commenting and introducing functions for regulary used code
This commit is contained in:
parent
484a34b7f1
commit
46564d3df8
|
@ -15,16 +15,20 @@ def runFit(exponent, eqStress, dimension, criterion):
|
||||||
global fitResults, fitErrors, fitResidual, stressAll, strainAll
|
global fitResults, fitErrors, fitResidual, stressAll, strainAll
|
||||||
global N_simulations, Guess, dDim
|
global N_simulations, Guess, dDim
|
||||||
|
|
||||||
fitResults = []; fitErrors = []; fitResidual = []; Guess = []; threads=[]
|
fitResults = []
|
||||||
|
fitErrors = []
|
||||||
|
fitResidual = []
|
||||||
|
Guess = []
|
||||||
|
threads=[]
|
||||||
dDim = dimension - 3
|
dDim = dimension - 3
|
||||||
Nparas = len(fitCriteria[criterion]['bound'][dDim])
|
nParas = len(fitCriteria[criterion]['bound'][dDim])
|
||||||
nExpo = fitCriteria[criterion]['nExpo']
|
nExpo = fitCriteria[criterion]['nExpo']
|
||||||
|
|
||||||
if exponent > 0.0: # User defined exponents
|
if exponent > 0.0: # User defined exponents
|
||||||
Nparas = Nparas-nExpo
|
nParas = nParas-nExpo
|
||||||
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:Nparas]
|
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:nParas]
|
||||||
|
|
||||||
for i in xrange(Nparas):
|
for i in xrange(nParas):
|
||||||
temp = fitCriteria[criterion]['bound'][dDim][i]
|
temp = fitCriteria[criterion]['bound'][dDim][i]
|
||||||
if fitCriteria[criterion]['bound'][dDim][i] == (None,None):
|
if fitCriteria[criterion]['bound'][dDim][i] == (None,None):
|
||||||
Guess.append(1.0)
|
Guess.append(1.0)
|
||||||
|
@ -58,7 +62,7 @@ def principalStresses(sigmas):
|
||||||
'''
|
'''
|
||||||
lambdas=np.zeros(0,'d')
|
lambdas=np.zeros(0,'d')
|
||||||
for i in xrange(np.shape(sigmas)[1]):
|
for i in xrange(np.shape(sigmas)[1]):
|
||||||
eigenvalues = np.linalg.eigvalsh(sym6to33(sigmas[:,i]))
|
eigenvalues = np.linalg.eigvalsh(sym6toT33(sigmas[:,i]))
|
||||||
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
|
lambdas = np.append(lambdas,np.sort(eigenvalues)[::-1]) #append eigenvalues in descending order
|
||||||
lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3))
|
lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3))
|
||||||
return lambdas
|
return lambdas
|
||||||
|
@ -145,19 +149,24 @@ def invariant(sigmas):
|
||||||
def math_ln(x):
|
def math_ln(x):
|
||||||
return np.log(x + 1.0e-32)
|
return np.log(x + 1.0e-32)
|
||||||
|
|
||||||
def sym6to33(sigma6):
|
def sym6toT33(sym6):
|
||||||
''' Shape the symmetric stress tensor(6,1) into (3,3) '''
|
''' Shape the symmetric stress tensor(6) into (3,3) '''
|
||||||
sigma33 = np.empty((3,3))
|
return np.array([[sym6[0],sym6[3],sym6[5]],
|
||||||
sigma33[0,0] = sigma6[0]; sigma33[1,1] = sigma6[1]; sigma33[2,2] = sigma6[2];
|
[sym6[3],sym6[1],sym6[4]],
|
||||||
sigma33[0,1] = sigma6[3]; sigma33[1,0] = sigma6[3]
|
[sym6[5],sym6[4],sym6[2]]])
|
||||||
sigma33[1,2] = sigma6[4]; sigma33[2,1] = sigma6[4]
|
|
||||||
sigma33[2,0] = sigma6[5]; sigma33[0,2] = sigma6[5]
|
|
||||||
return sigma33
|
|
||||||
|
|
||||||
|
def t33toSym6(t33):
|
||||||
|
''' Shape the stress tensor(3,3) into symmetric (6) '''
|
||||||
|
return np.array([ t33[0,0],
|
||||||
|
t33[1,1],
|
||||||
|
t33[2,2],
|
||||||
|
(t33[0,1] + t33[1,0])/2.0, # 0 3 5
|
||||||
|
(t33[1,2] + t33[2,1])/2.0, # * 1 4
|
||||||
|
(t33[2,0] + t33[0,2])/2.0,]) # * * 2
|
||||||
|
|
||||||
class Criteria(object):
|
class Criteria(object):
|
||||||
'''
|
'''
|
||||||
residuum of anisotropic Barlat 1991 yield criterion (eq. 2.37)
|
needs doc string
|
||||||
'''
|
'''
|
||||||
def __init__(self, criterion, uniaxialStress,exponent, dimension):
|
def __init__(self, criterion, uniaxialStress,exponent, dimension):
|
||||||
self.stress0 = uniaxialStress
