commenting and introducing functions for regulary used code

This commit is contained in:
Martin Diehl 2015-10-14 18:40:02 +00:00
parent 484a34b7f1
commit 46564d3df8
1 changed files with 64 additions and 58 deletions

View File

@ -15,16 +15,20 @@ def runFit(exponent, eqStress, dimension, criterion):
global fitResults, fitErrors, fitResidual, stressAll, strainAll global fitResults, fitErrors, fitResidual, stressAll, strainAll
global N_simulations, Guess, dDim global N_simulations, Guess, dDim
fitResults = []; fitErrors = []; fitResidual = []; Guess = []; threads=[] fitResults = []
fitErrors = []
fitResidual = []
Guess = []
threads=[]
dDim = dimension - 3 dDim = dimension - 3
Nparas = len(fitCriteria[criterion]['bound'][dDim]) nParas = len(fitCriteria[criterion]['bound'][dDim])
nExpo = fitCriteria[criterion]['nExpo'] nExpo = fitCriteria[criterion]['nExpo']
if exponent > 0.0: # User defined exponents if exponent > 0.0: # User defined exponents
Nparas = Nparas-nExpo nParas = nParas-nExpo
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:Nparas] fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:nParas]
for i in xrange(Nparas): for i in xrange(nParas):
temp = fitCriteria[criterion]['bound'][dDim][i] temp = fitCriteria[criterion]['bound'][dDim][i]
if fitCriteria[criterion]['bound'][dDim][i] == (None,None): if fitCriteria[criterion]['bound'][dDim][i] == (None,None):
Guess.append(1.0) Guess.append(1.0)
@ -58,7 +62,7 @@ def principalStresses(sigmas):
''' '''
lambdas=np.zeros(0,'d') lambdas=np.zeros(0,'d')
for i in xrange(np.shape(sigmas)[1]): for i in xrange(np.shape(sigmas)[1]):
eigenvalues = np.linalg.eigvalsh(sym6to33(sigmas[:,i])) eigenvalues = np.linalg.eigvalsh(sym6toT33(sigmas[:,i]))
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3)) lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3))
return lambdas return lambdas
@ -145,19 +149,24 @@ def invariant(sigmas):
def math_ln(x): def math_ln(x):
return np.log(x + 1.0e-32) return np.log(x + 1.0e-32)
def sym6to33(sigma6): def sym6toT33(sym6):
''' Shape the symmetric stress tensor(6,1) into (3,3) ''' ''' Shape the symmetric stress tensor(6) into (3,3) '''
sigma33 = np.empty((3,3)) return np.array([[sym6[0],sym6[3],sym6[5]],
sigma33[0,0] = sigma6[0]; sigma33[1,1] = sigma6[1]; sigma33[2,2] = sigma6[2]; [sym6[3],sym6[1],sym6[4]],
sigma33[0,1] = sigma6[3]; sigma33[1,0] = sigma6[3] [sym6[5],sym6[4],sym6[2]]])
sigma33[1,2] = sigma6[4]; sigma33[2,1] = sigma6[4]
sigma33[2,0] = sigma6[5]; sigma33[0,2] = sigma6[5]
return sigma33
def t33toSym6(t33):
''' Shape the stress tensor(3,3) into symmetric (6) '''
return np.array([ t33[0,0],
t33[1,1],
t33[2,2],
(t33[0,1] + t33[1,0])/2.0, # 0 3 5
(t33[1,2] + t33[2,1])/2.0, # * 1 4
(t33[2,0] + t33[0,2])/2.0,]) # * * 2
class Criteria(object): class Criteria(object):
''' '''
residuum of anisotropic Barlat 1991 yield criterion (eq. 2.37) needs doc string
''' '''
def __init__(self, criterion, uniaxialStress,exponent, dimension): def __init__(self, criterion, uniaxialStress,exponent, dimension):
self.stress0 = uniaxialStress self.stress0 = uniaxialStress
@ -978,13 +987,10 @@ class Loadcase():
''' '''
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def __init__(self,finalStrain,incs,time,ND=3,RD=1,nSet=1,dimension=3,vegter=False): def __init__(self,finalStrain,incs,time,nSet=1,dimension=3,vegter=False):
damask.util.croak('Using the random load case generator')
self.finalStrain = finalStrain self.finalStrain = finalStrain
self.incs = incs self.incs = incs
self.time = time self.time = time
self.ND = ND
self.RD = RD
self.nSet = nSet self.nSet = nSet
self.dimension = dimension self.dimension = dimension
self.vegter = vegter self.vegter = vegter
@ -1141,8 +1147,10 @@ class Criterion(object):
bounds = fitCriteria[nameCriterion]['bound'][dDim] # Default bounds, no bound bounds = fitCriteria[nameCriterion]['bound'][dDim] # Default bounds, no bound
