Merge branch 'development' of magit1.mpie.de:damask/DAMASK into development
This commit is contained in:
commit
466178cfc7
|
@ -9,363 +9,263 @@ import damask
|
|||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
slipnormal_temp = [
|
||||
[0,0,0,1],
|
||||
[0,0,0,1],
|
||||
[0,0,0,1],
|
||||
[0,1,-1,0],
|
||||
[-1,0,1,0],
|
||||
[1,-1,0,0],
|
||||
[0,1,-1,1],
|
||||
[-1,1,0,1],
|
||||
[-1,0,1,1],
|
||||
[0,-1,1,1],
|
||||
[1,-1,0,1],
|
||||
[1,0,-1,1],
|
||||
[0,1,-1,1],
|
||||
[0,1,-1,1],
|
||||
[-1,1,0,1],
|
||||
[-1,1,0,1],
|
||||
[-1,0,1,1],
|
||||
[-1,0,1,1],
|
||||
[0,-1,1,1],
|
||||
[0,-1,1,1],
|
||||
[1,-1,0,1],
|
||||
[1,-1,0,1],
|
||||
[1,0,-1,1],
|
||||
[1,0,-1,1],
|
||||
]
|
||||
|
||||
slipdirection_temp = [
|
||||
[2,-1,-1,0],
|
||||
[-1,2,-1,0],
|
||||
[-1,-1,2,0],
|
||||
[2,-1,-1,0],
|
||||
[-1,2,-1,0],
|
||||
[-1,-1,2,0],
|
||||
[2,-1,-1,0],
|
||||
[1,1,-2,0],
|
||||
[-1,2,-1,0],
|
||||
[-2,1,1,0],
|
||||
[-1,-1,2,0],
|
||||
[1,-2,1,0],
|
||||
[-1,2,-1,3],
|
||||
[1,1,-2,3],
|
||||
[-2,1,1,3],
|
||||
[-1,2,-1,3],
|
||||
[-1,-1,2,3],
|
||||
[-2,1,1,3],
|
||||
[1,-2,1,3],
|
||||
[-1,-1,2,3],
|
||||
[2,-1,-1,3],
|
||||
[1,-2,1,3],
|
||||
[1,1,-2,3],
|
||||
[2,-1,-1,3],
|
||||
]
|
||||
|
||||
# slip normals and directions according to cpfem implementation
|
||||
Nslipsystems = {'fcc': 12, 'bcc': 24, 'hex': 24}
|
||||
slipnormal = { \
|
||||
'fcc': [
|
||||
[1,1,1],
|
||||
[1,1,1],
|
||||
[1,1,1],
|
||||
[-1,-1,1],
|
||||
[-1,-1,1],
|
||||
[-1,-1,1],
|
||||
[1,-1,-1],
|
||||
[1,-1,-1],
|
||||
[1,-1,-1],
|
||||
[-1,1,-1],
|
||||
[-1,1,-1],
|
||||
[-1,1,-1],
|
||||
],
|
||||
'bcc': [
|
||||
[0,1,1],
|
||||
[0,1,1],
|
||||
[0,-1,1],
|
||||
[0,-1,1],
|
||||
[1,0,1],
|
||||
[1,0,1],
|
||||
[-1,0,1],
|
||||
[-1,0,1],
|
||||
[1,1,0],
|
||||
[1,1,0],
|
||||
[-1,1,0],
|
||||
[-1,1,0],
|
||||
[2,1,1],
|
||||
[-2,1,1],
|
||||
[2,-1,1],
|
||||
[2,1,-1],
|
||||
[1,2,1],
|
||||
[-1,2,1],
|
||||
[1,-2,1],
|
||||
[1,2,-1],
|
||||
[1,1,2],
|
||||
[-1,1,2],
|
||||
[1,-1,2],
|
||||
[1,1,-2],
|
||||
],
|
||||
'hex': [ # these are dummy numbers and are recalculated based on the above hex real slip systems.
