESSetOptionsPrefix(SNES_thermal,'thermal_',err_PETSc) CHKERRQ(err_PETSc) localK = 0_pPetscInt - localK(worldrank) = int(grid3,pPetscInt) + localK(worldrank) = int(cells3,pPetscInt) call MPI_Allreduce(MPI_IN_PLACE,localK,worldsize,MPI_INTEGER,MPI_SUM,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call DMDACreate3D(PETSC_COMM_WORLD, & DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point - int(grid(1),pPetscInt),int(grid(2),pPetscInt),int(grid(3),pPetscInt), & ! global grid + int(cells(1),pPetscInt),int(cells(2),pPetscInt),int(cells(3),pPetscInt), & ! global cells 1_pPetscInt, 1_pPetscInt, int(worldsize,pPetscInt), & 1_pPetscInt, 0_pPetscInt, & ! #dof (T, scalar), ghost boundary width (domain overlap) - [int(grid(1),pPetscInt)],[int(grid(2),pPetscInt)],localK, & ! local grid + [int(cells(1),pPetscInt)],[int(cells(2),pPetscInt)],localK, & ! local cells thermal_grid,err_PETSc) ! handle, error CHKERRQ(err_PETSc) call DMsetFromOptions(thermal_grid,err_PETSc) CHKERRQ(err_PETSc) call DMsetUp(thermal_grid,err_PETSc) CHKERRQ(err_PETSc) - call DMCreateGlobalVector(thermal_grid,solution_vec,err_PETSc) ! global solution vector (grid x 1, i.e. every def grad tensor) + call DMCreateGlobalVector(thermal_grid,solution_vec,err_PETSc) ! global solution vector (cells x 1, i.e. every def grad tensor) CHKERRQ(err_PETSc) call DMDASNESSetFunctionLocal(thermal_grid,INSERT_VALUES,formResidual,PETSC_NULL_SNES,err_PETSc) ! residual vector of same shape as solution vector CHKERRQ(err_PETSc) @@ -198,7 +198,7 @@ function grid_thermal_spectral_solution(Delta_t) result(solution) !-------------------------------------------------------------------------------------------------- ! updating thermal state ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 call homogenization_thermal_setField(T_current(i,j,k),(T_current(i,j,k)-T_lastInc(i,j,k))/params%Delta_t,ce) end do; end do; end do @@ -241,7 +241,7 @@ subroutine grid_thermal_spectral_forward(cutBack) call DMDAVecRestoreArrayF90(dm_local,solution_vec,T_PETSc,err_PETSc) CHKERRQ(err_PETSc) ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 call homogenization_thermal_setField(T_current(i,j,k),(T_current(i,j,k)-T_lastInc(i,j,k))/params%Delta_t,ce) end do; end do; end do @@ -274,12 +274,12 @@ subroutine formResidual(in,x_scal,r,dummy,err_PETSc) !-------------------------------------------------------------------------------------------------- ! evaluate polarization field scalarField_real = 0.0_pReal - scalarField_real(1:grid(1),1:grid(2),1:grid3) = T_current + scalarField_real(1:cells(1),1:cells(2),1:cells3) = T_current call utilities_FFTscalarForward call utilities_fourierScalarGradient !< calculate gradient of temperature field call utilities_FFTvectorBackward ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 vectorField_real(1:3,i,j,k) = matmul(homogenization_K_T(ce) - K_ref, vectorField_real(1:3,i,j,k)) end do; end do; end do @@ -287,7 +287,7 @@ subroutine formResidual(in,x_scal,r,dummy,err_PETSc) call utilities_fourierVectorDivergence !< calculate temperature divergence in fourier field call utilities_FFTscalarBackward ce = 0 - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1) + do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1) ce = ce + 1 scalarField_real(i,j,k) = params%Delta_t*(scalarField_real(i,j,k) + homogenization_f_T(ce)) & + homogenization_mu_T(ce) * (T_lastInc(i,j,k) - T_current(i,j,k)) & @@ -302,7 +302,7 @@ subroutine formResidual(in,x_scal,r,dummy,err_PETSc) !