introduced pointer aliases for state, abstol and dotate and type structure for input parameters
This commit is contained in:
parent
8bc7f3a3a3
commit
45c7bfa93d
|
@ -20,61 +20,63 @@ module plastic_isotropic
|
|||
|
||||
implicit none
|
||||
private
|
||||
integer(pInt), dimension(:), allocatable, public, protected :: &
|
||||
plastic_isotropic_sizePostResults !< cumulative size of post results
|
||||
|
||||
integer(pInt), dimension(:,:), allocatable, target, public :: &
|
||||
plastic_isotropic_sizePostResult !< size of each post result output
|
||||
|
||||
character(len=64), dimension(:,:), allocatable, target, public :: &
|
||||
plastic_isotropic_output !< name of each post result output
|
||||
|
||||
integer(pInt), dimension(:), allocatable, target, public :: &
|
||||
plastic_isotropic_Noutput !< number of outputs per instance
|
||||
|
||||
logical, dimension(:), allocatable, private :: &
|
||||
plastic_isotropic_dilatation !< flag to indicate dilatation contribution of plasticity
|
||||
|
||||
real(pReal), dimension(:), allocatable, private :: &
|
||||
plastic_isotropic_fTaylor, & !< Taylor factor
|
||||
plastic_isotropic_tau0, & !< initial plastic stress
|
||||
plastic_isotropic_gdot0, & !< reference velocity
|
||||
plastic_isotropic_n, & !< Visco-plastic parameter
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! h0 as function of h0 = A + B log (gammadot)
|
||||
plastic_isotropic_h0, &
|
||||
plastic_isotropic_h0_slopeLnRate, &
|
||||
plastic_isotropic_tausat, & !< final plastic stress
|
||||
plastic_isotropic_a, &
|
||||
plastic_isotropic_aTolResistance, &
|
||||
plastic_isotropic_aTolShear, &
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
|
||||
plastic_isotropic_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
|
||||
plastic_isotropic_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
|
||||
plastic_isotropic_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
|
||||
plastic_isotropic_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
|
||||
|
||||
enum, bind(c)
|
||||
enumerator :: undefined_ID, &
|
||||
flowstress_ID, &
|
||||
strainrate_ID
|
||||
end enum
|
||||
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
|
||||
plastic_isotropic_outputID !< ID of each post result output
|
||||
|
||||
type, private :: tParameters !< container type for internal constitutive parameters
|
||||
character(len=64), allocatable, dimension(:) :: &
|
||||
output !< name of each post result output
|
||||
integer(pInt) :: &
|
||||
Noutput
|
||||
integer(kind(undefined_ID)), allocatable, dimension(:) :: &
|
||||
outputID
|
||||
real(pReal) :: &
|
||||
fTaylor, &
|
||||
tau0, &
|
||||
gdot0, &
|
||||
n, &
|
||||
h0, &
|
||||
h0_slopeLnRate, &
|
||||
tausat, &
|
||||
a, &
|
||||
aTolFlowstress, &
|
||||
aTolShear , &
|
||||
tausat_SinhFitA, &
|
||||
tausat_SinhFitB, &
|
||||
tausat_SinhFitC, &
|
||||
tausat_SinhFitD
|
||||
logical :: &
|
||||
dilatation
|
||||
end type
|
||||
|
||||
#ifdef HDF
|
||||
type plastic_isotropic_tOutput
|
||||
real(pReal), dimension(:), allocatable, private :: &
|
||||
type(tParameters), dimension(:), allocatable, private :: param !< containers of constitutive parameters (len Ninstance)
|
||||
|
||||
type, private :: tIsotropicState !< internal state aliases
|
||||
real(pReal), pointer, dimension(:) :: & ! scalars along NipcMyInstance
|
||||
flowstress, &
|
||||
strainrate
|
||||
logical :: flowstressActive = .false., strainrateActive = .false. ! if we can write the output block wise, this is not needed anymore because we can do an if(allocated(xxx))
|
||||
end type plastic_isotropic_tOutput
|
||||
type(plastic_isotropic_tOutput), allocatable, dimension(:) :: plastic_isotropic_Output2
|
||||
integer(HID_T), allocatable, dimension(:) :: outID
|
||||
#endif
|
||||
accumulatedShear
|
||||
end type
|
||||
type, private :: tIsotropicAbsTol !< internal alias for abs tolerance in state