|
||||
[1,1,0],
|
||||
[1,1,0],
|
||||
[1,0,1],
|
||||
[1,0,1],
|
||||
[0,1,1],
|
||||
[0,1,1],
|
||||
[1,-1,0],
|
||||
[1,-1,0],
|
||||
[-1,0,1],
|
||||
[-1,0,1],
|
||||
[0,-1,1],
|
||||
[0,-1,1],
|
||||
[2,-1,1],
|
||||
[1,-2,-1],
|
||||
[1,1,2],
|
||||
[2,1,1],
|
||||
[1,2,-1],
|
||||
[1,-1,2],
|
||||
[2,1,-1],
|
||||
[1,2,1],
|
||||
[1,-1,-2],
|
||||
[2,-1,-1],
|
||||
[1,-2,1],
|
||||
[1,1,-2],
|
||||
],
|
||||
slipSystems = {
|
||||
'fcc':
|
||||
np.array([
|
||||
# Slip direction Plane normal
|
||||
[ 0, 1,-1, 1, 1, 1, ],
|
||||
[-1, 0, 1, 1, 1, 1, ],
|
||||
[ 1,-1, 0, 1, 1, 1, ],
|
||||
[ 0,-1,-1, -1,-1, 1, ],
|
||||
[ 1, 0, 1, -1,-1, 1, ],
|
||||
[-1, 1, 0, -1,-1, 1, ],
|
||||
[ 0,-1, 1, 1,-1,-1, ],
|
||||
[-1, 0,-1, 1,-1,-1, ],
|
||||
[ 1, 1, 0, 1,-1,-1, ],
|
||||
[ 0, 1, 1, -1, 1,-1, ],
|
||||
[ 1, 0,-1, -1, 1,-1, ],
|
||||
[-1,-1, 0, -1, 1,-1, ],
|
||||
],'f'),
|
||||
'bcc':
|
||||
np.array([
|
||||
# Slip system <111>{110}
|
||||
[ 1,-1, 1, 0, 1, 1, ],
|
||||
[-1,-1, 1, 0, 1, 1, ],
|
||||
[ 1, 1, 1, 0,-1, 1, ],
|
||||
[-1, 1, 1, 0,-1, 1, ],
|
||||
[-1, 1, 1, 1, 0, 1, ],
|
||||
[-1,-1, 1, 1, 0, 1, ],
|
||||
[ 1, 1, 1, -1, 0, 1, ],
|
||||
[ 1,-1, 1, -1, 0, 1, ],
|
||||
[-1, 1, 1, 1, 1, 0, ],
|
||||
[-1, 1,-1, 1, 1, 0, ],
|
||||
[ 1, 1, 1, -1, 1, 0, ],
|
||||
[ 1, 1,-1, -1, 1, 0, ],
|
||||
# Slip system <111>{112}
|
||||
[-1, 1, 1, 2, 1, 1, ],
|
||||
[ 1, 1, 1, -2, 1, 1, ],
|
||||
[ 1, 1,-1, 2,-1, 1, ],
|
||||
[ 1,-1, 1, 2, 1,-1, ],
|
||||
[ 1,-1, 1, 1, 2, 1, ],
|
||||
[ 1, 1,-1, -1, 2, 1, ],
|
||||
[ 1, 1, 1, 1,-2, 1, ],
|
||||
[-1, 1, 1, 1, 2,-1, ],
|
||||
[ 1, 1,-1, 1, 1, 2, ],
|
||||
[ 1,-1, 1, -1, 1, 2, ],
|
||||
[-1, 1, 1, 1,-1, 2, ],
|
||||
[ 1, 1, 1, 1, 1,-2, ],
|
||||
],'f'),
|
||||
'hex':
|
||||
np.array([
|
||||
# Basal systems <11.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base))
|
||||
[ 2, -1, -1, 0, 0, 0, 0, 1, ],
|
||||
[-1, 2, -1, 0, 0, 0, 0, 1, ],
|
||||
[-1, -1, 2, 0, 0, 0, 0, 1, ],
|
||||
# 1st type prismatic systems <11.0>{10.0} (independent of c/a-ratio)
|
||||
[ 2, -1, -1, 0, 0, 1, -1, 0, ],
|
||||
[-1, 2, -1, 0, -1, 0, 1, 0, ],
|
||||
[-1, -1, 2, 0, 1, -1, 0, 0, ],
|
||||
# 2nd type prismatic systems <10.0>{11.0} -- a slip; plane normals independent of c/a-ratio
|
||||