-------------------------------------------------------------------------------------------------- ! constructing residual - r = T_current - scalarField_real(1:grid(1),1:grid(2),1:grid3) + r = T_current - scalarField_real(1:cells(1),1:cells(2),1:cells3) err_PETSc = 0 end subroutine formResidual @@ -319,7 +319,7 @@ subroutine updateReference() K_ref = 0.0_pReal mu_ref = 0.0_pReal - do ce = 1, product(grid(1:2))*grid3 + do ce = 1, product(cells(1:2))*cells3 K_ref = K_ref + homogenization_K_T(ce) mu_ref = mu_ref + homogenization_mu_T(ce) end do diff --git a/src/grid/spectral_utilities.f90 b/src/grid/spectral_utilities.f90 index 25de88e3f..9e3da5e8d 100644 --- a/src/grid/spectral_utilities.f90 +++ b/src/grid/spectral_utilities.f90 @@ -29,9 +29,9 @@ module spectral_utilities include 'fftw3-mpi.f03' !-------------------------------------------------------------------------------------------------- -! grid related information information +! grid related information real(pReal), protected, public :: wgt !< weighting factor 1/Nelems - integer, protected, public :: grid1Red !< grid(1)/2 + integer, protected, public :: grid1Red !< cells(1)/2 real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence !-------------------------------------------------------------------------------------------------- @@ -201,8 +201,8 @@ subroutine spectral_utilities_init num_grid%get_asString('PETSc_options',defaultVal=''),err_PETSc) CHKERRQ(err_PETSc) - grid1Red = grid(1)/2 + 1 - wgt = 1.0/real(product(grid),pReal) + grid1Red = cells(1)/2 + 1 + wgt = 1.0/real(product(cells),pReal) num%memory_efficient = num_grid%get_asInt('memory_efficient', defaultVal=1) > 0 ! ToDo: should be logical in YAML file num%divergence_correction = num_grid%get_asInt('divergence_correction', defaultVal=2) @@ -231,9 +231,9 @@ subroutine spectral_utilities_init enddo elseif (num%divergence_correction == 2) then do j = 1, 3 - if ( j /= int(minloc(geomSize/real(grid,pReal),1)) & - .and. j /= int(maxloc(geomSize/real(grid,pReal),1))) & - scaledGeomSize = geomSize/geomSize(j)*real(grid(j),pReal) + if ( j /= int(minloc(geomSize/real(cells,pReal),1)) & + .and. j /= int(maxloc(geomSize/real(cells,pReal),1))) & + scaledGeomSize = geomSize/geomSize(j)*real(cells(j),pReal) enddo else scaledGeomSize = geomSize @@ -262,11 +262,11 @@ subroutine spectral_utilities_init !-------------------------------------------------------------------------------------------------- ! MPI allocation - gridFFTW = int(grid,C_INTPTR_T) + gridFFTW = int(cells,C_INTPTR_T) alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, & PETSC_COMM_WORLD, local_K, local_K_offset) - allocate (xi1st (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension - allocate (xi2nd (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension + allocate (xi1st (3,grid1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension + allocate (xi2nd (3,grid1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension tensorField = fftw_alloc_complex(tensorSize*alloc_local) call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, & @@ -327,27 +327,27 @@ subroutine spectral_utilities_init !-------------------------------------------------------------------------------------------------- ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) - do k = grid3Offset+1, grid3Offset+grid3 + do k = cells3Offset+1, cells3Offset+cells3 k_s(3) = k - 1 - if (k > grid(3)/2 + 1) k_s(3) = k_s(3) - grid(3) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 - do j = 1, grid(2) + if (k > cells(3)/2 + 1) k_s(3) = k_s(3) - cells(3) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 + do j = 1, cells(2) k_s(2) = j - 1 - if (j > grid(2)/2 + 1) k_s(2) = k_s(2) - grid(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 + if (j > cells(2)/2 + 1) k_s(2) = k_s(2) - cells(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 do i = 1, grid1Red k_s(1) = i - 1 ! symmetry, junst running from 0,1,...,N/2,N/2+1 - xi2nd(1:3,i,j,k-grid3Offset) = utilities_getFreqDerivative(k_s) - where(mod(grid,2)==0 .and. [i,j,k] == grid/2+1 .and. & + xi2nd(1:3,i,j,k-cells3Offset) = utilities_getFreqDerivative(k_s) + where(mod(cells,2)==0 .and. [i,j,k] == cells/2+1 .and. & spectral_derivative_ID == DERIVATIVE_CONTINUOUS_ID) ! for even grids, set the Nyquist Freq component to 0.0 - xi1st(1:3,i,j,k-grid3Offset) = cmplx(0.0_pReal,0.0_pReal,pReal) + xi1st(1:3,i,j,k-cells3Offset) = cmplx(0.0_pReal,0.0_pReal,pReal) elsewhere - xi1st(1:3,i,j,k-grid3Offset) = xi2nd(1:3,i,j,k-grid3Offset) + xi1st(1:3,i,j,k-cells3Offset) = xi2nd(1:3,i,j,k-cells3Offset) endwhere enddo; enddo; enddo - if (num%memory_efficient) then ! allocate just single fourth order tensor + if (num%memory_efficient) then ! allocate just single fourth order tensor allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal)) else ! precalculation of gamma_hat field - allocate (gamma_hat(3,3,3,3,grid1Red,grid(2),grid3), source = cmplx(0.0_pReal,0.0_pReal,pReal)) + allocate (gamma_hat(3,3,3,3,grid1Red,cells(2),cells3), source = cmplx(0.0_pReal,0.0_pReal,pReal)) endif end subroutine spectral_utilities_init @@ -373,10 +373,10 @@ subroutine utilities_updateGamma(C) if (.not. num%memory_efficient) then gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A - do k = grid3Offset+1, grid3Offset+grid3; do j = 1, grid(2); do i = 1, grid1Red + do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, grid1Red if (any([i,j,k] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 do concurrent (l = 1:3, m = 1:3) - xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-grid3Offset))*xi1st(m,i,j,k-grid3Offset) + xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset) end do do concurrent(l = 1:3, m = 1:3) temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx) @@ -387,8 +387,8 @@ subroutine utilities_updateGamma(C) call math_invert(A_inv, err, A) temp33_complex = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal) do concurrent(l=1:3, m=1:3, n=1:3, o=1:3) - gamma_hat(l,m,n,o,i,j,k-grid3Offset) = temp33_complex(l,n)* & - conjg(-xi1st(o,i,j,k-grid3Offset))*xi1st(m,i,j,k-grid3Offset) + gamma_hat(l,m,n,o,i,j,k-cells3Offset) = temp33_complex(l,n)* & + conjg(-xi1st(o,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset) end do end if end if @@ -405,7 +405,7 @@ end subroutine utilities_updateGamma !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTtensorForward - tensorField_real(1:3,1:3,grid(1)+1:grid1Red*2,:,:) = 0.0_pReal + tensorField_real(1:3,1:3,cells(1)+1:grid1Red*2,:,:) = 0.0_pReal call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier) end subroutine utilities_FFTtensorForward @@ -429,7 +429,7 @@ end subroutine utilities_FFTtensorBackward !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTscalarForward - scalarField_real(grid(1)+1:grid1Red*2,:,:) = 0.0_pReal + scalarField_real(cells(1)+1:grid1Red*2,:,:) = 0.0_pReal call fftw_mpi_execute_dft_r2c(planScalarForth,scalarField_real,scalarField_fourier) end subroutine utilities_FFTscalarForward @@ -454,7 +454,7 @@ end subroutine utilities_FFTscalarBackward !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTvectorForward - vectorField_real(1:3,grid(1)+1:grid1Red*2,:,:) = 0.0_pReal + vectorField_real(1:3,cells(1)+1:grid1Red*2,:,:) = 0.0_pReal call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier) end subroutine utilities_FFTvectorForward @@ -493,8 +493,8 @@ subroutine utilities_fourierGammaConvolution(fieldAim) !