guess0 = Guess # Default initial guess, depends on bounds guess0 = Guess # Default initial guess, depends on bounds
if fitResults == [] : initialguess = guess0 if fitResults == []:
else : initialguess = np.array(fitResults[-1]) initialguess = guess0
else:
initialguess = np.array(fitResults[-1])
ydata = np.zeros(np.shape(stress)[1]) ydata = np.zeros(np.shape(stress)[1])
try: try:
@ -1185,13 +1193,14 @@ class myThread (threading.Thread):
conv=converged() conv=converged()
s.release() s.release()
while not conv: while not conv:
doSim(4.,self.name) doSim(self.name)
s.acquire() s.acquire()
conv=converged() conv=converged()
s.release() s.release()
def doSim(delay,thread): def doSim(thread):
# if load case do not exist, create new one
s.acquire() s.acquire()
global myLoad global myLoad
loadNo=loadcaseNo() loadNo=loadcaseNo()
@ -1203,13 +1212,15 @@ def doSim(delay,thread):
s.release() s.release()
else: s.release() else: s.release()
# if spectralOut does not exist, run simulation
s.acquire() s.acquire()
if not os.path.isfile('%s_%i.spectralOut'%(options.geometry,loadNo)): if not os.path.isfile('%s_%i.spectralOut'%(options.geometry,loadNo)):
damask.util.croak('Starting simulation %i (%s)'%(loadNo,thread)) damask.util.croak('Starting simulation %i (%s)'%(loadNo,thread))
s.release() s.release()
damask.util.execute('DAMASK_spectral -g %s -l %i'%(options.geometry,loadNo)) damask.util.execute('DAMASK_spectral -g %s -l %i'%(options.geometry,loadNo))
else: s.release() else: s.release()
# if ASCII tables do not exist, run postprocessing
s.acquire() s.acquire()
if not os.path.isfile('./postProc/%s_%i.txt'%(options.geometry,loadNo)): if not os.path.isfile('./postProc/%s_%i.txt'%(options.geometry,loadNo)):
damask.util.croak('Starting post processing for simulation %i (%s)'%(loadNo,thread)) damask.util.croak('Starting post processing for simulation %i (%s)'%(loadNo,thread))
@ -1223,63 +1234,59 @@ def doSim(delay,thread):
damask.util.execute('addMises -s Cauchy -e ln(V) ./postProc/%s_%i.txt'%(options.geometry,loadNo)) damask.util.execute('addMises -s Cauchy -e ln(V) ./postProc/%s_%i.txt'%(options.geometry,loadNo))
else: s.release() else: s.release()
# reading values from ASCII table (including linear interpolation between points)
s.acquire() s.acquire()
damask.util.croak('Reading values from simulation %i (%s)'%(loadNo,thread)) damask.util.croak('Reading values from simulation %i (%s)'%(loadNo,thread))
s.release()
refFile = './postProc/%s_%i.txt'%(options.geometry,loadNo) refFile = './postProc/%s_%i.txt'%(options.geometry,loadNo)
table = damask.ASCIItable(refFile) table = damask.ASCIItable(refFile)
table.head_read() table.head_read()
if options.fitting =='equivalentStrain': if options.fitting =='equivalentStrain':
thresholdKey = 'Mises(ln(V))' thresholdKey = 'Mises(ln(V))'
elif options.fitting =='totalshear': elif options.fitting =='totalshear':
thresholdKey = 'totalshear' thresholdKey = 'totalshear'
s.acquire()
for l in [thresholdKey,'1_Cauchy']: for l in [thresholdKey,'1_Cauchy']:
if l not in table.labels: damask.util.croak('%s not found'%l) if l not in table.labels: damask.util.croak('%s not found'%l)
s.release() s.release()
table.data_readArray(['%i_Cauchy'%(i+1) for i in xrange(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in xrange(9)]) table.data_readArray(['%i_Cauchy'%(i+1) for i in xrange(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in xrange(9)])
line = 0 validity = np.zeros((int(options.yieldValue[2])), dtype=bool) # found data for desired threshold
lines = np.shape(table.data)[0]
validity = np.zeros((int(options.yieldValue[2])), dtype=bool)
yieldStress = np.empty((int(options.yieldValue[2]),6),'d') yieldStress = np.empty((int(options.yieldValue[2]),6),'d')
deformationRate = np.empty((int(options.yieldValue[2]),6),'d') deformationRate = np.empty((int(options.yieldValue[2]),6),'d')
line = 0
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])): for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
