missing rename grid -> cells

This commit is contained in:
Martin Diehl 2022-02-14 08:32:48 +01:00
parent 61e11a0529
commit 466682e978
1 changed files with 31 additions and 31 deletions

View File

@ -31,7 +31,7 @@ module spectral_utilities
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! grid related information ! grid related information
real(pReal), protected, public :: wgt !< weighting factor 1/Nelems real(pReal), protected, public :: wgt !< weighting factor 1/Nelems
integer, protected, public :: grid1Red !< cells(1)/2 integer, protected, public :: cells1Red !< cells(1)/2
real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -201,7 +201,7 @@ subroutine spectral_utilities_init
num_grid%get_asString('PETSc_options',defaultVal=''),err_PETSc) num_grid%get_asString('PETSc_options',defaultVal=''),err_PETSc)
CHKERRQ(err_PETSc) CHKERRQ(err_PETSc)
grid1Red = cells(1)/2 + 1 cells1Red = cells(1)/2 + 1
wgt = 1.0/real(product(cells),pReal) wgt = 1.0/real(product(cells),pReal)
num%memory_efficient = num_grid%get_asInt('memory_efficient', defaultVal=1) > 0 ! ToDo: should be logical in YAML file num%memory_efficient = num_grid%get_asInt('memory_efficient', defaultVal=1) > 0 ! ToDo: should be logical in YAML file
@ -265,8 +265,8 @@ subroutine spectral_utilities_init
gridFFTW = int(cells,C_INTPTR_T) gridFFTW = int(cells,C_INTPTR_T)
alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, & alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, &
PETSC_COMM_WORLD, local_K, local_K_offset) PETSC_COMM_WORLD, local_K, local_K_offset)
allocate (xi1st (3,grid1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension allocate (xi1st (3,cells1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension
allocate (xi2nd (3,grid1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension allocate (xi2nd (3,cells1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension
tensorField = fftw_alloc_complex(tensorSize*alloc_local) tensorField = fftw_alloc_complex(tensorSize*alloc_local)
call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, & call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, &
@ -333,7 +333,7 @@ subroutine spectral_utilities_init
do j = 1, cells(2) do j = 1, cells(2)
k_s(2) = j - 1 k_s(2) = j - 1
if (j > cells(2)/2 + 1) k_s(2) = k_s(2) - cells(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 if (j > cells(2)/2 + 1) k_s(2) = k_s(2) - cells(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
do i = 1, grid1Red do i = 1, cells1Red
k_s(1) = i - 1 ! symmetry, junst running from 0,1,...,N/2,N/2+1 k_s(1) = i - 1 ! symmetry, junst running from 0,1,...,N/2,N/2+1
xi2nd(1:3,i,j,k-cells3Offset) = utilities_getFreqDerivative(k_s) xi2nd(1:3,i,j,k-cells3Offset) = utilities_getFreqDerivative(k_s)
where(mod(cells,2)==0 .and. [i,j,k] == cells/2+1 .and. & where(mod(cells,2)==0 .and. [i,j,k] == cells/2+1 .and. &
@ -347,7 +347,7 @@ subroutine spectral_utilities_init
if (num%memory_efficient) then ! allocate just single fourth order tensor if (num%memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal)) allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal))
else ! precalculation of gamma_hat field else ! precalculation of gamma_hat field
allocate (gamma_hat(3,3,3,3,grid1Red,cells(2),cells3), source = cmplx(0.0_pReal,0.0_pReal,pReal)) allocate (gamma_hat(3,3,3,3,cells1Red,cells(2),cells3), source = cmplx(0.0_pReal,0.0_pReal,pReal))
endif endif
end subroutine spectral_utilities_init end subroutine spectral_utilities_init
@ -374,7 +374,7 @@ subroutine utilities_updateGamma(C)
if (.not. num%memory_efficient) then if (.not. num%memory_efficient) then
gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A
!$OMP PARALLEL DO PRIVATE(l,m,n,o,temp33_cmplx,xiDyad_cmplx,A,A_inv,err) !$OMP PARALLEL DO PRIVATE(l,m,n,o,temp33_cmplx,xiDyad_cmplx,A,A_inv,err)
do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, grid1Red do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, cells1Red
if (any([i,j,k] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 if (any([i,j,k] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
do concurrent (l = 1:3, m = 1:3) do concurrent (l = 1:3, m = 1:3)