-------------------------------------------------------------------------------------------------- ! do the actual spectral method calculation (mechanical equilibrium) memoryEfficient: if (num%memory_efficient) then - do k = 1, grid3; do j = 1, grid(2); do i = 1, grid1Red - if (any([i,j,k+grid3Offset] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 + do k = 1, cells3; do j = 1, cells(2); do i = 1, grid1Red + if (any([i,j,k+cells3Offset] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 do concurrent(l = 1:3, m = 1:3) xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k) end do @@ -519,7 +519,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim) end if end do; end do; end do else memoryEfficient - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red + do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red do concurrent(l = 1:3, m = 1:3) temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k) * tensorField_fourier(1:3,1:3,i,j,k)) end do @@ -527,7 +527,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim) end do; end do; end do end if memoryEfficient - if (grid3Offset == 0) tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal) + if (cells3Offset == 0) tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal) end subroutine utilities_fourierGammaConvolution @@ -544,7 +544,7 @@ subroutine utilities_fourierGreenConvolution(D_ref, mu_ref, Delta_t) !-------------------------------------------------------------------------------------------------- ! do the actual spectral method calculation - do k = 1, grid3; do j = 1, grid(2) ;do i = 1, grid1Red + do k = 1, cells3; do j = 1, cells(2) ;do i = 1, grid1Red GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal) & / (cmplx(mu_ref,0.0_pReal,pReal) + cmplx(Delta_t,0.0_pReal) & * sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k)))) @@ -571,7 +571,7 @@ real(pReal) function utilities_divergenceRMS() !-------------------------------------------------------------------------------------------------- ! calculating RMS divergence criterion in Fourier space utilities_divergenceRMS = 0.0_pReal - do k = 1, grid3; do j = 1, grid(2) + do k = 1, cells3; do j = 1, cells(2) do i = 2, grid1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice. utilities_divergenceRMS = utilities_divergenceRMS & + 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k), & ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2, i.e. do not take square root and square again @@ -579,7 +579,7 @@ real(pReal) function utilities_divergenceRMS() +sum(aimag(matmul(tensorField_fourier(1:3,1:3,i,j,k),& conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2)) enddo - utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1) + utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if cells(1) /= 1) + sum( real(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), & conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) & + sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), & @@ -589,7 +589,7 @@ real(pReal) function utilities_divergenceRMS() + sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), & conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2) enddo; enddo - if (grid(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1 + if (cells(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of cells(1) == 1 call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space @@ -616,7 +616,7 @@ real(pReal) function utilities_curlRMS() ! calculating max curl criterion in Fourier space utilities_curlRMS = 0.0_pReal - do k = 1, grid3; do j = 1, grid(2); + do k = 1, cells3; do j = 1, cells(2); do i = 2, grid1Red - 1 do l = 1, 3 curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) & @@ -638,7 +638,7 @@ real(pReal) function utilities_curlRMS() -tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2)) enddo utilities_curlRMS = utilities_curlRMS & - + sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1) + + sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (DC) does not have a conjugate complex counterpart (if cells(1) /= 1) do l = 1, 3 curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) & -tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3)) @@ -648,13 +648,13 @@ real(pReal) function utilities_curlRMS() -tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2)) enddo