functionality to add field data on regular grids

allows to add curl, divergence, and gradient to results from the grid
solver
This commit is contained in:
Martin Diehl 2021-05-28 13:25:28 +02:00
parent e431d89957
commit 46dc6b4dab
2 changed files with 164 additions and 2 deletions

View File

@ -110,6 +110,10 @@ class Result:
self.size = f['geometry'].attrs['size']
self.origin = f['geometry'].attrs['origin']
self.add_divergence = self._add_divergence
self.add_curl = self._add_curl
self.add_gradient = self._add_gradient
r=re.compile('increment_[0-9]+')
self.increments = sorted([i for i in f.keys() if r.match(i)],key=util.natural_sort)
self.times = [round(f[i].attrs['t/s'],12) for i in self.increments]
@ -1127,7 +1131,7 @@ class Result:
'meta': {
'unit': F['meta']['unit'],
'description': f"{'left' if t.upper() == 'V' else 'right'} stretch tensor "\
+f"of {F['label']} ({F['meta']['description']})",
+f"of {F['label']} ({F['meta']['description']})", # noqa
'creator': 'add_stretch_tensor'
}
}
@ -1147,6 +1151,132 @@ class Result:
self._add_generic_pointwise(self._add_stretch_tensor,{'F':F},{'t':t})
@staticmethod
def _add_curl_(f,size):
return {
'data': grid_filters.curl(size,f['data']),
'label': f"curl({f['label']})",
'meta': {
'unit': f['meta']['unit']+'/m',
'description': f"curl of {f['label']} ({f['meta']['description']})",
'creator': 'add_curl'
}
}
def _add_curl(self,f):
"""
Add curl of a field.
Parameters
----------
f : str
Name of vector or tensor field dataset.
"""
self._add_generic_grid(self._add_curl_,{'f':f},{'size':self.size})
@staticmethod
def _add_divergence_(f,size):
return {
'data': grid_filters.divergence(size,f['data']),
'label': f"divergence({f['label']})",
'meta': {
'unit': f['meta']['unit']+'/m',
'description': f"divergence of {f['label']} ({f['meta']['description']})",
'creator': 'add_divergence'
}
}
def _add_divergence(self,f):
"""
Add divergence of a field.
Parameters
----------
f : str
Name of vector or tensor field dataset.
"""
self._add_generic_grid(self._add_divergence_,{'f':f},{'size':self.size})
@staticmethod
def _add_gradient_(f,size):
return {
'data': grid_filters.gradient(size,f['data'] if len(f['data'].shape) == 4 else \
f['data'].reshape(f['data'].shape+(1,))),
'label': f"gradient({f['label']})",
'meta': {
'unit': f['meta']['unit']+'/m',
'description': f"gradient of {f['label']} ({f['meta']['description']})",
'creator': 'add_gradient'
}
}
def _add_gradient(self,f):
"""
Add gradient of a field.
Parameters
----------
f : str
Name of scalar or vector field dataset.
"""
self._add_generic_grid(self._add_gradient_,{'f':f},{'size':self.size})
def _add_generic_grid(self,func,datasets,args={},constituents=None):
"""
General function to add data on a regular grid.
Parameters
----------
func : function
Callback function that calculates a new dataset from one or
more datasets per HDF5 group.
datasets : dictionary
Details of the datasets to be used:
{arg (name to which the data is passed in func): label (in HDF5 file)}.
args : dictionary, optional
Arguments parsed to func.
"""
if len(datasets) != 1 or self.N_constituents !=1:
raise NotImplementedError
at_cell_ph,in_data_ph,at_cell_ho,in_data_ho = self._mappings()
with h5py.File(self.fname, 'a') as f:
for increment in self.place(datasets.values(),False).items():
for ty in increment[1].items():
for field in ty[1].items():
d = list(field[1].values())[0]
if np.any(d.mask): continue
dataset = {'f':{'data':np.reshape(d.data,tuple(self.cells)+d.data.shape[1:]),
'label':list(datasets.values())[0],
'meta':d.data.dtype.metadata}}
r = func(**dataset,**args)
result = r['data'].reshape((-1,)+r['data'].shape[3:])
for x in self.visible[ty[0]+'s']:
if ty[0] == 'phase':
result1 = result[at_cell_ph[0][x]]
if ty[0] == 'homogenization':
result1 = result[at_cell_ho[x]]
path = '/'.join(['/',increment[0],ty[0],x,field[0]])
dataset = f[path].create_dataset(r['label'],data=result1)
now = datetime.datetime.now().astimezone()
dataset.attrs['created'] = now.strftime('%Y-%m-%d %H:%M:%S%z') if h5py3 else \
now.strftime('%Y-%m-%d %H:%M:%S%z').encode()
for l,v in r['meta'].items():
dataset.attrs[l.lower()]=v if h5py3 else v.encode()
creator = dataset.attrs['creator'] if h5py3 else \
dataset.attrs['creator'].decode()
dataset.attrs['creator'] = f'damask.Result.{creator} v{damask.version}' if h5py3 else \
f'damask.Result.{creator} v{damask.version}'.encode()
def _job_pointwise(self,group,func,datasets,args,lock):
"""Execute job for _add_generic_pointwise."""
try:
@ -1163,7 +1293,7 @@ class Result:
return [group,r]
except Exception as err:
print(f'Error during calculation: {err}.')
return None
return [None,None]
def _add_generic_pointwise(self,func,datasets,args={}):
"""

View File

@ -269,6 +269,38 @@ class TestResult:
with pytest.raises(TypeError):
default.add_calculation('#invalid#*2')
@pytest.mark.parametrize('shape',['vector','tensor'])
def test_add_curl(self,default,shape):
if shape == 'vector': default.add_calculation('#F#[:,:,0]','x','1','just a vector')
if shape == 'tensor': default.add_calculation('#F#[:,:,:]','x','1','just a tensor')
x = default.place('x')
default.add_curl('x')
in_file = default.place('curl(x)')
in_memory = grid_filters.curl(default.size,x.reshape(tuple(default.cells)+x.shape[1:])).reshape(in_file.shape)
assert (in_file==in_memory).all()
@pytest.mark.parametrize('shape',['vector','tensor'])
def test_add_divergence(self,default,shape):
if shape == 'vector': default.add_calculation('#F#[:,:,0]','x','1','just a vector')
if shape == 'tensor': default.add_calculation('#F#[:,:,:]','x','1','just a tensor')
x = default.place('x')
default.add_divergence('x')
in_file = default.place('divergence(x)')
in_memory = grid_filters.divergence(default.size,x.reshape(tuple(default.cells)+x.shape[1:])).reshape(in_file.shape)
assert (in_file==in_memory).all()
@pytest.mark.parametrize('shape',['scalar','pseudo_scalar','vector'])
def test_add_gradient(self,default,shape):
if shape == 'pseudo_scalar': default.add_calculation('#F#[:,0,0:1]','x','1','a pseudo scalar')
if shape == 'scalar': default.add_calculation('#F#[:,0,0]','x','1','just a scalar')
if shape == 'vector': default.add_calculation('#F#[:,:,1]','x','1','just a vector')
x = default.place('x').reshape((np.product(default.cells),-1))
default.add_gradient('x')
in_file = default.place('gradient(x)')
in_memory = grid_filters.gradient(default.size,x.reshape(tuple(default.cells)+x.shape[1:])).reshape(in_file.shape)
assert (in_file==in_memory).all()
@pytest.mark.parametrize('overwrite',['off','on'])
def test_add_overwrite(self,default,overwrite):
last = default.view('increments',-1)