|
||||
real(pReal), pointer :: & ! scalars along NipcMyInstance
|
||||
flowstress, &
|
||||
accumulatedShear
|
||||
end type
|
||||
type(tIsotropicState), allocatable, dimension(:), private :: & !< state aliases per instance
|
||||
state, &
|
||||
state0, &
|
||||
dotState
|
||||
type(tIsotropicAbsTol), allocatable, dimension(:), private :: & !< state aliases per instance
|
||||
stateAbsTol
|
||||
|
||||
integer(pInt), dimension(:), allocatable, public, protected :: &
|
||||
plastic_isotropic_sizePostResults !< cumulative size of post results
|
||||
|
||||
integer(pInt), dimension(:,:), allocatable, target, public :: &
|
||||
plastic_isotropic_sizePostResult !< size of each post result output
|
||||
|
||||
public :: &
|
||||
plastic_isotropic_init, &
|
||||
|
@ -92,9 +94,6 @@ contains
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_isotropic_init(fileUnit)
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
||||
#ifdef HDF
|
||||
use hdf5
|
||||
#endif
|
||||
use debug, only: &
|
||||
debug_level, &
|
||||
debug_constitutive, &
|
||||
|
@ -116,11 +115,6 @@ subroutine plastic_isotropic_init(fileUnit)
|
|||
IO_floatValue, &
|
||||
IO_error, &
|
||||
IO_timeStamp, &
|
||||
#ifdef HDF
|
||||
tempResults, &
|
||||
HDF5_addGroup, &
|
||||
HDF5_addScalarDataset,&
|
||||
#endif
|
||||
IO_EOF
|
||||
use material, only: &
|
||||
phase_plasticity, &
|
||||
|
@ -142,22 +136,18 @@ subroutine plastic_isotropic_init(fileUnit)
|
|||
integer(pInt) :: &
|
||||
o, &
|
||||
phase, &
|
||||
maxNinstance, &
|
||||
instance, &
|
||||
maxNinstance, &
|
||||
mySize, &
|
||||
sizeDotState, &
|
||||
sizeState, &
|
||||
sizeDeltaState
|
||||
character(len=65536) :: &
|
||||
tag = '', &
|
||||
line = ''
|
||||
integer(pInt) :: NofMyPhase
|
||||
|
||||
#ifdef HDF
|
||||
character(len=5) :: &
|
||||
str1
|
||||
integer(HID_T) :: ID,ID2,ID4
|
||||
#endif
|
||||
outputtag = '', &
|
||||
line = '', &
|
||||
extmsg = ''
|
||||
integer(pInt) :: NipcMyPhase
|
||||
|
||||
mainProcess: if (worldrank == 0) then
|
||||
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_ISOTROPIC_label//' init -+>>>'
|
||||
|
@ -172,32 +162,7 @@ subroutine plastic_isotropic_init(fileUnit)
|
|||
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
|
||||
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
|
||||
|
||||
#ifdef HDF
|
||||
allocate(plastic_isotropic_Output2(maxNinstance))
|
||||
allocate(outID(maxNinstance))
|
||||
#endif
|
||||
|
||||
allocate(plastic_isotropic_sizePostResults(maxNinstance), source=0_pInt)
|
||||
allocate(plastic_isotropic_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt)
|
||||
allocate(plastic_isotropic_output(maxval(phase_Noutput), maxNinstance))
|
||||
plastic_isotropic_output = ''
|
||||
allocate(plastic_isotropic_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
|
||||
allocate(plastic_isotropic_Noutput(maxNinstance), source=0_pInt)
|
||||
allocate(plastic_isotropic_fTaylor(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_tau0(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_gdot0(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_n(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_h0(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_h0_slopeLnRate(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_tausat(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_a(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_aTolResistance(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_aTolShear (maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_tausat_SinhFitA(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_tausat_SinhFitB(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_tausat_SinhFitC(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_tausat_SinhFitD(maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_isotropic_dilatation(maxNinstance), source=.false.)