[ 0, 1, -1, 0, 2, -1, -1, 0, ],
|
||||
[-1, 0, 1, 0, -1, 2, -1, 0, ],
|
||||
[ 1, -1, 0, 0, -1, -1, 2, 0, ],
|
||||
# 1st type 1st order pyramidal systems <11.0>{-11.1} -- plane normals depend on the c/a-ratio
|
||||
[ 2, -1, -1, 0, 0, 1, -1, 1, ],
|
||||
[-1, 2, -1, 0, -1, 0, 1, 1, ],
|
||||
[-1, -1, 2, 0, 1, -1, 0, 1, ],
|
||||
[ 1, 1, -2, 0, -1, 1, 0, 1, ],
|
||||
[-2, 1, 1, 0, 0, -1, 1, 1, ],
|
||||
[ 1, -2, 1, 0, 1, 0, -1, 1, ],
|
||||
# pyramidal system: c+a slip <11.3>{-10.1} -- plane normals depend on the c/a-ratio
|
||||
[ 2, -1, -1, 3, -1, 1, 0, 1, ],
|
||||
[ 1, -2, 1, 3, -1, 1, 0, 1, ],
|
||||
[-1, -1, 2, 3, 1, 0, -1, 1, ],
|
||||
[-2, 1, 1, 3, 1, 0, -1, 1, ],
|
||||
[-1, 2, -1, 3, 0, -1, 1, 1, ],
|
||||
[ 1, 1, -2, 3, 0, -1, 1, 1, ],
|
||||
[-2, 1, 1, 3, 1, -1, 0, 1, ],
|
||||
[-1, 2, -1, 3, 1, -1, 0, 1, ],
|
||||
[ 1, 1, -2, 3, -1, 0, 1, 1, ],
|
||||
[ 2, -1, -1, 3, -1, 0, 1, 1, ],
|
||||
[ 1, -2, 1, 3, 0, 1, -1, 1, ],
|
||||
[-1, -1, 2, 3, 0, 1, -1, 1, ],
|
||||
# pyramidal system: c+a slip <11.3>{-1-1.2} -- as for hexagonal ice (Castelnau et al. 1996, similar to twin system found below)
|
||||
[ 2, -1, -1, 3, -2, 1, 1, 2, ], # sorted according to similar twin system
|
||||
[-1, 2, -1, 3, 1, -2, 1, 2, ], # <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a)
|
||||
[-1, -1, 2, 3, 1, 1, -2, 2, ],
|
||||
[-2, 1, 1, 3, 2, -1, -1, 2, ],
|
||||
[ 1, -2, 1, 3, -1, 2, -1, 2, ],
|
||||
[ 1, 1, -2, 3, -1, -1, 2, 2, ],
|
||||
],'f'),
|
||||
}
|
||||
slipdirection = { \
|
||||
'fcc': [
|
||||
[0,1,-1],
|
||||
[-1,0,1],
|
||||
[1,-1,0],
|
||||
[0,-1,-1],
|
||||
[1,0,1],
|
||||
[-1,1,0],
|
||||
[0,-1,1],
|
||||
[-1,0,-1],
|
||||
[1,1,0],
|
||||
[0,1,1],
|
||||
[1,0,-1],
|
||||
[-1,-1,0],
|
||||
],
|
||||
'bcc': [
|
||||
[1,-1,1],
|
||||
[-1,-1,1],
|
||||
[1,1,1],
|
||||
[-1,1,1],
|
||||
[-1,1,1],
|
||||
[-1,-1,1],
|
||||
[1,1,1],
|
||||
[1,-1,1],
|
||||
[-1,1,1],
|
||||
[-1,1,-1],
|
||||
[1,1,1],
|
||||
[1,1,-1],
|
||||
[-1,1,1],
|
||||
[1,1,1],
|
||||
[1,1,-1],
|
||||
[1,-1,1],
|
||||
[1,-1,1],
|
||||
[1,1,-1],
|
||||
[1,1,1],
|
||||
[-1,1,1],
|
||||
[1,1,-1],
|
||||
[1,-1,1],
|
||||
[-1,1,1],
|
||||
[1,1,1],
|
||||
],
|
||||
'hex': [ # these are dummy numbers and are recalculated based on the above hex real slip systems.