utilities_curlRMS = utilities_curlRMS & - + sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1) + + sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (Nyquist) does not have a conjugate complex counterpart (if cells(1) /= 1) enddo; enddo call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' utilities_curlRMS = sqrt(utilities_curlRMS) * wgt - if (grid(1) == 1) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1 + if (cells(1) == 1) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of cells(1) == 1 end function utilities_curlRMS @@ -736,7 +736,7 @@ subroutine utilities_fourierScalarGradient() integer :: i, j, k - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red + do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) ! ToDo: no -conjg? enddo; enddo; enddo @@ -750,7 +750,7 @@ subroutine utilities_fourierVectorDivergence() integer :: i, j, k - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red + do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red scalarField_fourier(i,j,k) = sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k))) enddo; enddo; enddo @@ -764,7 +764,7 @@ subroutine utilities_fourierVectorGradient() integer :: i, j, k, m, n - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red + do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red do m = 1, 3; do n = 1, 3 tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k) enddo; enddo @@ -780,7 +780,7 @@ subroutine utilities_fourierTensorDivergence() integer :: i, j, k - do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red + do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red vectorField_fourier(:,i,j,k) = matmul(tensorField_fourier(:,:,i,j,k),conjg(-xi1st(:,i,j,k))) enddo; enddo; enddo @@ -795,8 +795,8 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,& real(pReal), intent(out), dimension(3,3,3,3) :: C_volAvg, C_minmaxAvg !< average stiffness real(pReal), intent(out), dimension(3,3) :: P_av !< average PK stress - real(pReal), intent(out), dimension(3,3,grid(1),grid(2),grid3) :: P !< PK stress - real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: F !< deformation gradient target + real(pReal), intent(out), dimension(3,3,cells(1),cells(2),cells3) :: P !< PK stress + real(pReal), intent(in), dimension(3,3,cells(1),cells(2),cells3) :: F !< deformation gradient target real(pReal), intent(in) :: Delta_t !< loading time type(rotation), intent(in), optional :: rotation_BC !< rotation of load frame @@ -810,15 +810,15 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,& print'(/,1x,a)', '... evaluating constitutive response ......................................' flush(IO_STDOUT) - homogenization_F = reshape(F,[3,3,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field + homogenization_F = reshape(F,[3,3,product(cells(1:2))*cells3]) ! set materialpoint target F to estimated field - call homogenization_mechanical_response(Delta_t,[1,1],[1,product(grid(1:2))*grid3]) ! calculate P field + call homogenization_mechanical_response(Delta_t,[1,1],[1,product(cells(1:2))*cells3]) ! calculate P field if (.not. terminallyIll) & - call homogenization_thermal_response(Delta_t,[1,1],[1,product(grid(1:2))*grid3]) + call homogenization_thermal_response(Delta_t,[1,1],[1,product(cells(1:2))*cells3]) if (.not. terminallyIll) & - call homogenization_mechanical_response2(Delta_t,[1,1],[1,product(grid(1:2))*grid3]) + call homogenization_mechanical_response2(Delta_t,[1,1],[1,product(cells(1:2))*cells3]) - P = reshape(homogenization_P, [3,3,grid(1),grid(2),grid3]) + P = reshape(homogenization_P, [3,3,cells(1),cells(2),cells3]) P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt call MPI_Allreduce(MPI_IN_PLACE,P_av,9_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' @@ -833,7 +833,7 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,& dPdF_norm_max = 0.0_pReal dPdF_min = huge(1.0_pReal) dPdF_norm_min = huge(1.0_pReal) - do i = 1, product(grid(1:2))*grid3 + do i = 1, product(cells(1:2))*cells3 if (dPdF_norm_max < sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2)) then dPdF_max = homogenization_dPdF(1:3,1:3,1:3,1:3,i) dPdF_norm_max = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2) @@ -878,16 +878,16 @@ pure function utilities_calculateRate(heterogeneous,field0,field,dt,avRate) dt !