|
||||
allocate(param(maxNinstance)) ! one container of parameters per instance
|
||||
|
||||
rewind(fileUnit)
|
||||
phase = 0_pInt
|
||||
|
@ -216,87 +181,85 @@ subroutine plastic_isotropic_init(fileUnit)
|
|||
phase = phase + 1_pInt ! advance section counter
|
||||
if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then
|
||||
instance = phase_plasticityInstance(phase)
|
||||
#ifdef HDF
|
||||
outID(instance)=HDF5_addGroup(str1,tempResults)
|
||||
#endif
|
||||
|
||||
endif
|
||||
cycle ! skip to next line
|
||||
endif
|
||||
if (phase > 0_pInt) then; if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
|
||||
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
|
||||
allocate(param(instance)%output(phase_Noutput(phase))) ! allocate space for strings of every requested output
|
||||
allocate(param(instance)%outputID(phase_Noutput(phase))) ! allocate space for IDs of every requested output
|
||||
chunkPos = IO_stringPos(line)
|
||||
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
|
||||
extmsg = trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')' ! prepare error message identifier
|
||||
|
||||
select case(tag)
|
||||
case ('(output)')
|
||||
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
|
||||
outputtag = IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||||
select case(outputtag)
|
||||
case ('flowstress')
|
||||
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt
|
||||
plastic_isotropic_outputID(plastic_isotropic_Noutput(instance),instance) = flowstress_ID
|
||||
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = &
|
||||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||||
#ifdef HDF
|
||||
call HDF5_addScalarDataset(outID(instance),myConstituents,'flowstress','MPa')
|
||||
allocate(plastic_isotropic_Output2(instance)%flowstress(myConstituents))
|
||||
plastic_isotropic_Output2(instance)%flowstressActive = .true.
|
||||
#endif
|
||||
param(instance)%Noutput = param(instance)%Noutput + 1
|
||||
param(instance)%outputID (param(instance)%Noutput) = flowstress_ID
|
||||
param(instance)%output (param(instance)%Noutput) = outputtag
|
||||
case ('strainrate')
|
||||
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt
|
||||
plastic_isotropic_outputID(plastic_isotropic_Noutput(instance),instance) = strainrate_ID
|
||||
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = &
|
||||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||||
#ifdef HDF
|
||||
call HDF5_addScalarDataset(outID(instance),myConstituents,'strainrate','1/s')
|
||||
allocate(plastic_isotropic_Output2(instance)%strainrate(myConstituents))
|
||||
plastic_isotropic_Output2(instance)%strainrateActive = .true.
|
||||
#endif
|
||||
param(instance)%Noutput = param(instance)%Noutput + 1
|
||||
param(instance)%outputID (param(instance)%Noutput) = strainrate_ID
|
||||
param(instance)%output (param(instance)%Noutput) = outputtag
|
||||
case default
|
||||
|
||||
end select
|
||||
|
||||
case ('/dilatation/')
|
||||
plastic_isotropic_dilatation(instance) = .true.
|
||||
param(instance)%dilatation = .true.