|
||||
[-1,1,1],
|
||||
[1,-1,1],
|
||||
[-1,-1,1],
|
||||
[-1,1,1],
|
||||
[-1,-1,1],
|
||||
[1,-1,1],
|
||||
[1,1,1],
|
||||
[-1,-1,1],
|
||||
[1,-1,1],
|
||||
[1,1,1],
|
||||
[1,1,1],
|
||||
[-1,1,1],
|
||||
[1,1,-1],
|
||||
[1,1,-1],
|
||||
[1,1,-1],
|
||||
[1,-1,-1],
|
||||
[1,-1,-1],
|
||||
[1,-1,-1],
|
||||
[1,-1,1],
|
||||
[1,-1,1],
|
||||
[1,-1,1],
|
||||
[1,1,1],
|
||||
[1,1,1],
|
||||
[1,1,1],
|
||||
],
|
||||
}
|
||||
|
||||
def applyEulers(phi1,Phi,phi2,x):
|
||||
"""transform x given in crystal coordinates to xbar returned in lab coordinates for Euler angles phi1,Phi,phi2"""
|
||||
eulerRot = [[ math.cos(phi1)*math.cos(phi2) - math.cos(Phi)*math.sin(phi1)*math.sin(phi2),
|
||||
-math.cos(phi1)*math.sin(phi2) - math.cos(Phi)*math.cos(phi2)*math.sin(phi1),
|
||||
math.sin(Phi)*math.sin(phi1)
|
||||
],
|
||||
[ math.cos(phi2)*math.sin(phi1) + math.cos(Phi)*math.cos(phi1)*math.sin(phi2),
|
||||
math.cos(Phi)*math.cos(phi1)*math.cos(phi2) - math.sin(phi1)*math.sin(phi2),
|
||||
-math.sin(Phi)*math.cos(phi1)
|
||||
],
|
||||
[ math.sin(Phi)*math.sin(phi2),
|
||||
math.sin(Phi)*math.cos(phi2),
|
||||
math.cos(Phi)
|
||||
]]
|
||||
|
||||
xbar = [0,0,0]
|
||||
if len(x) == 3:
|
||||
for i in range(3):
|
||||
xbar[i] = sum([eulerRot[i][j]*x[j] for j in range(3)])
|
||||
return xbar
|
||||
|
||||
def normalize(x):
|
||||
|
||||
norm = math.sqrt(sum([x[i]*x[i] for i in range(len(x))]))
|
||||
|
||||
return [x[i]/norm for i in range(len(x))]
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Add columns listing Schmid factors (and optional trace vector of selected system) for given Euler angles.
|
||||
Add RGB color value corresponding to TSL-OIM scheme for inverse pole figures.
