introduced pointer aliases for state, abstol and dotate and type structure for input parameters

This commit is contained in:
Martin Diehl 2016-01-22 01:08:36 +00:00
parent 8bc7f3a3a3
commit 45c7bfa93d
2 changed files with 220 additions and 232 deletions

View File

@ -20,61 +20,63 @@ module plastic_isotropic
implicit none implicit none
private private
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_isotropic_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
plastic_isotropic_Noutput !< number of outputs per instance
logical, dimension(:), allocatable, private :: &
plastic_isotropic_dilatation !< flag to indicate dilatation contribution of plasticity
real(pReal), dimension(:), allocatable, private :: &
plastic_isotropic_fTaylor, & !< Taylor factor
plastic_isotropic_tau0, & !< initial plastic stress
plastic_isotropic_gdot0, & !< reference velocity
plastic_isotropic_n, & !< Visco-plastic parameter
!--------------------------------------------------------------------------------------------------
! h0 as function of h0 = A + B log (gammadot)
plastic_isotropic_h0, &
plastic_isotropic_h0_slopeLnRate, &
plastic_isotropic_tausat, & !< final plastic stress
plastic_isotropic_a, &
plastic_isotropic_aTolResistance, &
plastic_isotropic_aTolShear, &
!--------------------------------------------------------------------------------------------------
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
plastic_isotropic_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
enum, bind(c) enum, bind(c)
enumerator :: undefined_ID, & enumerator :: undefined_ID, &
flowstress_ID, & flowstress_ID, &
strainrate_ID strainrate_ID
end enum end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
plastic_isotropic_outputID !< ID of each post result output
type, private :: tParameters !< container type for internal constitutive parameters
character(len=64), allocatable, dimension(:) :: &
output !< name of each post result output
integer(pInt) :: &
Noutput
integer(kind(undefined_ID)), allocatable, dimension(:) :: &
outputID
real(pReal) :: &
fTaylor, &
tau0, &
gdot0, &
n, &
h0, &
h0_slopeLnRate, &
tausat, &
a, &
aTolFlowstress, &
aTolShear , &
tausat_SinhFitA, &
tausat_SinhFitB, &
tausat_SinhFitC, &
tausat_SinhFitD
logical :: &
dilatation
end type
#ifdef HDF type(tParameters), dimension(:), allocatable, private :: param !< containers of constitutive parameters (len Ninstance)
type plastic_isotropic_tOutput
real(pReal), dimension(:), allocatable, private :: & type, private :: tIsotropicState !< internal state aliases
real(pReal), pointer, dimension(:) :: & ! scalars along NipcMyInstance
flowstress, & flowstress, &
strainrate accumulatedShear
logical :: flowstressActive = .false., strainrateActive = .false. ! if we can write the output block wise, this is not needed anymore because we can do an if(allocated(xxx)) end type
end type plastic_isotropic_tOutput type, private :: tIsotropicAbsTol !< internal alias for abs tolerance in state
type(plastic_isotropic_tOutput), allocatable, dimension(:) :: plastic_isotropic_Output2 real(pReal), pointer :: & ! scalars along NipcMyInstance
integer(HID_T), allocatable, dimension(:) :: outID flowstress, &
#endif accumulatedShear
end type
type(tIsotropicState), allocatable, dimension(:), private :: & !< state aliases per instance
state, &
state0, &
dotState
type(tIsotropicAbsTol), allocatable, dimension(:), private :: & !< state aliases per instance
stateAbsTol
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_isotropic_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_sizePostResult !< size of each post result output
public :: & public :: &
plastic_isotropic_init, & plastic_isotropic_init, &
@ -92,9 +94,6 @@ contains
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_init(fileUnit) subroutine plastic_isotropic_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
#ifdef HDF
use hdf5
#endif
use debug, only: & use debug, only: &
debug_level, & debug_level, &
debug_constitutive, & debug_constitutive, &
@ -116,11 +115,6 @@ subroutine plastic_isotropic_init(fileUnit)
IO_floatValue, & IO_floatValue, &
IO_error, & IO_error, &
IO_timeStamp, & IO_timeStamp, &
#ifdef HDF
tempResults, &
HDF5_addGroup, &
HDF5_addScalarDataset,&
#endif
IO_EOF IO_EOF
use material, only: & use material, only: &
phase_plasticity, & phase_plasticity, &
@ -142,22 +136,18 @@ subroutine plastic_isotropic_init(fileUnit)
integer(pInt) :: & integer(pInt) :: &
o, & o, &
phase, & phase, &
maxNinstance, &
instance, & instance, &
maxNinstance, &
mySize, & mySize, &
sizeDotState, & sizeDotState, &