|
||||
|
||||
case ('tau0')
|
||||
plastic_isotropic_tau0(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (plastic_isotropic_tau0(instance) < 0.0_pReal) &
|
||||
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
|
||||
param(instance)%tau0 = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (param(instance)%tau0 < 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
|
||||
|
||||
case ('gdot0')
|
||||
plastic_isotropic_gdot0(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (plastic_isotropic_gdot0(instance) <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
|
||||
param(instance)%gdot0 = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (param(instance)%gdot0 <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
|
||||
|
||||
case ('n')
|
||||
plastic_isotropic_n(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (plastic_isotropic_n(instance) <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
|
||||
param(instance)%n = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (param(instance)%n <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
|
||||
|
||||
case ('h0')
|
||||
plastic_isotropic_h0(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
param(instance)%h0 = IO_floatValue(line,chunkPos,2_pInt)
|
||||
|
||||
case ('h0_slope','slopelnrate')
|
||||
plastic_isotropic_h0_slopeLnRate(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
param(instance)%h0_slopeLnRate = IO_floatValue(line,chunkPos,2_pInt)
|
||||
|
||||
case ('tausat')
|
||||
plastic_isotropic_tausat(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (plastic_isotropic_tausat(instance) <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
|
||||
param(instance)%tausat = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (param(instance)%tausat <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
|
||||
|
||||
case ('tausat_sinhfita')
|
||||
plastic_isotropic_tausat_SinhFitA(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
param(instance)%tausat_SinhFitA = IO_floatValue(line,chunkPos,2_pInt)
|
||||
|
||||
case ('tausat_sinhfitb')
|
||||
plastic_isotropic_tausat_SinhFitB(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
param(instance)%tausat_SinhFitB = IO_floatValue(line,chunkPos,2_pInt)
|
||||
|
||||
case ('tausat_sinhfitc')
|
||||
plastic_isotropic_tausat_SinhFitC(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
param(instance)%tausat_SinhFitC = IO_floatValue(line,chunkPos,2_pInt)
|
||||
|
||||
case ('tausat_sinhfitd')
|
||||
plastic_isotropic_tausat_SinhFitD(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
param(instance)%tausat_SinhFitD = IO_floatValue(line,chunkPos,2_pInt)
|
||||
|
||||
case ('a', 'w0')
|
||||
plastic_isotropic_a(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (plastic_isotropic_a(instance) <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
|
||||
param(instance)%a = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (param(instance)%a <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
|
||||
|
||||
case ('taylorfactor')
|
||||
plastic_isotropic_fTaylor(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (plastic_isotropic_fTaylor(instance) <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
|
||||
case ('atol_resistance')
|
||||
plastic_isotropic_aTolResistance(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (plastic_isotropic_aTolResistance(instance) <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
|
||||
param(instance)%fTaylor = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (param(instance)%fTaylor <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
|
||||
|
||||
case ('atol_flowstress')
|
||||
param(instance)%aTolFlowstress = IO_floatValue(line,chunkPos,2_pInt)
|
||||
if (param(instance)%aTolFlowstress <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
|
||||
|
||||
case ('atol_shear')
|
||||
plastic_isotropic_aTolShear(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||||
param(instance)%aTolShear = IO_floatValue(line,chunkPos,2_pInt)
|
||||
|
||||
case default
|
||||
|
||||
|
@ -304,19 +267,24 @@ subroutine plastic_isotropic_init(fileUnit)
|
|||
endif; endif
|
||||
enddo parsingFile
|
||||
|
||||
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
|
||||
myPhase: if (phase_plasticity(phase) == PLASTICITY_isotropic_ID) then