while line < lines: while line < np.shape(table.data)[0]:
if abs(table.data[line,9])>= threshold: if abs(table.data[line,9])>= threshold:
upper,lower = abs(table.data[line,9]),abs(table.data[line-1,9]) # values for linear interpolation upper,lower = abs(table.data[line,9]),abs(table.data[line-1,9]) # values for linear interpolation
stress = np.array(table.data[line-1,0:9] * (upper-threshold)/(upper-lower) + \ stress = np.array(table.data[line-1,0:9] * (upper-threshold)/(upper-lower) + \
table.data[line ,0:9] * (threshold-lower)/(upper-lower)).reshape(3,3) # linear interpolation of stress values table.data[line ,0:9] * (threshold-lower)/(upper-lower)).reshape(3,3) # linear interpolation of stress values
#stress = 0.5*(stress+stress.T) # symmetrise yieldStress[i,:] = t33toSym6(stress)
#for the mapping, a fuction from DAMASK (33to6) simplifies
dstrain= np.array(table.data[line,10:] - table.data[line-1,10:]).reshape(3,3) dstrain= np.array(table.data[line,10:] - table.data[line-1,10:]).reshape(3,3)
# deformationRate[i,:] = t33toSym6(dstrain)
yieldStress[i,0]= stress[0,0]; yieldStress[i,1]=stress[1,1]; yieldStress[i,2]=stress[2,2]
yieldStress[i,3]=(stress[0,1] + stress[1,0])/2.0 # 0 3 5
yieldStress[i,4]=(stress[1,2] + stress[2,1])/2.0 # * 1 4 yieldStress
yieldStress[i,5]=(stress[2,0] + stress[0,2])/2.0 # * * 2
# D*dt = 0.5(L+L^T)*dt = 0.5*d(lnF + lnF^T) = dlnV
deformationRate[i,0]= dstrain[0,0]; deformationRate[i,1]=dstrain[1,1]; deformationRate[i,2]=dstrain[2,2]
deformationRate[i,3]=(dstrain[0,1] + dstrain[1,0])/2.0 # 0 3 5
deformationRate[i,4]=(dstrain[1,2] + dstrain[2,1])/2.0 # * 1 4
deformationRate[i,5]=(dstrain[2,0] + dstrain[0,2])/2.0 # * * 2
validity[i] = True validity[i] = True
break break
else: else:
line+=1 line+=1
if not validity[i]: if not validity[i]:
damask.util.croak('The data of result %i at the threshold %f is invalid,'\ s.acquire()
+'the fitting at this point is skipped'%(loadNo,threshold)) #damask.util.croak('The data of result %i at the threshold %f is invalid,'\
# +'the fitting at this point is skipped'%(loadNo,threshold))
s.release()
# do the actual fitting procedure and write results to file
s.acquire() s.acquire()
global stressAll, strainAll global stressAll, strainAll
f=open(options.geometry+'_'+options.criterion+'.txt','w') f=open(options.geometry+'_'+options.criterion+'_'+str(time.time())+'.txt','w')
print myFit.report_labels()
f.write(' '.join([options.fitting]+myFit.report_labels())+'\n') f.write(' '.join([options.fitting]+myFit.report_labels())+'\n')
try: try:
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])): for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
if validity[i]: if validity[i]:
a = (yieldStress[0][2]/stressUnit)**2 + (yieldStress[0][4]/stressUnit)**2 + (yieldStress[0][5]/stressUnit)**2
stressAll[i]=np.append(stressAll[i], yieldStress[i]/stressUnit) stressAll[i]=np.append(stressAll[i], yieldStress[i]/stressUnit)
strainAll[i]=np.append(strainAll[i], deformationRate[i]) strainAll[i]=np.append(strainAll[i], deformationRate[i])
f.write( str(threshold)+' '+ f.write( str(threshold)+' '+
@ -1338,7 +1345,7 @@ parser.add_option('-t','--threads', dest='threads', type='int',
help='number of parallel executions [%default]', metavar='int') help='number of parallel executions [%default]', metavar='int')
parser.add_option('-b','--bound', dest='bounds', type='float', nargs=2, parser.add_option('-b','--bound', dest='bounds', type='float', nargs=2,
help='yield points: start; end; count %default', metavar='float float') help='yield points: start; end; count %default', metavar='float float')
parser.add_option('-d','--dimension', dest='dimension', type='int', parser.add_option('-d','--dimension', dest='dimension', type='choice', choices=['2','3'],
help='dimension of the virtual test [%default]', metavar='int') help='dimension of the virtual test [%default]', metavar='int')