< Delta_t between field0 and field logical, intent(in) :: & heterogeneous !< calculate field of rates - real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: & + real(pReal), intent(in), dimension(3,3,cells(1),cells(2),cells3) :: & field0, & !< data of previous step field !< data of current step - real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: & + real(pReal), dimension(3,3,cells(1),cells(2),cells3) :: & utilities_calculateRate if (heterogeneous) then utilities_calculateRate = (field-field0) / dt else - utilities_calculateRate = spread(spread(spread(avRate,3,grid(1)),4,grid(2)),5,grid3) + utilities_calculateRate = spread(spread(spread(avRate,3,cells(1)),4,cells(2)),5,cells3) endif end function utilities_calculateRate @@ -901,12 +901,12 @@ function utilities_forwardField(Delta_t,field_lastInc,rate,aim) real(pReal), intent(in) :: & Delta_t !< Delta_t of current step - real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: & + real(pReal), intent(in), dimension(3,3,cells(1),cells(2),cells3) :: & field_lastInc, & !< initial field rate !< rate by which to forward real(pReal), intent(in), optional, dimension(3,3) :: & aim !< average field value aim - real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: & + real(pReal), dimension(3,3,cells(1),cells(2),cells3) :: & utilities_forwardField real(pReal), dimension(3,3) :: fieldDiff !< - aim integer(MPI_INTEGER_KIND) :: err_MPI @@ -918,7 +918,7 @@ function utilities_forwardField(Delta_t,field_lastInc,rate,aim) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' fieldDiff = fieldDiff - aim utilities_forwardField = utilities_forwardField - & - spread(spread(spread(fieldDiff,3,grid(1)),4,grid(2)),5,grid3) + spread(spread(spread(fieldDiff,3,cells(1)),4,cells(2)),5,cells3) endif end function utilities_forwardField @@ -939,34 +939,34 @@ pure function utilities_getFreqDerivative(k_s) utilities_getFreqDerivative = cmplx(0.0_pReal, TAU*real(k_s,pReal)/geomSize,pReal) case (DERIVATIVE_CENTRAL_DIFF_ID) - utilities_getFreqDerivative = cmplx(0.0_pReal, sin(TAU*real(k_s,pReal)/real(grid,pReal)), pReal)/ & - cmplx(2.0_pReal*geomSize/real(grid,pReal), 0.0_pReal, pReal) + utilities_getFreqDerivative = cmplx(0.0_pReal, sin(TAU*real(k_s,pReal)/real(cells,pReal)), pReal)/ & + cmplx(2.0_pReal*geomSize/real(cells,pReal), 0.0_pReal, pReal) case (DERIVATIVE_FWBW_DIFF_ID) utilities_getFreqDerivative(1) = & - cmplx(cos(TAU*real(k_s(1),pReal)/real(grid(1),pReal)) - 1.0_pReal, & - sin(TAU*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & - cmplx(cos(TAU*real(k_s(2),pReal)/real(grid(2),pReal)) + 1.0_pReal, & - sin(TAU*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & - cmplx(cos(TAU*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, & - sin(TAU*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & - cmplx(4.0_pReal*geomSize(1)/real(grid(1),pReal), 0.0_pReal, pReal) + cmplx(cos(TAU*real(k_s(1),pReal)/real(cells(1),pReal)) - 1.0_pReal, & + sin(TAU*real(k_s(1),pReal)/real(cells(1),pReal)), pReal)* & + cmplx(cos(TAU*real(k_s(2),pReal)/real(cells(2),pReal)) + 1.0_pReal, & + sin(TAU*real(k_s(2),pReal)/real(cells(2),pReal)), pReal)* & + cmplx(cos(TAU*real(k_s(3),pReal)/real(cells(3),pReal)) + 1.0_pReal, & + sin(TAU*real(k_s(3),pReal)/real(cells(3),pReal)), pReal)/ & + cmplx(4.0_pReal*geomSize(1)/real(cells(1),pReal), 