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
latticeChoices = ('fcc','bcc','hex')
|
||||
parser.add_option('-l','--lattice',
|
||||
dest='lattice', type='choice', choices=('fcc','bcc','hex'), metavar='string',
|
||||
help="type of lattice structure [%default] {fcc,bcc',hex}")
|
||||
parser.add_option('--direction',
|
||||
dest='forcedirection', type='int', nargs=3, metavar='int int int',
|
||||
help='force direction in lab coordinates %default')
|
||||
parser.add_option('-n','--normal',
|
||||
dest='stressnormal', type='int', nargs=3, metavar='int int int',
|
||||
help='stress plane normal in lab coordinates ')
|
||||
parser.add_option('--trace',
|
||||
dest='traceplane', type='int', nargs=3, metavar='int int int',
|
||||
help='normal (in lab coordinates) of plane on which the plane trace of the Schmid factor(s) is reported')
|
||||
dest = 'lattice', type = 'choice', choices = latticeChoices, metavar='string',
|
||||
help = 'type of lattice structure [%default] {}'.format(latticeChoices))
|
||||
parser.add_option('--covera',
|
||||
dest = 'CoverA', type = 'float', metavar = 'float',
|
||||
help = 'C over A ratio for hexagonal systems')
|
||||
parser.add_option('-r','--rank',
|
||||
dest='rank', type='int', nargs=3, metavar='int int int',
|
||||
help="report trace of r'th highest Schmid factor [%default]")
|
||||
parser.add_option('-f', '--force',
|
||||
dest = 'force',
|
||||
type = 'float', nargs = 3, metavar = 'float float float',
|
||||
help = 'force direction in lab frame [%default]')
|
||||
parser.add_option('-n', '--normal',
|
||||
dest = 'normal',
|
||||
type = 'float', nargs = 3, metavar = 'float float float',
|
||||
help = 'stress plane normal in lab frame [%default]')
|
||||
parser.add_option('-e', '--eulers',
|
||||
dest='eulers', metavar='string',
|
||||
dest = 'eulers',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'Euler angles label')
|
||||
parser.add_option('-d', '--degrees',
|
||||
dest='degrees', action='store_true',
|
||||
dest = 'degrees',
|
||||
action = 'store_true',
|
||||
help = 'Euler angles are given in degrees [%default]')
|
||||
parser.set_defaults(lattice = 'fcc')
|
||||
parser.set_defaults(forcedirection = [0, 0, 1])
|
||||
parser.set_defaults(stressnormal = None)
|
||||
parser.set_defaults(traceplane = None)
|
||||
parser.set_defaults(rank = 0)
|
||||
parser.set_defaults(CoverA = 1.587)
|
||||
parser.set_defaults(eulers = 'eulerangles')
|
||||
parser.add_option('-m', '--matrix',
|
||||
dest = 'matrix',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'orientation matrix label')
|
||||
parser.add_option('-a',
|
||||
dest = 'a',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'crystal frame a vector label')
|
||||
parser.add_option('-b',
|
||||
dest = 'b',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'crystal frame b vector label')
|
||||
parser.add_option('-c',
|
||||
dest = 'c',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'crystal frame c vector label')
|
||||
parser.add_option('-q', '--quaternion',
|
||||
dest = 'quaternion',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'quaternion label')
|
||||
|
||||
parser.set_defaults(force = [0.0,0.0,1.0],
|
||||
normal = None,
|
||||
lattice = latticeChoices[0],
|
||||
CoverA = math.sqrt(8./3.),
|
||||
degrees = False,
|
||||
)
|
||||
|
||||
(options, filenames) = parser.parse_args()
|
||||
|
||||
options.forcedirection = normalize(options.forcedirection)
|
||||
if options.stressnormal:
|
||||
if abs(sum([options.forcedirection[i] * options.stressnormal[i] for i in range(3)])) < 1e-3:
|
||||
options.stressnormal = normalize(options.stressnormal)
|
||||
else:
|
||||
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
|
||||
|
||||
force = np.array(options.force)
|
||||
force /= np.linalg.norm(force)
|
||||
|
||||
if options.normal:
|
||||
damask.util.croak('got normal')
|
||||
normal = np.array(options.normal)
|
||||
normal /= np.linalg.norm(normal)
|
||||
if abs(np.dot(force,normal)) > 1e-3:
|
||||
parser.error('stress plane normal not orthogonal to force direction')
|
||||
else:
|
||||
options.stressnormal = options.forcedirection
|
||||
if options.traceplane:
|
||||
options.traceplane = normalize(options.traceplane)
|
||||
options.rank = min(options.rank,Nslipsystems[options.lattice])
|
||||
normal = force
|
||||
|
||||
datainfo = { # list of requested labels per datatype
|
||||
'vector': {'len':3,
|
||||
'label':[]},
|
||||
}
|
||||
input = [options.eulers is not None,
|
||||
options.a is not None and \
|
||||
options.b is not None and \
|
||||
options.c is not None,
|
||||
options.matrix is not None,
|
||||
options.quaternion is not None,
|
||||
]
|
||||
|
||||
datainfo['vector']['label'] += [options.eulers]
|
||||
if np.sum(input) != 1: parser.error('needs exactly one input format.')