sizeState, & sizeState, &
sizeDeltaState sizeDeltaState
character(len=65536) :: & character(len=65536) :: &
tag = '', & tag = '', &
line = '' outputtag = '', &
integer(pInt) :: NofMyPhase line = '', &
extmsg = ''
#ifdef HDF integer(pInt) :: NipcMyPhase
character(len=5) :: &
str1
integer(HID_T) :: ID,ID2,ID4
#endif
mainProcess: if (worldrank == 0) then mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_ISOTROPIC_label//' init -+>>>' write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_ISOTROPIC_label//' init -+>>>'
@ -172,32 +162,7 @@ subroutine plastic_isotropic_init(fileUnit)
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
#ifdef HDF allocate(param(maxNinstance)) ! one container of parameters per instance
allocate(plastic_isotropic_Output2(maxNinstance))
allocate(outID(maxNinstance))
#endif
allocate(plastic_isotropic_sizePostResults(maxNinstance), source=0_pInt)
allocate(plastic_isotropic_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt)
allocate(plastic_isotropic_output(maxval(phase_Noutput), maxNinstance))
plastic_isotropic_output = ''
allocate(plastic_isotropic_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(plastic_isotropic_Noutput(maxNinstance), source=0_pInt)
allocate(plastic_isotropic_fTaylor(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tau0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_gdot0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_n(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_h0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_h0_slopeLnRate(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_a(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_aTolResistance(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_aTolShear (maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitA(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitB(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitC(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitD(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_dilatation(maxNinstance), source=.false.)
rewind(fileUnit) rewind(fileUnit)
phase = 0_pInt phase = 0_pInt
@ -216,87 +181,85 @@ subroutine plastic_isotropic_init(fileUnit)
phase = phase + 1_pInt ! advance section counter phase = phase + 1_pInt ! advance section counter
if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then
instance = phase_plasticityInstance(phase) instance = phase_plasticityInstance(phase)
#ifdef HDF
outID(instance)=HDF5_addGroup(str1,tempResults)
#endif
endif endif
cycle ! skip to next line cycle ! skip to next line
endif endif
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran if (phase > 0_pInt) then; if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
allocate(param(instance)%output(phase_Noutput(phase))) ! allocate space for strings of every requested output
allocate(param(instance)%outputID(phase_Noutput(phase))) ! allocate space for IDs of every requested output
chunkPos = IO_stringPos(line) chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
extmsg = trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')' ! prepare error message identifier
select case(tag) select case(tag)
case ('(output)') case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt))) outputtag = IO_lc(IO_stringValue(line,chunkPos,2_pInt))
select case(outputtag)
case ('flowstress') case ('flowstress')
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt param(instance)%Noutput = param(instance)%Noutput + 1
plastic_isotropic_outputID(plastic_isotropic_Noutput(instance),instance) = flowstress_ID param(instance)%outputID (param(instance)%Noutput) = flowstress_ID
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = & param(instance)%output (param(instance)%Noutput) = outputtag
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'flowstress','MPa')
allocate(plastic_isotropic_Output2(instance)%flowstress(myConstituents))
plastic_isotropic_Output2(instance)%flowstressActive = .true.
#endif
case ('strainrate') case ('strainrate')
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt param(instance)%Noutput = param(instance)%Noutput + 1
plastic_isotropic_outputID(plastic_isotropic_Noutput(instance),instance) = strainrate_ID param(instance)%outputID (param(instance)%Noutput) = strainrate_ID
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = & param(instance)%output (param(instance)%Noutput) = outputtag
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'strainrate','1/s')
allocate(plastic_isotropic_Output2(instance)%strainrate(myConstituents))
plastic_isotropic_Output2(instance)%strainrateActive = .true.