|
||||
NofMyPhase=count(material_phase==phase)
|
||||
allocate(state(maxNinstance)) ! internal state aliases
|
||||
allocate(state0(maxNinstance))
|
||||
allocate(dotState(maxNinstance))
|
||||
allocate(stateAbsTol(maxNinstance))
|
||||
|
||||
initializeInstances: do phase = 1_pInt, size(phase_plasticity) ! loop over every plasticity
|
||||
myPhase: if (phase_plasticity(phase) == PLASTICITY_isotropic_ID) then ! isolate instances of own constitutive description
|
||||
NipcMyPhase = count(material_phase == phase) ! number of own material points (including point components ipc)
|
||||
instance = phase_plasticityInstance(phase)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! sanity checks
|
||||
if (plastic_isotropic_aTolShear(instance) <= 0.0_pReal) &
|
||||
plastic_isotropic_aTolShear(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6
|
||||
if (param(instance)%aTolShear <= 0.0_pReal) &
|
||||
param(instance)%aTolShear = 1.0e-6_pReal ! default absolute tolerance 1e-6
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Determine size of postResults array
|
||||
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance)
|
||||
select case(plastic_isotropic_outputID(o,instance))
|
||||
outputsLoop: do o = 1_pInt,param(instance)%Noutput
|
||||
select case(param(instance)%outputID(o))
|
||||
case(flowstress_ID,strainrate_ID)
|
||||
mySize = 1_pInt
|
||||
case default
|
||||
|
@ -331,9 +299,9 @@ subroutine plastic_isotropic_init(fileUnit)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
sizeState = 2_pInt
|
||||
sizeDotState = sizeState
|
||||
sizeDeltaState = 0_pInt
|
||||
sizeState = 2_pInt ! flowstress, accumulated_shear
|
||||
sizeDotState = sizeState ! both evolve
|
||||
sizeDeltaState = 0_pInt ! no sudden jumps in state
|
||||
plasticState(phase)%sizeState = sizeState
|
||||
plasticState(phase)%sizeDotState = sizeDotState
|
||||
plasticState(phase)%sizeDeltaState = sizeDeltaState
|
||||
|
@ -342,36 +310,59 @@ subroutine plastic_isotropic_init(fileUnit)
|
|||
plasticState(phase)%nTwin = 0
|
||||
plasticState(phase)%nTrans= 0
|
||||
allocate(plasticState(phase)%aTolState ( sizeState))
|
||||
plasticState(phase)%aTolState(1) = plastic_isotropic_aTolResistance(instance)
|
||||
plasticState(phase)%aTolState(2) = plastic_isotropic_aTolShear(instance)
|
||||
allocate(plasticState(phase)%state0 ( sizeState,NofMyPhase))
|
||||
plasticState(phase)%state0(1,1:NofMyPhase) = plastic_isotropic_tau0(instance)
|
||||
plasticState(phase)%state0(2,1:NofMyPhase) = 0.0_pReal
|
||||
allocate(plasticState(phase)%partionedState0 ( sizeState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%subState0 ( sizeState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%state ( sizeState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase),source=0.0_pReal)
|
||||
|
||||
allocate(plasticState(phase)%state0 ( sizeState,NipcMyPhase),source=0.0_pReal)
|
||||
|
||||
allocate(plasticState(phase)%partionedState0 ( sizeState,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%subState0 ( sizeState,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%state ( sizeState,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%deltaState (sizeDeltaState,NipcMyPhase),source=0.0_pReal)
|
||||
if (.not. analyticJaco) then
|
||||
allocate(plasticState(phase)%state_backup ( sizeState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%state_backup ( sizeState,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%dotState_backup (sizeDotState,NipcMyPhase),source=0.0_pReal)
|
||||
endif
|
||||
if (any(numerics_integrator == 1_pInt)) then
|
||||
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%previousDotState2(sizeDotState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%previousDotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%previousDotState2(sizeDotState,NipcMyPhase),source=0.0_pReal)
|
||||
endif
|
||||
if (any(numerics_integrator == 4_pInt)) &
|
||||
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
|
||||
allocate(plasticState(phase)%RK4dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
|
||||
if (any(numerics_integrator == 5_pInt)) &
|
||||
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
|
||||
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NofMyPhase)
|
||||
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NofMyPhase)
