From 464620b796d89d2318b06fdde7530207a6e3f783 Mon Sep 17 00:00:00 2001 From: Martin Diehl Date: Wed, 8 Apr 2020 20:50:42 +0200 Subject: [PATCH] vectorized conversion from ax(is angle) --- python/damask/_rotation.py | 87 +++++++++++++++++++++++++---------- python/tests/test_Rotation.py | 14 +++++- 2 files changed, 75 insertions(+), 26 deletions(-) diff --git a/python/damask/_rotation.py b/python/damask/_rotation.py index 1325c3b3e..a2d26949d 100644 --- a/python/damask/_rotation.py +++ b/python/damask/_rotation.py @@ -653,27 +653,50 @@ class Rotation: @staticmethod def ax2qu(ax): """Axis angle pair to quaternion.""" - if np.abs(ax[3])<1.e-6: - qu = np.array([ 1.0, 0.0, 0.0, 0.0 ]) + if len(ax.shape) == 1: + if np.abs(ax[3])<1.e-6: + qu = np.array([ 1.0, 0.0, 0.0, 0.0 ]) + else: + c = np.cos(ax[3]*0.5) + s = np.sin(ax[3]*0.5) + qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ]) + return qu else: - c = np.cos(ax[3]*0.5) - s = np.sin(ax[3]*0.5) - qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ]) - return qu + c = np.cos(ax[...,3:4]*.5) + s = np.sin(ax[...,3:4]*.5) + qu = np.where(np.abs(ax[...,3:4])<1.e-12, + [1.0, 0.0, 0.0, 0.0], + np.block([c, ax[...,:3]*s])) + return qu @staticmethod def ax2om(ax): """Axis angle pair to rotation matrix.""" - c = np.cos(ax[3]) - s = np.sin(ax[3]) - omc = 1.0-c - om=np.diag(ax[0:3]**2*omc + c) + if len(ax.shape) == 1: + c = np.cos(ax[3]) + s = np.sin(ax[3]) + omc = 1.0-c + om=np.diag(ax[0:3]**2*omc + c) - for idx in [[0,1,2],[1,2,0],[2,0,1]]: - q = omc*ax[idx[0]] * ax[idx[1]] - om[idx[0],idx[1]] = q + s*ax[idx[2]] - om[idx[1],idx[0]] = q - s*ax[idx[2]] - return om if P < 0.0 else om.T + for idx in [[0,1,2],[1,2,0],[2,0,1]]: + q = omc*ax[idx[0]] * ax[idx[1]] + om[idx[0],idx[1]] = q + s*ax[idx[2]] + om[idx[1],idx[0]] = q - s*ax[idx[2]] + return om if P < 0.0 else om.T + else: + c = np.cos(ax[...,3:4]) + s = np.sin(ax[...,3:4]) + omc = 1. -c + ax = np.block([c+omc*ax[...,0:1]**2, + omc*ax[...,0:1]*ax[...,1:2] + s*ax[...,2:3], + omc*ax[...,0:1]*ax[...,2:3] - s*ax[...,1:2], + omc*ax[...,0:1]*ax[...,1:2] - s*ax[...,2:3], + c+omc*ax[...,1:2]**2, + omc*ax[...,1:2]*ax[...,2:3] + s*ax[...,0:1], + omc*ax[...,0:1]*ax[...,2:3] + s*ax[...,1:2], + omc*ax[...,1:2]*ax[...,2:3] - s*ax[...,0:1], + c+omc*ax[...,2:3]**2]).reshape(ax.shape[:-1]+(3,3)) + return ax @staticmethod def ax2eu(ax): @@ -683,21 +706,35 @@ class Rotation: @staticmethod def ax2ro(ax): """Axis angle pair to Rodrigues-Frank vector.""" - if np.abs(ax[3])<1.e-6: - ro = [ 0.0, 0.0, P, 0.0 ] + if len(ax.shape) == 1: + if np.abs(ax[3])<1.e-6: + ro = [ 0.0, 0.0, P, 0.0 ] + else: + ro = [ax[0], ax[1], ax[2]] + # 180 degree case + ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \ + [np.tan(ax[3]*0.5)] + return np.array(ro) else: - ro = [ax[0], ax[1], ax[2]] - # 180 degree case - ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \ - [np.tan(ax[3]*0.5)] - return np.array(ro) + ro = np.block([ax[...,:3], + np.where(np.isclose(ax[...,3:4],np.pi,atol=1.e-15,rtol=.0), + np.inf, + np.tan(ax[...,3:4]*0.5)) + ]) + ro[np.abs(ax[...,3])<1.e-6] = [.0,.0,P,.0] + return ro @staticmethod def ax2ho(ax): """Axis angle pair to homochoric vector.""" - f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0) - ho = ax[0:3] * f - return ho + if len(ax.shape) == 1: + f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0) + ho = ax[0:3] * f + return ho + else: + f = (0.75 * ( ax[...,3:4] - np.sin(ax[...,3:4]) ))**(1.0/3.0) + ho = ax[...,:3] * f + return ho @staticmethod def ax2cu(ax): diff --git a/python/tests/test_Rotation.py b/python/tests/test_Rotation.py index cec0ce22c..13c474ca7 100644 --- a/python/tests/test_Rotation.py +++ b/python/tests/test_Rotation.py @@ -78,7 +78,7 @@ def default(): specials /= np.linalg.norm(specials,axis=1).reshape(-1,1) specials[specials[:,0]<0]*=-1 return [Rotation.fromQuaternion(s) for s in specials] + \ - [Rotation.fromRandom() for r in range(n-len(specials))] + [Rotation.fromRandom() for _ in range(n-len(specials))] @pytest.fixture def reference_dir(reference_dir_base): @@ -149,3 +149,15 @@ class TestRotation: o = Rotation.fromQuaternion(rot.asQuaternion()).asCubochoric() print(m,o,rot.asQuaternion()) assert np.allclose(m,o,atol=atol) + + @pytest.mark.parametrize('conversion',[Rotation.ax2qu, + Rotation.ax2om, + Rotation.ax2ro, + Rotation.ax2ho, + ]) + def test_axisAngle_vectorization(self,default,conversion): + ax = np.array([rot.asAxisAngle() for rot in default]) + dev_null = conversion(ax.reshape(ax.shape[0]//2,-1,4)) + co = conversion(ax) + for a,c in zip(ax,co): + assert np.allclose(conversion(a),c)