#endif
case default case default
end select end select
case ('/dilatation/') case ('/dilatation/')
plastic_isotropic_dilatation(instance) = .true. param(instance)%dilatation = .true.
case ('tau0') case ('tau0')
plastic_isotropic_tau0(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%tau0 = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_tau0(instance) < 0.0_pReal) & if (param(instance)%tau0 < 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('gdot0') case ('gdot0')
plastic_isotropic_gdot0(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%gdot0 = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_gdot0(instance) <= 0.0_pReal) & if (param(instance)%gdot0 <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('n') case ('n')
plastic_isotropic_n(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%n = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_n(instance) <= 0.0_pReal) & if (param(instance)%n <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('h0') case ('h0')
plastic_isotropic_h0(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%h0 = IO_floatValue(line,chunkPos,2_pInt)
case ('h0_slope','slopelnrate') case ('h0_slope','slopelnrate')
plastic_isotropic_h0_slopeLnRate(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%h0_slopeLnRate = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat') case ('tausat')
plastic_isotropic_tausat(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%tausat = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_tausat(instance) <= 0.0_pReal) & if (param(instance)%tausat <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('tausat_sinhfita') case ('tausat_sinhfita')
plastic_isotropic_tausat_SinhFitA(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%tausat_SinhFitA = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitb') case ('tausat_sinhfitb')
plastic_isotropic_tausat_SinhFitB(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%tausat_SinhFitB = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitc') case ('tausat_sinhfitc')
plastic_isotropic_tausat_SinhFitC(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%tausat_SinhFitC = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitd') case ('tausat_sinhfitd')
plastic_isotropic_tausat_SinhFitD(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%tausat_SinhFitD = IO_floatValue(line,chunkPos,2_pInt)
case ('a', 'w0') case ('a', 'w0')
plastic_isotropic_a(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%a = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_a(instance) <= 0.0_pReal) & if (param(instance)%a <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('taylorfactor') case ('taylorfactor')
plastic_isotropic_fTaylor(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%fTaylor = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_fTaylor(instance) <= 0.0_pReal) & if (param(instance)%fTaylor <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('atol_resistance') case ('atol_flowstress')
plastic_isotropic_aTolResistance(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%aTolFlowstress = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_aTolResistance(instance) <= 0.0_pReal) & if (param(instance)%aTolFlowstress <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('atol_shear') case ('atol_shear')
plastic_isotropic_aTolShear(instance) = IO_floatValue(line,chunkPos,2_pInt) param(instance)%aTolShear = IO_floatValue(line,chunkPos,2_pInt)
case default case default
@ -304,19 +267,24 @@ subroutine plastic_isotropic_init(fileUnit)
endif; endif endif; endif
enddo parsingFile enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_plasticity) allocate(state(maxNinstance)) ! internal state aliases
myPhase: if (phase_plasticity(phase) == PLASTICITY_isotropic_ID) then allocate(state0(maxNinstance))
NofMyPhase=count(material_phase==phase) allocate(dotState(maxNinstance))
allocate(stateAbsTol(maxNinstance))
initializeInstances: do phase = 1_pInt, size(phase_plasticity) ! loop over every plasticity
myPhase: if (phase_plasticity(phase) == PLASTICITY_isotropic_ID) then ! isolate instances of own constitutive description
NipcMyPhase = count(material_phase == phase) ! number of own material points (including point components ipc)
instance = phase_plasticityInstance(phase) instance = phase_plasticityInstance(phase)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! sanity checks ! sanity checks
if (plastic_isotropic_aTolShear(instance) <= 0.0_pReal) & if (param(instance)%aTolShear <= 0.0_pReal) &