|
||||
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NipcMyPhase),source=0.0_pReal)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! globally required state aliases
|
||||
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NipcMyPhase)
|
||||
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NipcMyPhase)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! locally defined state aliases
|
||||
state(instance)%flowstress => plasticState(phase)%state (1,1:NipcMyPhase)
|
||||
state0(instance)%flowstress => plasticState(phase)%state0 (1,1:NipcMyPhase)
|
||||
dotState(instance)%flowstress => plasticState(phase)%dotState (1,1:NipcMyPhase)
|
||||
stateAbsTol(instance)%flowstress => plasticState(phase)%aTolState(1)
|
||||
|
||||
state(instance)%accumulatedShear => plasticState(phase)%state (2,1:NipcMyPhase)
|
||||
state0(instance)%accumulatedShear => plasticState(phase)%state0 (2,1:NipcMyPhase)
|
||||
dotState(instance)%accumulatedShear => plasticState(phase)%dotState (2,1:NipcMyPhase)
|
||||
stateAbsTol(instance)%accumulatedShear => plasticState(phase)%aTolState(2)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! init state
|
||||
state0(instance)%flowstress = param(instance)%tau0
|
||||
state0(instance)%accumulatedShear = 0.0_pReal
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! init absolute state tolerances
|
||||
stateAbsTol(instance)%flowstress = param(instance)%aTolFlowstress
|
||||
stateAbsTol(instance)%accumulatedShear = param(instance)%aTolShear
|
||||
|
||||
endif myPhase
|
||||
enddo initializeInstances
|
||||
|
||||
end subroutine plastic_isotropic_init
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates plastic velocity gradient and its tangent
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -420,10 +411,12 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
|||
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
|
||||
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
|
||||
integer(pInt) :: &
|
||||
instance, &
|
||||
instance, of, &
|
||||
k, l, m, n
|
||||
|
||||
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
|
||||
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
|
||||
|
||||
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
|
||||
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
|
||||
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
|
||||
|
@ -432,12 +425,11 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
|||
Lp = 0.0_pReal
|
||||
dLp_dTstar99 = 0.0_pReal
|
||||
else
|
||||
gamma_dot = plastic_isotropic_gdot0(instance) &
|
||||
* (sqrt(1.5_pReal) * norm_Tstar_dev / (plastic_isotropic_fTaylor(instance) * &
|
||||
plasticState(phaseAt(ipc,ip,el))%state(1,phasememberAt(ipc,ip,el)))) &
|
||||
**plastic_isotropic_n(instance)
|
||||
gamma_dot = param(instance)%gdot0 &
|
||||
* ( sqrt(1.5_pReal) * norm_Tstar_dev / param(instance)%fTaylor / state(instance)%flowstress(of) ) &
|
||||
**param(instance)%n
|
||||
|
||||
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/plastic_isotropic_fTaylor(instance)
|
||||
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/param(instance)%fTaylor
|
||||
|
||||
if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt &
|
||||
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
|
||||
|
@ -451,13 +443,13 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of the tangent of Lp
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar_3333(k,l,m,n) = (plastic_isotropic_n(instance)-1.0_pReal) * &
|
||||
dLp_dTstar_3333(k,l,m,n) = (param(instance)%n-1.0_pReal) * &
|
||||
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
|
||||
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
|
||||
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
|
||||
dLp_dTstar99 = math_Plain3333to99(gamma_dot / plastic_isotropic_fTaylor(instance) * &
|
||||
dLp_dTstar99 = math_Plain3333to99(gamma_dot / param(instance)%fTaylor * &
|
||||
dLp_dTstar_3333 / norm_Tstar_dev)
|
||||
end if
|
||||
end subroutine plastic_isotropic_LpAndItsTangent
|
||||
|
@ -498,36 +490,36 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,e
|
|||
norm_Tstar_sph, & !< euclidean norm of Tstar_sph
|
||||
squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph
|
||||
integer(pInt) :: &
|
||||
instance, &
|
||||