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset) xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset)
@ -406,7 +406,7 @@ end subroutine utilities_updateGamma
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_FFTtensorForward subroutine utilities_FFTtensorForward
tensorField_real(1:3,1:3,cells(1)+1:grid1Red*2,:,:) = 0.0_pReal tensorField_real(1:3,1:3,cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier) call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier)
end subroutine utilities_FFTtensorForward end subroutine utilities_FFTtensorForward
@ -430,7 +430,7 @@ end subroutine utilities_FFTtensorBackward
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_FFTscalarForward subroutine utilities_FFTscalarForward
scalarField_real(cells(1)+1:grid1Red*2,:,:) = 0.0_pReal scalarField_real(cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
call fftw_mpi_execute_dft_r2c(planScalarForth,scalarField_real,scalarField_fourier) call fftw_mpi_execute_dft_r2c(planScalarForth,scalarField_real,scalarField_fourier)
end subroutine utilities_FFTscalarForward end subroutine utilities_FFTscalarForward
@ -455,7 +455,7 @@ end subroutine utilities_FFTscalarBackward
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine utilities_FFTvectorForward subroutine utilities_FFTvectorForward
vectorField_real(1:3,cells(1)+1:grid1Red*2,:,:) = 0.0_pReal vectorField_real(1:3,cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier) call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier)
end subroutine utilities_FFTvectorForward end subroutine utilities_FFTvectorForward
@ -495,7 +495,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
! do the actual spectral method calculation (mechanical equilibrium) ! do the actual spectral method calculation (mechanical equilibrium)
memoryEfficient: if (num%memory_efficient) then memoryEfficient: if (num%memory_efficient) then
!$OMP PARALLEL DO PRIVATE(l,m,n,o,temp33_cmplx,xiDyad_cmplx,A,A_inv,err,gamma_hat) !$OMP PARALLEL DO PRIVATE(l,m,n,o,temp33_cmplx,xiDyad_cmplx,A,A_inv,err,gamma_hat)
do k = 1, cells3; do j = 1, cells(2); do i = 1, grid1Red do k = 1, cells3; do j = 1, cells(2); do i = 1, cells1Red
if (any([i,j,k+cells3Offset] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 if (any([i,j,k+cells3Offset] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
do concurrent(l = 1:3, m = 1:3) do concurrent(l = 1:3, m = 1:3)
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k) xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k)
@ -523,7 +523,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
else memoryEfficient else memoryEfficient
!$OMP PARALLEL DO PRIVATE(l,m,temp33_cmplx) !$OMP PARALLEL DO PRIVATE(l,m,temp33_cmplx)
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
do concurrent(l = 1:3, m = 1:3) do concurrent(l = 1:3, m = 1:3)
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k)*tensorField_fourier(1:3,1:3,i,j,k)) temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k)*tensorField_fourier(1:3,1:3,i,j,k))
end do end do
@ -550,7 +550,7 @@ subroutine utilities_fourierGreenConvolution(D_ref, mu_ref, Delta_t)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation ! do the actual spectral method calculation
!$OMP PARALLEL DO PRIVATE(GreenOp_hat) !$OMP PARALLEL DO PRIVATE(GreenOp_hat)
do k = 1, cells3; do j = 1, cells(2) ;do i = 1, grid1Red do k = 1, cells3; do j = 1, cells(2) ;do i = 1, cells1Red
GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal) & GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal) &
/ (cmplx(mu_ref,0.0_pReal,pReal) + cmplx(Delta_t,0.0_pReal) & / (cmplx(mu_ref,0.0_pReal,pReal) + cmplx(Delta_t,0.0_pReal) &
* sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k)))) * sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k))))
@ -579,7 +579,7 @@ real(pReal) function utilities_divergenceRMS()
! calculating RMS divergence criterion in Fourier space ! calculating RMS divergence criterion in Fourier space
utilities_divergenceRMS = 0.0_pReal utilities_divergenceRMS = 0.0_pReal
do k = 1, cells3; do j = 1, cells(2) do k = 1, cells3; do j = 1, cells(2)
do i = 2, grid1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice. do i = 2, cells1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice.