plastic_isotropic_aTolShear(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6 param(instance)%aTolShear = 1.0e-6_pReal ! default absolute tolerance 1e-6
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! Determine size of postResults array ! Determine size of postResults array
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance) outputsLoop: do o = 1_pInt,param(instance)%Noutput
select case(plastic_isotropic_outputID(o,instance)) select case(param(instance)%outputID(o))
case(flowstress_ID,strainrate_ID) case(flowstress_ID,strainrate_ID)
mySize = 1_pInt mySize = 1_pInt
case default case default
@ -331,9 +299,9 @@ subroutine plastic_isotropic_init(fileUnit)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! allocate state arrays ! allocate state arrays
sizeState = 2_pInt sizeState = 2_pInt ! flowstress, accumulated_shear
sizeDotState = sizeState sizeDotState = sizeState ! both evolve
sizeDeltaState = 0_pInt sizeDeltaState = 0_pInt ! no sudden jumps in state
plasticState(phase)%sizeState = sizeState plasticState(phase)%sizeState = sizeState
plasticState(phase)%sizeDotState = sizeDotState plasticState(phase)%sizeDotState = sizeDotState
plasticState(phase)%sizeDeltaState = sizeDeltaState plasticState(phase)%sizeDeltaState = sizeDeltaState
@ -342,36 +310,59 @@ subroutine plastic_isotropic_init(fileUnit)
plasticState(phase)%nTwin = 0 plasticState(phase)%nTwin = 0
plasticState(phase)%nTrans= 0 plasticState(phase)%nTrans= 0
allocate(plasticState(phase)%aTolState ( sizeState)) allocate(plasticState(phase)%aTolState ( sizeState))
plasticState(phase)%aTolState(1) = plastic_isotropic_aTolResistance(instance)
plasticState(phase)%aTolState(2) = plastic_isotropic_aTolShear(instance) allocate(plasticState(phase)%state0 ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%state0 ( sizeState,NofMyPhase))
plasticState(phase)%state0(1,1:NofMyPhase) = plastic_isotropic_tau0(instance) allocate(plasticState(phase)%partionedState0 ( sizeState,NipcMyPhase),source=0.0_pReal)
plasticState(phase)%state0(2,1:NofMyPhase) = 0.0_pReal allocate(plasticState(phase)%subState0 ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%partionedState0 ( sizeState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%state ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%subState0 ( sizeState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%state ( sizeState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%deltaState (sizeDeltaState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase),source=0.0_pReal)
if (.not. analyticJaco) then if (.not. analyticJaco) then
allocate(plasticState(phase)%state_backup ( sizeState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%state_backup ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%dotState_backup (sizeDotState,NipcMyPhase),source=0.0_pReal)
endif endif
if (any(numerics_integrator == 1_pInt)) then if (any(numerics_integrator == 1_pInt)) then
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%previousDotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%previousDotState2(sizeDotState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%previousDotState2(sizeDotState,NipcMyPhase),source=0.0_pReal)
endif endif
if (any(numerics_integrator == 4_pInt)) & if (any(numerics_integrator == 4_pInt)) &
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%RK4dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) & if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal) allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NipcMyPhase),source=0.0_pReal)
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NofMyPhase)
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NofMyPhase) !--------------------------------------------------------------------------------------------------
! globally required state aliases
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NipcMyPhase)
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NipcMyPhase)
!--------------------------------------------------------------------------------------------------
! locally defined state aliases
state(instance)%flowstress => plasticState(phase)%state (1,1:NipcMyPhase)
state0(instance)%flowstress => plasticState(phase)%state0 (1,1:NipcMyPhase)
dotState(instance)%flowstress => plasticState(phase)%dotState (1,1:NipcMyPhase)
stateAbsTol(instance)%flowstress => plasticState(phase)%aTolState(1)
state(instance)%accumulatedShear => plasticState(phase)%state (2,1:NipcMyPhase)
state0(instance)%accumulatedShear => plasticState(phase)%state0 (2,1:NipcMyPhase)