instance, of, &
|
||||
k, l, m, n
|
||||
|
||||
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
|
||||
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
|
||||
|
||||
Tstar_sph_33 = math_spherical33(math_Mandel6to33(Tstar_v)) ! spherical part of 2nd Piola-Kirchhoff stress
|
||||
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33)
|
||||
norm_Tstar_sph = sqrt(squarenorm_Tstar_sph)
|
||||
|
||||
if (plastic_isotropic_dilatation(instance)) then
|
||||
if (param(instance)%dilatation) then
|
||||
if (norm_Tstar_sph <= 0.0_pReal) then ! Tstar == 0 --> both Li and dLi_dTstar are zero
|
||||
Li = 0.0_pReal
|
||||
dLi_dTstar_3333 = 0.0_pReal
|
||||
else
|
||||
gamma_dot = plastic_isotropic_gdot0(instance) &
|
||||
* (sqrt(1.5_pReal) * norm_Tstar_sph / (plastic_isotropic_fTaylor(instance) * &
|
||||
plasticState(phaseAt(ipc,ip,el))%state(1,phasememberAt(ipc,ip,el)))) &
|
||||
**plastic_isotropic_n(instance)
|
||||
gamma_dot = param(instance)%gdot0 &
|
||||
* (sqrt(1.5_pReal) * norm_Tstar_sph / param(instance)%fTaylor / state(instance)%flowstress(of) ) &
|
||||
**param(instance)%n
|
||||
|
||||
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/plastic_isotropic_fTaylor(instance)
|
||||
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/param(instance)%fTaylor
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of the tangent of Li
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLi_dTstar_3333(k,l,m,n) = (plastic_isotropic_n(instance)-1.0_pReal) * &
|
||||
dLi_dTstar_3333(k,l,m,n) = (param(instance)%n-1.0_pReal) * &
|
||||
Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal
|
||||
|
||||
dLi_dTstar_3333 = gamma_dot / plastic_isotropic_fTaylor(instance) * &
|
||||
dLi_dTstar_3333 = gamma_dot / param(instance)%fTaylor * &
|
||||
dLi_dTstar_3333 / norm_Tstar_sph
|
||||
endif
|
||||
endif
|
||||
|
@ -559,20 +551,18 @@ subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
|
|||
real(pReal) :: &
|
||||
gamma_dot, & !< strainrate
|
||||
hardening, & !< hardening coefficient
|
||||
saturation, & !< saturation resistance
|
||||
saturation, & !< saturation flowstress
|
||||
norm_Tstar_v !< euclidean norm of Tstar_dev
|
||||
integer(pInt) :: &
|
||||
instance, & !< instance of my instance (unique number of my constitutive model)
|
||||
of, & !< shortcut notation for offset position in state array
|
||||
ph !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
|
||||
of !< shortcut notation for offset position in state array
|
||||
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
|
||||
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
|
||||
if (plastic_isotropic_dilatation(instance)) then
|
||||
if (param(instance)%dilatation) then
|
||||
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
|
||||
else
|
||||
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
|
||||
|
@ -581,38 +571,38 @@ subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
|
|||
end if
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! strain rate
|
||||
gamma_dot = plastic_isotropic_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_v &
|
||||
gamma_dot = param(instance)%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v &
|
||||
/ &!-----------------------------------------------------------------------------------
|
||||
(plastic_isotropic_fTaylor(instance)*plasticState(ph)%state(1,of)) )**plastic_isotropic_n(instance)
|
||||
(param(instance)%fTaylor*state(instance)%flowstress(of) ))**param(instance)%n
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! hardening coefficient
|
||||
if (abs(gamma_dot) > 1e-12_pReal) then
|
||||
if (abs(plastic_isotropic_tausat_SinhFitA(instance)) <= tiny(0.0_pReal)) then
|
||||
saturation = plastic_isotropic_tausat(instance)
|
||||
if (abs(param(instance)%tausat_SinhFitA) <= tiny(0.0_pReal)) then
|
||||
saturation = param(instance)%tausat
|
||||
else
|
||||
saturation = ( plastic_isotropic_tausat(instance) &
|
||||
+ ( log( ( gamma_dot / plastic_isotropic_tausat_SinhFitA(instance)&
|
||||
)**(1.0_pReal / plastic_isotropic_tausat_SinhFitD(instance))&
|
||||
+ sqrt( ( gamma_dot / plastic_isotropic_tausat_SinhFitA(instance) &
|
||||
)**(2.0_pReal / plastic_isotropic_tausat_SinhFitD(instance)) &
|
||||
saturation = ( param(instance)%tausat &
|
||||
+ ( log( ( gamma_dot / param(instance)%tausat_SinhFitA&