|
self.stress0 = uniaxialStress
|
||||||
|
@ -978,13 +987,10 @@ class Loadcase():
|
||||||
'''
|
'''
|
||||||
|
|
||||||
# ------------------------------------------------------------------
|
# ------------------------------------------------------------------
|
||||||
def __init__(self,finalStrain,incs,time,ND=3,RD=1,nSet=1,dimension=3,vegter=False):
|
def __init__(self,finalStrain,incs,time,nSet=1,dimension=3,vegter=False):
|
||||||
damask.util.croak('Using the random load case generator')
|
|
||||||
self.finalStrain = finalStrain
|
self.finalStrain = finalStrain
|
||||||
self.incs = incs
|
self.incs = incs
|
||||||
self.time = time
|
self.time = time
|
||||||
self.ND = ND
|
|
||||||
self.RD = RD
|
|
||||||
self.nSet = nSet
|
self.nSet = nSet
|
||||||
self.dimension = dimension
|
self.dimension = dimension
|
||||||
self.vegter = vegter
|
self.vegter = vegter
|
||||||
|
@ -1141,8 +1147,10 @@ class Criterion(object):
|
||||||
bounds = fitCriteria[nameCriterion]['bound'][dDim] # Default bounds, no bound
|
bounds = fitCriteria[nameCriterion]['bound'][dDim] # Default bounds, no bound
|
||||||
guess0 = Guess # Default initial guess, depends on bounds
|
guess0 = Guess # Default initial guess, depends on bounds
|
||||||
|
|
||||||
if fitResults == [] : initialguess = guess0
|
if fitResults == []:
|
||||||
else : initialguess = np.array(fitResults[-1])
|
initialguess = guess0
|
||||||
|
else:
|
||||||
|
initialguess = np.array(fitResults[-1])
|
||||||
|
|
||||||
ydata = np.zeros(np.shape(stress)[1])
|
ydata = np.zeros(np.shape(stress)[1])
|
||||||
try:
|
try:
|
||||||
|
@ -1185,13 +1193,14 @@ class myThread (threading.Thread):
|
||||||
conv=converged()
|
conv=converged()
|
||||||
s.release()
|
s.release()
|
||||||
while not conv:
|
while not conv:
|
||||||
doSim(4.,self.name)
|
doSim(self.name)
|
||||||
s.acquire()
|
s.acquire()
|
||||||
conv=converged()
|
conv=converged()
|
||||||
s.release()
|
s.release()
|
||||||
|
|
||||||
def doSim(delay,thread):
|
def doSim(thread):
|
||||||
|
|
||||||
|
# if load case do not exist, create new one
|
||||||
s.acquire()
|
s.acquire()
|
||||||
global myLoad
|
global myLoad
|
||||||
loadNo=loadcaseNo()
|
loadNo=loadcaseNo()
|
||||||
|
@ -1203,13 +1212,15 @@ def doSim(delay,thread):
|
||||||
s.release()
|
s.release()
|
||||||
else: s.release()
|
else: s.release()
|
||||||
|
|
||||||
|
# if spectralOut does not exist, run simulation
|
||||||
s.acquire()
|
s.acquire()
|
||||||
if not os.path.isfile('%s_%i.spectralOut'%(options.geometry,loadNo)):
|
if not os.path.isfile('%s_%i.spectralOut'%(options.geometry,loadNo)):
|
||||||
damask.util.croak('Starting simulation %i (%s)'%(loadNo,thread))
|
damask.util.croak('Starting simulation %i (%s)'%(loadNo,thread))
|
||||||
s.release()
|
s.release()
|
||||||
damask.util.execute('DAMASK_spectral -g %s -l %i'%(options.geometry,loadNo))
|
damask.util.execute('DAMASK_spectral -g %s -l %i'%(options.geometry,loadNo))
|
||||||
else: s.release()
|
else: s.release()
|
||||||
|
|
||||||
|
# if ASCII tables do not exist, run postprocessing
|
||||||
s.acquire()
|
s.acquire()
|
||||||
if not os.path.isfile('./postProc/%s_%i.txt'%(options.geometry,loadNo)):
|
if not os.path.isfile('./postProc/%s_%i.txt'%(options.geometry,loadNo)):
|
||||||
damask.util.croak('Starting post processing for simulation %i (%s)'%(loadNo,thread))
|
damask.util.croak('Starting post processing for simulation %i (%s)'%(loadNo,thread))
|
||||||
|
@ -1223,63 +1234,59 @@ def doSim(delay,thread):
|
||||||
damask.util.execute('addMises -s Cauchy -e ln(V) ./postProc/%s_%i.txt'%(options.geometry,loadNo))
|
damask.util.execute('addMises -s Cauchy -e ln(V) ./postProc/%s_%i.txt'%(options.geometry,loadNo))
|
||||||
else: s.release()
|