dotState(instance)%accumulatedShear => plasticState(phase)%dotState (2,1:NipcMyPhase)
stateAbsTol(instance)%accumulatedShear => plasticState(phase)%aTolState(2)
!--------------------------------------------------------------------------------------------------
! init state
state0(instance)%flowstress = param(instance)%tau0
state0(instance)%accumulatedShear = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! init absolute state tolerances
stateAbsTol(instance)%flowstress = param(instance)%aTolFlowstress
stateAbsTol(instance)%accumulatedShear = param(instance)%aTolShear
endif myPhase endif myPhase
enddo initializeInstances enddo initializeInstances
end subroutine plastic_isotropic_init end subroutine plastic_isotropic_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent !> @brief calculates plastic velocity gradient and its tangent
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -420,10 +411,12 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
norm_Tstar_dev, & !< euclidean norm of Tstar_dev norm_Tstar_dev, & !< euclidean norm of Tstar_dev
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
integer(pInt) :: & integer(pInt) :: &
instance, & instance, of, &
k, l, m, n k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el)) of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33) squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev) norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
@ -432,12 +425,11 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
Lp = 0.0_pReal Lp = 0.0_pReal
dLp_dTstar99 = 0.0_pReal dLp_dTstar99 = 0.0_pReal
else else
gamma_dot = plastic_isotropic_gdot0(instance) & gamma_dot = param(instance)%gdot0 &
* (sqrt(1.5_pReal) * norm_Tstar_dev / (plastic_isotropic_fTaylor(instance) * & * ( sqrt(1.5_pReal) * norm_Tstar_dev / param(instance)%fTaylor / state(instance)%flowstress(of) ) &
plasticState(phaseAt(ipc,ip,el))%state(1,phasememberAt(ipc,ip,el)))) & **param(instance)%n
**plastic_isotropic_n(instance)
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/plastic_isotropic_fTaylor(instance) Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/param(instance)%fTaylor
if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt & if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
@ -451,13 +443,13 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp ! Calculation of the tangent of Lp
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,m,n) = (plastic_isotropic_n(instance)-1.0_pReal) * & dLp_dTstar_3333(k,l,m,n) = (param(instance)%n-1.0_pReal) * &
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
dLp_dTstar99 = math_Plain3333to99(gamma_dot / plastic_isotropic_fTaylor(instance) * & dLp_dTstar99 = math_Plain3333to99(gamma_dot / param(instance)%fTaylor * &
dLp_dTstar_3333 / norm_Tstar_dev) dLp_dTstar_3333 / norm_Tstar_dev)
end if end if
end subroutine plastic_isotropic_LpAndItsTangent end subroutine plastic_isotropic_LpAndItsTangent
@ -498,36 +490,36 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,e
norm_Tstar_sph, & !< euclidean norm of Tstar_sph norm_Tstar_sph, & !< euclidean norm of Tstar_sph
squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph
integer(pInt) :: & integer(pInt) :: &
instance, & instance, of, &
k, l, m, n k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el)) of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
Tstar_sph_33 = math_spherical33(math_Mandel6to33(Tstar_v)) ! spherical part of 2nd Piola-Kirchhoff stress Tstar_sph_33 = math_spherical33(math_Mandel6to33(Tstar_v)) ! spherical part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33) squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33)
norm_Tstar_sph = sqrt(squarenorm_Tstar_sph) norm_Tstar_sph = sqrt(squarenorm_Tstar_sph)
if (plastic_isotropic_dilatation(instance)) then if (param(instance)%dilatation) then
if (norm_Tstar_sph <= 0.0_pReal) then ! Tstar == 0 --> both Li and dLi_dTstar are zero if (norm_Tstar_sph <= 0.0_pReal) then ! Tstar == 0 --> both Li and dLi_dTstar are zero
Li = 0.0_pReal Li = 0.0_pReal
dLi_dTstar_3333 = 0.0_pReal dLi_dTstar_3333 = 0.0_pReal
else else
gamma_dot = plastic_isotropic_gdot0(instance) & gamma_dot = param(instance)%gdot0 &
* (sqrt(1.5_pReal) * norm_Tstar_sph / (plastic_isotropic_fTaylor(instance) * & * (sqrt(1.5_pReal) * norm_Tstar_sph / param(instance)%fTaylor / state(instance)%flowstress(of) ) &
plasticState(phaseAt(ipc,ip,el))%state(1,phasememberAt(ipc,ip,el)))) & **param(instance)%n
**plastic_isotropic_n(instance)
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/plastic_isotropic_fTaylor(instance) Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/param(instance)%fTaylor