|
||||
|
||||
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
|
||||
# Convert 4 Miller indices notation of hex to orthogonal 3 Miller indices notation
|
||||
if options.lattice=='hex':
|
||||
for i in range(Nslipsystems[options.lattice]):
|
||||
slipnormal[options.lattice][i][0]=slipnormal_temp[i][0]
|
||||
slipnormal[options.lattice][i][1]=(slipnormal_temp[i][0]+2.0*slipnormal_temp[i][1])/math.sqrt(3.0)
|
||||
slipnormal[options.lattice][i][2]=slipnormal_temp[i][3]/options.CoverA
|
||||
slipdirection[options.lattice][i][0]=slipdirection_temp[i][0]*1.5 # direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)] ,
|
||||
slipdirection[options.lattice][i][1]=(slipdirection_temp[i][0]+2.0*slipdirection_temp[i][1])*(0.5*math.sqrt(3.0))
|
||||
slipdirection[options.lattice][i][2]=slipdirection_temp[i][3]*options.CoverA
|
||||
(label,dim,inputtype) = [(options.eulers,3,'eulers'),
|
||||
([options.a,options.b,options.c],[3,3,3],'frame'),
|
||||
(options.matrix,9,'matrix'),
|
||||
(options.quaternion,4,'quaternion'),
|
||||
][np.where(input)[0][0]] # select input label that was requested
|
||||
|
||||
for i in range(Nslipsystems[options.lattice]):
|
||||
slipnormal[options.lattice][i]=normalize(slipnormal[options.lattice][i])
|
||||
slipdirection[options.lattice][i]=normalize(slipdirection[options.lattice][i])
|
||||
c_direction = np.zeros((len(slipSystems[options.lattice]),3),'f')
|
||||
c_normal = np.zeros_like(c_direction)
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if options.lattice in latticeChoices[:2]:
|
||||
c_direction = slipSystems[options.lattice][:,:3]
|
||||
c_normal = slipSystems[options.lattice][:,3:]
|
||||
elif options.lattice == latticeChoices[2]:
|
||||
# convert 4 Miller index notation of hex to orthogonal 3 Miller index notation
|
||||
for i in xrange(len(c_direction)):
|
||||
c_direction[i] = np.array([slipSystems['hex'][i,0]*1.5,
|
||||
(slipSystems['hex'][i,0] + 2.*slipSystems['hex'][i,1])*0.5*np.sqrt(3),
|
||||
slipSystems['hex'][i,3]*options.CoverA,
|
||||
])
|
||||
c_normal[i] = np.array([slipSystems['hex'][i,4],
|
||||
(slipSystems['hex'][i,4] + 2.*slipSystems['hex'][i,5])/np.sqrt(3),
|
||||
slipSystems['hex'][i,7]/options.CoverA,
|
||||
])
|
||||
|
||||
c_direction /= np.tile(np.linalg.norm(c_direction,axis=1),(3,1)).T
|
||||
c_normal /= np.tile(np.linalg.norm(c_normal ,axis=1),(3,1)).T
|
||||
|
||||
# --- loop over input files ------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,buffered = False)
|
||||
except:
|
||||
continue
|
||||
try: table = damask.ASCIItable(name = name,
|
||||
buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
table.head_read() # read ASCII header info
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
|
||||
key = '1_%s'%datainfo['vector']['label'][0]
|
||||
if key not in table.labels:
|
||||
file['croak'].write('column %s not found...\n'%key)
|
||||
table.head_read()
|
||||
|
||||
# ------------------------------------------ sanity checks ----------------------------------------
|
||||
|
||||
if not np.all(table.label_dimension(label) == dim):
|
||||
damask.util.croak('input {} does not have dimension {}.'.format(label,dim))
|
||||
table.close(dismiss = True) # close ASCIItable and remove empty file
|
||||
continue
|
||||
else:
|
||||