else: s.release()
|
||||||
|
|
||||||
|
# reading values from ASCII table (including linear interpolation between points)
|
||||||
s.acquire()
|
s.acquire()
|
||||||
damask.util.croak('Reading values from simulation %i (%s)'%(loadNo,thread))
|
damask.util.croak('Reading values from simulation %i (%s)'%(loadNo,thread))
|
||||||
s.release()
|
|
||||||
|
|
||||||
refFile = './postProc/%s_%i.txt'%(options.geometry,loadNo)
|
refFile = './postProc/%s_%i.txt'%(options.geometry,loadNo)
|
||||||
table = damask.ASCIItable(refFile)
|
table = damask.ASCIItable(refFile)
|
||||||
table.head_read()
|
table.head_read()
|
||||||
|
|
||||||
if options.fitting =='equivalentStrain':
|
if options.fitting =='equivalentStrain':
|
||||||
thresholdKey = 'Mises(ln(V))'
|
thresholdKey = 'Mises(ln(V))'
|
||||||
elif options.fitting =='totalshear':
|
elif options.fitting =='totalshear':
|
||||||
thresholdKey = 'totalshear'
|
thresholdKey = 'totalshear'
|
||||||
s.acquire()
|
|
||||||
for l in [thresholdKey,'1_Cauchy']:
|
for l in [thresholdKey,'1_Cauchy']:
|
||||||
if l not in table.labels: damask.util.croak('%s not found'%l)
|
if l not in table.labels: damask.util.croak('%s not found'%l)
|
||||||
s.release()
|
s.release()
|
||||||
|
|
||||||
table.data_readArray(['%i_Cauchy'%(i+1) for i in xrange(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in xrange(9)])
|
table.data_readArray(['%i_Cauchy'%(i+1) for i in xrange(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in xrange(9)])
|
||||||
|
|
||||||
line = 0
|
validity = np.zeros((int(options.yieldValue[2])), dtype=bool) # found data for desired threshold
|
||||||
lines = np.shape(table.data)[0]
|
|
||||||
validity = np.zeros((int(options.yieldValue[2])), dtype=bool)
|
|
||||||
yieldStress = np.empty((int(options.yieldValue[2]),6),'d')
|
yieldStress = np.empty((int(options.yieldValue[2]),6),'d')
|
||||||
deformationRate = np.empty((int(options.yieldValue[2]),6),'d')
|
deformationRate = np.empty((int(options.yieldValue[2]),6),'d')
|
||||||
|
|
||||||
|
line = 0
|
||||||
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
|
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
|
||||||
while line < lines:
|
while line < np.shape(table.data)[0]:
|
||||||
if abs(table.data[line,9])>= threshold:
|
if abs(table.data[line,9])>= threshold:
|
||||||
upper,lower = abs(table.data[line,9]),abs(table.data[line-1,9]) # values for linear interpolation
|
upper,lower = abs(table.data[line,9]),abs(table.data[line-1,9]) # values for linear interpolation
|
||||||
stress = np.array(table.data[line-1,0:9] * (upper-threshold)/(upper-lower) + \
|
stress = np.array(table.data[line-1,0:9] * (upper-threshold)/(upper-lower) + \
|
||||||
table.data[line ,0:9] * (threshold-lower)/(upper-lower)).reshape(3,3) # linear interpolation of stress values
|
table.data[line ,0:9] * (threshold-lower)/(upper-lower)).reshape(3,3) # linear interpolation of stress values
|
||||||
#stress = 0.5*(stress+stress.T) # symmetrise
|
yieldStress[i,:] = t33toSym6(stress)
|
||||||
#for the mapping, a fuction from DAMASK (33to6) simplifies
|
|
||||||
dstrain= np.array(table.data[line,10:] - table.data[line-1,10:]).reshape(3,3)
|
dstrain= np.array(table.data[line,10:] - table.data[line-1,10:]).reshape(3,3)
|
||||||
#
|
deformationRate[i,:] = t33toSym6(dstrain)
|
||||||
yieldStress[i,0]= stress[0,0]; yieldStress[i,1]=stress[1,1]; yieldStress[i,2]=stress[2,2]
|
|
||||||
yieldStress[i,3]=(stress[0,1] + stress[1,0])/2.0 # 0 3 5
|
|
||||||
yieldStress[i,4]=(stress[1,2] + stress[2,1])/2.0 # * 1 4 yieldStress
|
|
||||||
yieldStress[i,5]=(stress[2,0] + stress[0,2])/2.0 # * * 2
|
|
||||||
|
|
||||||
# D*dt = 0.5(L+L^T)*dt = 0.5*d(lnF + lnF^T) = dlnV
|
|
||||||