0.0_pReal, pReal) utilities_getFreqDerivative(2) = & - cmplx(cos(TAU*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, & - sin(TAU*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & - cmplx(cos(TAU*real(k_s(2),pReal)/real(grid(2),pReal)) - 1.0_pReal, & - sin(TAU*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & - cmplx(cos(TAU*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, & - sin(TAU*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & - cmplx(4.0_pReal*geomSize(2)/real(grid(2),pReal), 0.0_pReal, pReal) + cmplx(cos(TAU*real(k_s(1),pReal)/real(cells(1),pReal)) + 1.0_pReal, & + sin(TAU*real(k_s(1),pReal)/real(cells(1),pReal)), pReal)* & + cmplx(cos(TAU*real(k_s(2),pReal)/real(cells(2),pReal)) - 1.0_pReal, & + sin(TAU*real(k_s(2),pReal)/real(cells(2),pReal)), pReal)* & + cmplx(cos(TAU*real(k_s(3),pReal)/real(cells(3),pReal)) + 1.0_pReal, & + sin(TAU*real(k_s(3),pReal)/real(cells(3),pReal)), pReal)/ & + cmplx(4.0_pReal*geomSize(2)/real(cells(2),pReal), 0.0_pReal, pReal) utilities_getFreqDerivative(3) = & - cmplx(cos(TAU*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, & - sin(TAU*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & - cmplx(cos(TAU*real(k_s(2),pReal)/real(grid(2),pReal)) + 1.0_pReal, & - sin(TAU*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & - cmplx(cos(TAU*real(k_s(3),pReal)/real(grid(3),pReal)) - 1.0_pReal, & - sin(TAU*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & - cmplx(4.0_pReal*geomSize(3)/real(grid(3),pReal), 0.0_pReal, pReal) + cmplx(cos(TAU*real(k_s(1),pReal)/real(cells(1),pReal)) + 1.0_pReal, & + sin(TAU*real(k_s(1),pReal)/real(cells(1),pReal)), pReal)* & + cmplx(cos(TAU*real(k_s(2),pReal)/real(cells(2),pReal)) + 1.0_pReal, & + sin(TAU*real(k_s(2),pReal)/real(cells(2),pReal)), pReal)* & + cmplx(cos(TAU*real(k_s(3),pReal)/real(cells(3),pReal)) - 1.0_pReal, & + sin(TAU*real(k_s(3),pReal)/real(cells(3),pReal)), pReal)/ & + cmplx(4.0_pReal*geomSize(3)/real(cells(3),pReal), 0.0_pReal, pReal) end select end function utilities_getFreqDerivative @@ -979,10 +979,10 @@ end function utilities_getFreqDerivative !-------------------------------------------------------------------------------------------------- subroutine utilities_updateCoords(F) - real(pReal), dimension(3,3,grid(1),grid(2),grid3), intent(in) :: F - real(pReal), dimension(3, grid(1),grid(2),grid3) :: IPcoords - real(pReal), dimension(3, grid(1),grid(2),grid3+2) :: IPfluct_padded ! Fluctuations of cell center displacement (padded along z for MPI) - real(pReal), dimension(3, grid(1)+1,grid(2)+1,grid3+1) :: nodeCoords + real(pReal), dimension(3,3,cells(1),cells(2),cells3), intent(in) :: F + real(pReal), dimension(3, cells(1),cells(2),cells3) :: IPcoords + real(pReal), dimension(3, cells(1),cells(2),cells3+2) :: IPfluct_padded ! Fluctuations of cell center displacement (padded along z for MPI) + real(pReal), dimension(3, cells(1)+1,cells(2)+1,cells3+1) :: nodeCoords integer :: & i,j,k,n, & c @@ -1010,14 +1010,14 @@ subroutine utilities_updateCoords(F) 1, 1, 1, & 0, 1, 1 ], [3,8]) - step = geomSize/real(grid, pReal) + step = geomSize/real(cells, pReal) !-------------------------------------------------------------------------------------------------- ! integration in Fourier space to get fluctuations of cell center discplacements - tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = F + tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) = F call utilities_FFTtensorForward() - do k = 1, grid3; do j = 1, grid(2); do i = 1, grid1Red - if (any([i,j,k+grid3Offset] /= 1)) then + do k = 1, cells3; do j = 1, cells(2); do i = 1, grid1Red + if (any([i,j,k+cells3Offset] /= 1)) then vectorField_fourier(1:3,i,j,k) = matmul(tensorField_fourier(1:3,1:3,i,j,k),xi2nd(1:3,i,j,k)) & / sum(conjg(-xi2nd(1:3,i,j,k))*xi2nd(1:3,i,j,k)) * cmplx(wgt,0.0,pReal) else @@ -1029,25 +1029,25 @@ subroutine utilities_updateCoords(F) !