column = table.labels.index(key) # remember columns of requested data
|
||||
|
||||
column = table.label_index(label)
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
|
||||
table.labels_append(['%i_S(%i_%i_%i)[%i_%i_%i]'%(i+1,
|
||||
slipnormal[options.lattice][i][0],
|
||||
slipnormal[options.lattice][i][1],
|
||||
slipnormal[options.lattice][i][2],
|
||||
slipdirection[options.lattice][i][0],
|
||||
slipdirection[options.lattice][i][1],
|
||||
slipdirection[options.lattice][i][2],
|
||||
) for i in range(Nslipsystems[options.lattice])])
|
||||
|
||||
if options.traceplane:
|
||||
if options.rank > 0:
|
||||
table.labels_append('trace_x trace_y trace_z system')
|
||||
else:
|
||||
table.labels_append(['(%i)tx\tty\ttz'%(i+1) for i in range(Nslipsystems[options.lattice])])
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append(['{id}_S[{direction[0]:.1g}_{direction[1]:.1g}_{direction[2]:.1g}]({normal[0]:.1g}_{normal[1]:.1g}_{normal[2]:.1g})'\
|
||||
.format( id = i+1,
|
||||
normal = theNormal,
|
||||
direction = theDirection,
|
||||
) for i,(theNormal,theDirection) in enumerate(zip(c_normal,c_direction))])
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
[phi1,Phi,phi2] = Eulers=toRadians*np.array(map(\
|
||||
float,table.data[column:column+datainfo['vector']['len']]))
|
||||
S = [ sum( [applyEulers(phi1,Phi,phi2,normalize( \
|
||||
slipnormal[options.lattice][slipsystem]))[i]*options.stressnormal[i] for i in range(3)] ) * \
|
||||
sum( [applyEulers(phi1,Phi,phi2,normalize( \
|
||||
slipdirection[options.lattice][slipsystem]))[i]*options.forcedirection[i] for i in range(3)] ) \
|
||||
for slipsystem in range(Nslipsystems[options.lattice]) ]
|
||||
table.data_append(S)
|
||||
if options.traceplane:
|
||||
trace = [np.cross(options.traceplane,applyEulers(phi1,Phi,phi2,normalize(slipnormal[options.lattice][slipsystem]))) \
|
||||
for slipsystem in range(Nslipsystems[options.lattice]) ]
|
||||
if options.rank == 0:
|
||||
table.data_append('\t'.join(map(lambda x:'%f\t%f\t%f'%(x[0],x[1],x[2]),trace)))
|
||||
elif options.rank > 0:
|
||||
SabsSorted = sorted([(abs(S[i]),i) for i in range(len(S))])
|
||||
table.data_append('\t'.join(map(str,trace[SabsSorted[-options.rank][1]])) + '\t%i'%(1+SabsSorted[-options.rank][1]))
|
||||
if inputtype == 'eulers':
|
||||
o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians,)
|
||||
elif inputtype == 'matrix':
|
||||
o = damask.Orientation(matrix = np.array(map(float,table.data[column:column+9])).reshape(3,3).transpose(),)
|
||||
elif inputtype == 'frame':
|
||||
o = damask.Orientation(matrix = np.array(map(float,table.data[column[0]:column[0]+3] + \
|
||||
table.data[column[1]:column[1]+3] + \
|
||||
table.data[column[2]:column[2]+3])).reshape(3,3),)
|
||||
elif inputtype == 'quaternion':
|
||||
o = damask.Orientation(quaternion = np.array(map(float,table.data[column:column+4])),)
|
||||
|
||||
rotForce = o.quaternion.conjugated() * force
|
||||
rotNormal = o.quaternion.conjugated() * normal
|
||||
table.data_append(np.abs(np.sum(c_direction*rotForce,axis=1) * np.sum(c_normal*rotNormal,axis=1)))
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close input ASCII table (works for stdin)
|
||||
table.close() # close ASCII tables
|
||||
|
|
Loading…
Reference in New Issue