deformationRate[i,0]= dstrain[0,0]; deformationRate[i,1]=dstrain[1,1]; deformationRate[i,2]=dstrain[2,2]
|
|
||||||
deformationRate[i,3]=(dstrain[0,1] + dstrain[1,0])/2.0 # 0 3 5
|
|
||||||
deformationRate[i,4]=(dstrain[1,2] + dstrain[2,1])/2.0 # * 1 4
|
|
||||||
deformationRate[i,5]=(dstrain[2,0] + dstrain[0,2])/2.0 # * * 2
|
|
||||||
validity[i] = True
|
validity[i] = True
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
line+=1
|
line+=1
|
||||||
if not validity[i]:
|
if not validity[i]:
|
||||||
damask.util.croak('The data of result %i at the threshold %f is invalid,'\
|
s.acquire()
|
||||||
+'the fitting at this point is skipped'%(loadNo,threshold))
|
#damask.util.croak('The data of result %i at the threshold %f is invalid,'\
|
||||||
|
# +'the fitting at this point is skipped'%(loadNo,threshold))
|
||||||
|
s.release()
|
||||||
|
|
||||||
|
# do the actual fitting procedure and write results to file
|
||||||
s.acquire()
|
s.acquire()
|
||||||
global stressAll, strainAll
|
global stressAll, strainAll
|
||||||
f=open(options.geometry+'_'+options.criterion+'.txt','w')
|
f=open(options.geometry+'_'+options.criterion+'_'+str(time.time())+'.txt','w')
|
||||||
|
print myFit.report_labels()
|
||||||
f.write(' '.join([options.fitting]+myFit.report_labels())+'\n')
|
f.write(' '.join([options.fitting]+myFit.report_labels())+'\n')
|
||||||
try:
|
try:
|
||||||
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
|
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
|
||||||
if validity[i]:
|
if validity[i]:
|
||||||
a = (yieldStress[0][2]/stressUnit)**2 + (yieldStress[0][4]/stressUnit)**2 + (yieldStress[0][5]/stressUnit)**2
|
|
||||||
stressAll[i]=np.append(stressAll[i], yieldStress[i]/stressUnit)
|
stressAll[i]=np.append(stressAll[i], yieldStress[i]/stressUnit)
|
||||||
strainAll[i]=np.append(strainAll[i], deformationRate[i])
|
strainAll[i]=np.append(strainAll[i], deformationRate[i])
|
||||||
f.write( str(threshold)+' '+
|
f.write( str(threshold)+' '+
|
||||||
|
@ -1338,7 +1345,7 @@ parser.add_option('-t','--threads', dest='threads', type='int',
|
||||||
help='number of parallel executions [%default]', metavar='int')
|
help='number of parallel executions [%default]', metavar='int')
|
||||||
parser.add_option('-b','--bound', dest='bounds', type='float', nargs=2,
|
parser.add_option('-b','--bound', dest='bounds', type='float', nargs=2,
|
||||||
help='yield points: start; end; count %default', metavar='float float')
|
help='yield points: start; end; count %default', metavar='float float')
|
||||||
parser.add_option('-d','--dimension', dest='dimension', type='int',
|
parser.add_option('-d','--dimension', dest='dimension', type='choice', choices=['2','3'],
|
||||||
help='dimension of the virtual test [%default]', metavar='int')
|
help='dimension of the virtual test [%default]', metavar='int')
|
||||||
parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
|
parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
|
||||||
help='Vegter criteria [%default]', metavar='float')
|
help='Vegter criteria [%default]', metavar='float')
|
||||||
|
@ -1356,7 +1363,7 @@ parser.set_defaults(criterion = 'vonmises')
|
||||||
parser.set_defaults(fitting = 'totalshear')
|
parser.set_defaults(fitting = 'totalshear')
|
||||||
parser.set_defaults(geometry = '20grains16x16x16')
|
parser.set_defaults(geometry = '20grains16x16x16')
|
||||||
parser.set_defaults(bounds = None)
|
parser.set_defaults(bounds = None)
|
||||||
parser.set_defaults(dimension = 3)
|
parser.set_defaults(dimension = '3')
|
||||||
parser.set_defaults(vegter = 'False')
|
parser.set_defaults(vegter = 'False')
|
||||||
parser.set_defaults(exponent = -1.0)
|
parser.set_defaults(exponent = -1.0)
|
||||||
|
|
||||||
|