utilities_divergenceRMS = utilities_divergenceRMS & utilities_divergenceRMS = utilities_divergenceRMS &
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k), & ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2, i.e. do not take square root and square again + 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k), & ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2, i.e. do not take square root and square again
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2) & ! --> sum squared L_2 norm of vector conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2) & ! --> sum squared L_2 norm of vector
@ -591,10 +591,10 @@ real(pReal) function utilities_divergenceRMS()
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) & conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), & + sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) & conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
+ sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), & + sum( real(matmul(tensorField_fourier(1:3,1:3,cells1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2) & conjg(-xi1st(1:3,cells1Red,j,k))*rescaledGeom))**2) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), & + sum(aimag(matmul(tensorField_fourier(1:3,1:3,cells1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2) conjg(-xi1st(1:3,cells1Red,j,k))*rescaledGeom))**2)
enddo; enddo enddo; enddo
if (cells(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of cells(1) == 1 if (cells(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of cells(1) == 1
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI) call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI)
@ -624,7 +624,7 @@ real(pReal) function utilities_curlRMS()
utilities_curlRMS = 0.0_pReal utilities_curlRMS = 0.0_pReal
do k = 1, cells3; do j = 1, cells(2); do k = 1, cells3; do j = 1, cells(2);
do i = 2, grid1Red - 1 do i = 2, cells1Red - 1
do l = 1, 3 do l = 1, 3
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) & curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3)) -tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
@ -647,12 +647,12 @@ real(pReal) function utilities_curlRMS()
utilities_curlRMS = utilities_curlRMS & utilities_curlRMS = utilities_curlRMS &
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (DC) does not have a conjugate complex counterpart (if cells(1) /= 1) + sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (DC) does not have a conjugate complex counterpart (if cells(1) /= 1)
do l = 1, 3 do l = 1, 3
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) & curl_fourier = (+tensorField_fourier(l,3,cells1Red,j,k)*xi1st(2,cells1Red,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3)) -tensorField_fourier(l,2,cells1Red,j,k)*xi1st(3,cells1Red,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) & curl_fourier = (+tensorField_fourier(l,1,cells1Red,j,k)*xi1st(3,cells1Red,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1)) -tensorField_fourier(l,3,cells1Red,j,k)*xi1st(1,cells1Red,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1) & curl_fourier = (+tensorField_fourier(l,2,cells1Red,j,k)*xi1st(1,cells1Red,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2)) -tensorField_fourier(l,1,cells1Red,j,k)*xi1st(2,cells1Red,j,k)*rescaledGeom(2))
enddo enddo
utilities_curlRMS = utilities_curlRMS & utilities_curlRMS = utilities_curlRMS &
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (Nyquist) does not have a conjugate complex counterpart (if cells(1) /= 1) + sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (Nyquist) does not have a conjugate complex counterpart (if cells(1) /= 1)
@ -744,7 +744,7 @@ subroutine utilities_fourierScalarGradient()
integer :: i, j, k integer :: i, j, k
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) ! ToDo: no -conjg? vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) ! ToDo: no -conjg?
end do; end do; end do end do; end do; end do
@ -757,7 +757,7 @@ end subroutine utilities_fourierScalarGradient
subroutine utilities_fourierVectorDivergence() subroutine utilities_fourierVectorDivergence()
scalarField_fourier(1:grid1Red,1:cells(2),1:cells3) = sum(vectorField_fourier(1:3,1:grid1Red,1:cells(2),1:cells3) & scalarField_fourier(1:cells1Red,1:cells(2),1:cells3) = sum(vectorField_fourier(1:3,1:cells1Red,1:cells(2),1:cells3) &
*conjg(-xi1st)) *conjg(-xi1st))
end subroutine utilities_fourierVectorDivergence end subroutine utilities_fourierVectorDivergence
@ -771,7 +771,7 @@ subroutine utilities_fourierVectorGradient()
integer :: i, j, k, m, n integer :: i, j, k, m, n
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
do m = 1, 3; do n = 1, 3 do m = 1, 3; do n = 1, 3
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k) tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
end do; end do end do; end do
@ -788,7 +788,7 @@ subroutine utilities_fourierTensorDivergence()
integer :: i, j, k integer :: i, j, k
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
vectorField_fourier(:,i,j,k) = matmul(tensorField_fourier(:,:,i,j,k),conjg(-xi1st(:,i,j,k))) vectorField_fourier(:,i,j,k) = matmul(tensorField_fourier(:,:,i,j,k),conjg(-xi1st(:,i,j,k)))
end do; end do; end do end do; end do; end do
@ -1026,7 +1026,7 @@ subroutine utilities_updateCoords(F)
call utilities_FFTtensorForward() call utilities_FFTtensorForward()
!$OMP PARALLEL DO !$OMP PARALLEL DO
do k = 1, cells3; do j = 1, cells(2); do i = 1, grid1Red do k = 1, cells3; do j = 1, cells(2); do i = 1, cells1Red
if (any([i,j,k+cells3Offset] /= 1)) then if (any([i,j,k+cells3Offset] /= 1)) then
vectorField_fourier(1:3,i,j,k) = matmul(tensorField_fourier(1:3,1:3,i,j,k),xi2nd(1:3,i,j,k)) & vectorField_fourier(1:3,i,j,k) = matmul(tensorField_fourier(1:3,1:3,i,j,k),xi2nd(1:3,i,j,k)) &
/ sum(conjg(-xi2nd(1:3,i,j,k))*xi2nd(1:3,i,j,k)) * cmplx(wgt,0.0,pReal) / sum(conjg(-xi2nd(1:3,i,j,k))*xi2nd(1:3,i,j,k)) * cmplx(wgt,0.0,pReal)