-------------------------------------------------------------------------------------------------- ! average F - if (grid3Offset == 0) Favg = real(tensorField_fourier(1:3,1:3,1,1,1),pReal)*wgt + if (cells3Offset == 0) Favg = real(tensorField_fourier(1:3,1:3,1,1,1),pReal)*wgt call MPI_Bcast(Favg,9_MPI_INTEGER_KIND,MPI_DOUBLE,0_MPI_INTEGER_KIND,MPI_COMM_WORLD,err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' !-------------------------------------------------------------------------------------------------- ! pad cell center fluctuations along z-direction (needed when running MPI simulation) - IPfluct_padded(1:3,1:grid(1),1:grid(2),2:grid3+1) = vectorField_real(1:3,1:grid(1),1:grid(2),1:grid3) - c = product(shape(IPfluct_padded(:,:,:,1))) !< amount of data to transfer + IPfluct_padded(1:3,1:cells(1),1:cells(2),2:cells3+1) = vectorField_real(1:3,1:cells(1),1:cells(2),1:cells3) + c = product(shape(IPfluct_padded(:,:,:,1))) !< amount of data to transfer rank_t = modulo(worldrank+1_MPI_INTEGER_KIND,worldsize) rank_b = modulo(worldrank-1_MPI_INTEGER_KIND,worldsize) ! send bottom layer to process below call MPI_Isend(IPfluct_padded(:,:,:,2), c,MPI_DOUBLE,rank_b,0_MPI_INTEGER_KIND,MPI_COMM_WORLD,request(1),err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' - call MPI_Irecv(IPfluct_padded(:,:,:,grid3+2),c,MPI_DOUBLE,rank_t,0_MPI_INTEGER_KIND,MPI_COMM_WORLD,request(2),err_MPI) + call MPI_Irecv(IPfluct_padded(:,:,:,cells3+2),c,MPI_DOUBLE,rank_t,0_MPI_INTEGER_KIND,MPI_COMM_WORLD,request(2),err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' ! send top layer to process above - call MPI_Isend(IPfluct_padded(:,:,:,grid3+1),c,MPI_DOUBLE,rank_t,1_MPI_INTEGER_KIND,MPI_COMM_WORLD,request(3),err_MPI) + call MPI_Isend(IPfluct_padded(:,:,:,cells3+1),c,MPI_DOUBLE,rank_t,1_MPI_INTEGER_KIND,MPI_COMM_WORLD,request(3),err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' call MPI_Irecv(IPfluct_padded(:,:,:,1), c,MPI_DOUBLE,rank_b,1_MPI_INTEGER_KIND,MPI_COMM_WORLD,request(4),err_MPI) if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error' @@ -1063,24 +1063,24 @@ subroutine utilities_updateCoords(F) !-------------------------------------------------------------------------------------------------- ! calculate nodal displacements nodeCoords = 0.0_pReal - do k = 0,grid3; do j = 0,grid(2); do i = 0,grid(1) - nodeCoords(1:3,i+1,j+1,k+1) = matmul(Favg,step*(real([i,j,k+grid3Offset],pReal))) + do k = 0,cells3; do j = 0,cells(2); do i = 0,cells(1) + nodeCoords(1:3,i+1,j+1,k+1) = matmul(Favg,step*(real([i,j,k+cells3Offset],pReal))) averageFluct: do n = 1,8 me = [i+neighbor(1,n),j+neighbor(2,n),k+neighbor(3,n)] nodeCoords(1:3,i+1,j+1,k+1) = nodeCoords(1:3,i+1,j+1,k+1) & - + IPfluct_padded(1:3,modulo(me(1)-1,grid(1))+1,modulo(me(2)-1,grid(2))+1,me(3)+1)*0.125_pReal + + IPfluct_padded(1:3,modulo(me(1)-1,cells(1))+1,modulo(me(2)-1,cells(2))+1,me(3)+1)*0.125_pReal enddo averageFluct enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! calculate cell center displacements - do k = 1,grid3; do j = 1,grid(2); do i = 1,grid(1) + do k = 1,cells3; do j = 1,cells(2); do i = 1,cells(1) IPcoords(1:3,i,j,k) = vectorField_real(1:3,i,j,k) & - + matmul(Favg,step*(real([i,j,k+grid3Offset],pReal)-0.5_pReal)) + + matmul(Favg,step*(real([i,j,k+cells3Offset],pReal)-0.5_pReal)) enddo; enddo; enddo - call discretization_setNodeCoords(reshape(NodeCoords,[3,(grid(1)+1)*(grid(2)+1)*(grid3+1)])) - call discretization_setIPcoords (reshape(IPcoords, [3,grid(1)*grid(2)*grid3])) + call discretization_setNodeCoords(reshape(NodeCoords,[3,(cells(1)+1)*(cells(2)+1)*(cells3+1)])) + call discretization_setIPcoords (reshape(IPcoords, [3,cells(1)*cells(2)*cells3])) end subroutine utilities_updateCoords