@ -1376,20 +1383,21 @@ if options.yieldValue[0]>options.yieldValue[1]:
|
||||||
parser.error('invalid yield start (below yield end)')
|
parser.error('invalid yield start (below yield end)')
|
||||||
if options.yieldValue[2] != int(options.yieldValue[2]):
|
if options.yieldValue[2] != int(options.yieldValue[2]):
|
||||||
parser.error('count must be an integer')
|
parser.error('count must be an integer')
|
||||||
if options.dimension not in [2,3]:
|
|
||||||
parser.error('Dimension is wrong, should be 2(plane stress state) or 3(general stress state)')
|
|
||||||
if not os.path.isfile('numerics.config'):
|
if not os.path.isfile('numerics.config'):
|
||||||
damask.util.croak('numerics.config file not found')
|
damask.util.croak('numerics.config file not found')
|
||||||
|
|
||||||
if not os.path.isfile('material.config'):
|
if not os.path.isfile('material.config'):
|
||||||
damask.util.croak('material.config file not found')
|
damask.util.croak('material.config file not found')
|
||||||
|
|
||||||
|
|
||||||
if options.vegter is True:
|
if options.vegter is True:
|
||||||
options.dimension = 2
|
options.dimension = 2
|
||||||
|
else:
|
||||||
|
options.dimension = int(options.dimension)
|
||||||
|
|
||||||
if options.criterion == 'hill1948': stressUnit = 1.0e9
|
if options.criterion == 'hill1948': stressUnit = 1.0e9
|
||||||
else : stressUnit = 1.0e6
|
else : stressUnit = 1.0e6
|
||||||
|
|
||||||
fit_allResults = {}
|
fit_allResults = {}
|
||||||
if options.criterion == 'all':
|
if options.criterion == 'all':
|
||||||
noExpoList = ['tresca', 'vonmises', 'hill1948', 'drucker']
|
noExpoList = ['tresca', 'vonmises', 'hill1948', 'drucker']
|
||||||
|
@ -1397,8 +1405,7 @@ if options.criterion == 'all':
|
||||||
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter)
|
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter)
|
||||||
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
|
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
|
||||||
for criter in [x for x in fitCriteria.keys() if x not in noExpoList+['vegter','all'] ]:
|
for criter in [x for x in fitCriteria.keys() if x not in noExpoList+['vegter','all'] ]:
|
||||||
if options.eqStress == None:
|
if options.eqStress == None: # the user does not provide the equivalent stress, the equivalent stress will be fitted by von Mises
|
||||||
# the user do not provide the equivalent stress, the equivalent stress will be fitted by von Mises
|
|
||||||
eqStress = fit_allResults['vonmises']['results'][-1]
|
eqStress = fit_allResults['vonmises']['results'][-1]
|
||||||
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)
|
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)
|
||||||
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
|
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
|
||||||
|
@ -1407,8 +1414,7 @@ else:
|
||||||
if fitCriteria[criter]['nExpo'] == 0:
|
if fitCriteria[criter]['nExpo'] == 0:
|
||||||
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter)
|
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], criter)
|
||||||
else:
|
else:
|
||||||
if options.eqStress == None:
|
if options.eqStress == None: # the user does not provide the equivalent stress, the equivalent stress will be fitted by von Mises
|
||||||
# the user do not provide the equivalent stress, the equivalent stress will be fitted by von Mises
|
|
||||||
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], 'vonmises')
|
run = runFit(options.exponent, 0.0, fitCriteria[criter]['dimen'], 'vonmises')
|
||||||
eqStress = fitResults[-1]
|
eqStress = fitResults[-1]
|
||||||
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)
|
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)
|
||||||
|
|
Loading…
Reference in New Issue