parser.add_option('-v', '--vegter', dest='vegter', action='store_true', parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
help='Vegter criteria [%default]', metavar='float') help='Vegter criteria [%default]', metavar='float')
@ -1356,7 +1363,7 @@ parser.set_defaults(criterion = 'vonmises')
parser.set_defaults(fitting = 'totalshear') parser.set_defaults(fitting = 'totalshear')
parser.set_defaults(geometry = '20grains16x16x16') parser.set_defaults(geometry = '20grains16x16x16')
parser.set_defaults(bounds = None) parser.set_defaults(bounds = None)
parser.set_defaults(dimension = 3) parser.set_defaults(dimension = '3')
parser.set_defaults(vegter = 'False') parser.set_defaults(vegter = 'False')
parser.set_defaults(exponent = -1.0) parser.set_defaults(exponent = -1.0)
@ -1376,20 +1383,21 @@ if options.yieldValue[0]>options.yieldValue[1]:
parser.error('invalid yield start (below yield end)') parser.error('invalid yield start (below yield end)')
if options.yieldValue[2] != int(options.yieldValue[2]): if options.yieldValue[2] != int(options.yieldValue[2]):
parser.error('count must be an integer') parser.error('count must be an integer')
if options.dimension not in [2,3]:
parser.error('Dimension is wrong, should be 2(plane stress state) or 3(general stress state)')
if not os.path.isfile('numerics.config'): if not os.path.isfile('numerics.config'):
damask.util.croak('numerics.config file not found') damask.util.croak('numerics.config file not found')
if not os.path.isfile('material.config'): if not os.path.isfile('material.config'):
damask.util.croak('material.config file not found') damask.util.croak('material.config file not found')
if options.vegter is True: if options.vegter is True:
options.dimension = 2 options.dimension = 2
else:
options.dimension = int(options.dimension)
if options.criterion == 'hill1948': stressUnit = 1.0e9 if options.criterion == 'hill1948': stressUnit = 1.0e9
else : stressUnit = 1.0e6 else : stressUnit = 1.0e6
fit_allResults = {} fit_allResults = {}
if options.criterion == 'all': if options.criterion == 'all':
noExpoList = ['tresca', 'vonmises', 'hill1948', 'drucker'] noExpoList = ['tresca', 'vonmises', 'hill1948', 'drucker']
@ -1397,8 +1405,7 @@ if options.criterion == 'all':
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter) run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter)
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual} fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
for criter in [x for x in fitCriteria.keys() if x not in noExpoList+['vegter','all'] ]: for criter in [x for x in fitCriteria.keys() if x not in noExpoList+['vegter','all'] ]:
if options.eqStress == None: if options.eqStress == None: # the user does not provide the equivalent stress, the equivalent stress will be fitted by von Mises
# the user do not provide the equivalent stress, the equivalent stress will be fitted by von Mises
eqStress = fit_allResults['vonmises']['results'][-1] eqStress = fit_allResults['vonmises']['results'][-1]
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter) run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual} fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
@ -1407,8 +1414,7 @@ else:
if fitCriteria[criter]['nExpo'] == 0: if fitCriteria[criter]['nExpo'] == 0:
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter) run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter)
else: else:
if options.eqStress == None: if options.eqStress == None: # the user does not provide the equivalent stress, the equivalent stress will be fitted by von Mises
# the user do not provide the equivalent stress, the equivalent stress will be fitted by von Mises
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], 'vonmises') run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], 'vonmises')
eqStress = fitResults[-1] eqStress = fitResults[-1]
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter) run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)