|
||||
)**(1.0_pReal / param(instance)%tausat_SinhFitD)&
|
||||
+ sqrt( ( gamma_dot / param(instance)%tausat_SinhFitA &
|
||||
)**(2.0_pReal / param(instance)%tausat_SinhFitD) &
|
||||
+ 1.0_pReal ) &
|
||||
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
|
||||
)**(1.0_pReal / plastic_isotropic_tausat_SinhFitC(instance)) &
|
||||
/ ( plastic_isotropic_tausat_SinhFitB(instance) &
|
||||
* (gamma_dot / plastic_isotropic_gdot0(instance))**(1.0_pReal / plastic_isotropic_n(instance)) &
|
||||
)**(1.0_pReal / param(instance)%tausat_SinhFitC) &
|
||||
/ ( param(instance)%tausat_SinhFitB &
|
||||
* (gamma_dot / param(instance)%gdot0)**(1.0_pReal / param(instance)%n) &
|
||||
) &
|
||||
)
|
||||
endif
|
||||
hardening = ( plastic_isotropic_h0(instance) + plastic_isotropic_h0_slopeLnRate(instance) * log(gamma_dot) ) &
|
||||
* abs( 1.0_pReal - plasticState(ph)%state(1,of)/saturation )**plastic_isotropic_a(instance) &
|
||||
* sign(1.0_pReal, 1.0_pReal - plasticState(ph)%state(1,of)/saturation)
|
||||
hardening = ( param(instance)%h0 + param(instance)%h0_slopeLnRate * log(gamma_dot) ) &
|
||||
* abs( 1.0_pReal - state(instance)%flowstress(of)/saturation )**param(instance)%a &
|
||||
* sign(1.0_pReal, 1.0_pReal - state(instance)%flowstress(of)/saturation)
|
||||
else
|
||||
hardening = 0.0_pReal
|
||||
endif
|
||||
|
||||
plasticState(ph)%dotState(1,of) = hardening * gamma_dot
|
||||
plasticState(ph)%dotState(2,of) = gamma_dot
|
||||
dotState(instance)%flowstress (of) = hardening * gamma_dot
|
||||
dotState(instance)%accumulatedShear(of) = gamma_dot
|
||||
|
||||
end subroutine plastic_isotropic_dotState
|
||||
|
||||
|
@ -645,17 +635,15 @@ function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
|
|||
integer(pInt) :: &
|
||||
instance, & !< instance of my instance (unique number of my constitutive model)
|
||||
of, & !< shortcut notation for offset position in state array
|
||||
ph, & !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
|
||||
c, &
|
||||
o
|
||||
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
|
||||
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
|
||||
if (plastic_isotropic_dilatation(instance)) then
|
||||
if (param(instance)%dilatation) then
|
||||
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
|
||||
else
|
||||
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
|
||||
|
@ -666,16 +654,16 @@ function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
|
|||
c = 0_pInt
|
||||
plastic_isotropic_postResults = 0.0_pReal
|
||||
|
||||
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance)
|
||||
select case(plastic_isotropic_outputID(o,instance))
|
||||
outputsLoop: do o = 1_pInt,param(instance)%Noutput
|
||||
select case(param(instance)%outputID(o))
|
||||
case (flowstress_ID)
|
||||
plastic_isotropic_postResults(c+1_pInt) = plasticState(ph)%state(1,of)
|
||||
plastic_isotropic_postResults(c+1_pInt) = state(instance)%flowstress(of)
|
||||
c = c + 1_pInt
|
||||
case (strainrate_ID)
|
||||
plastic_isotropic_postResults(c+1_pInt) = &
|
||||
plastic_isotropic_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_v &
|
||||
param(instance)%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v &
|
||||
/ &!----------------------------------------------------------------------------------
|
||||
(plastic_isotropic_fTaylor(instance) * plasticState(ph)%state(1,of)) ) ** plastic_isotropic_n(instance)
|
||||
(param(instance)%fTaylor * state(instance)%flowstress(of)) ) ** param(instance)%n
|
||||
c = c + 1_pInt
|
||||
end select
|
||||
enddo outputsLoop
|
||||
|
|
|
@ -71,7 +71,7 @@ module prec
|
|||
sizeDotState = 0_pInt, & !< size of dot state, i.e. parts of the state that are integrated
|
||||
sizeDeltaState = 0_pInt, & !< size of delta state, i.e. parts of the state that have discontinuous rates
|
||||
sizePostResults = 0_pInt !< size of output data
|
||||
real(pReal), allocatable, dimension(:) :: &
|
||||
real(pReal), pointer, dimension(:), contiguous :: &
|
||||
atolState
|
||||
real(pReal), pointer, dimension(:,:), contiguous :: & ! a pointer is needed here because we might point to state/doState. However, they will never point to something, but are rather allocated and, hence, contiguous
|
||||
state, & !< state
|
||||
|
|
Loading…
Reference in New Issue