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Li ! Calculation of the tangent of Li
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,m,n) = (plastic_isotropic_n(instance)-1.0_pReal) * & dLi_dTstar_3333(k,l,m,n) = (param(instance)%n-1.0_pReal) * &
Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal
dLi_dTstar_3333 = gamma_dot / plastic_isotropic_fTaylor(instance) * & dLi_dTstar_3333 = gamma_dot / param(instance)%fTaylor * &
dLi_dTstar_3333 / norm_Tstar_sph dLi_dTstar_3333 / norm_Tstar_sph
endif endif
endif endif
@ -559,20 +551,18 @@ subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
real(pReal) :: & real(pReal) :: &
gamma_dot, & !< strainrate gamma_dot, & !< strainrate
hardening, & !< hardening coefficient hardening, & !< hardening coefficient
saturation, & !< saturation resistance saturation, & !< saturation flowstress
norm_Tstar_v !< euclidean norm of Tstar_dev norm_Tstar_v !< euclidean norm of Tstar_dev
integer(pInt) :: & integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model) instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array of !< shortcut notation for offset position in state array
ph !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress ! norm of (deviatoric) 2nd Piola-Kirchhoff stress
if (plastic_isotropic_dilatation(instance)) then if (param(instance)%dilatation) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v)) norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
else else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
@ -581,38 +571,38 @@ subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
end if end if
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! strain rate ! strain rate
gamma_dot = plastic_isotropic_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_v & gamma_dot = param(instance)%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v &
/ &!----------------------------------------------------------------------------------- / &!-----------------------------------------------------------------------------------
(plastic_isotropic_fTaylor(instance)*plasticState(ph)%state(1,of)) )**plastic_isotropic_n(instance) (param(instance)%fTaylor*state(instance)%flowstress(of) ))**param(instance)%n
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! hardening coefficient ! hardening coefficient
if (abs(gamma_dot) > 1e-12_pReal) then if (abs(gamma_dot) > 1e-12_pReal) then
if (abs(plastic_isotropic_tausat_SinhFitA(instance)) <= tiny(0.0_pReal)) then if (abs(param(instance)%tausat_SinhFitA) <= tiny(0.0_pReal)) then
saturation = plastic_isotropic_tausat(instance) saturation = param(instance)%tausat
else else
saturation = ( plastic_isotropic_tausat(instance) & saturation = ( param(instance)%tausat &
+ ( log( ( gamma_dot / plastic_isotropic_tausat_SinhFitA(instance)& + ( log( ( gamma_dot / param(instance)%tausat_SinhFitA&
)**(1.0_pReal / plastic_isotropic_tausat_SinhFitD(instance))& )**(1.0_pReal / param(instance)%tausat_SinhFitD)&
+ sqrt( ( gamma_dot / plastic_isotropic_tausat_SinhFitA(instance) & + sqrt( ( gamma_dot / param(instance)%tausat_SinhFitA &
)**(2.0_pReal / plastic_isotropic_tausat_SinhFitD(instance)) & )**(2.0_pReal / param(instance)%tausat_SinhFitD) &
+ 1.0_pReal ) & + 1.0_pReal ) &
) & ! asinh(K) = ln(K + sqrt(K^2 +1)) ) & ! asinh(K) = ln(K + sqrt(K^2 +1))
)**(1.0_pReal / plastic_isotropic_tausat_SinhFitC(instance)) & )**(1.0_pReal / param(instance)%tausat_SinhFitC) &
/ ( plastic_isotropic_tausat_SinhFitB(instance) & / ( param(instance)%tausat_SinhFitB &
* (gamma_dot / plastic_isotropic_gdot0(instance))**(1.0_pReal / plastic_isotropic_n(instance)) & * (gamma_dot / param(instance)%gdot0)**(1.0_pReal / param(instance)%n) &
) & ) &
) )
endif endif
hardening = ( plastic_isotropic_h0(instance) + plastic_isotropic_h0_slopeLnRate(instance) * log(gamma_dot) ) & hardening = ( param(instance)%h0 + param(instance)%h0_slopeLnRate * log(gamma_dot) ) &
* abs( 1.0_pReal - plasticState(ph)%state(1,of)/saturation )**plastic_isotropic_a(instance) & * abs( 1.0_pReal - state(instance)%flowstress(of)/saturation )**param(instance)%a &
* sign(1.0_pReal, 1.0_pReal - plasticState(ph)%state(1,of)/saturation) * sign(1.0_pReal, 1.0_pReal - state(instance)%flowstress(of)/saturation)
else else
hardening = 0.0_pReal hardening = 0.0_pReal
endif endif
plasticState(ph)%dotState(1,of) = hardening * gamma_dot dotState(instance)%flowstress (of) = hardening * gamma_dot
plasticState(ph)%dotState(2,of) = gamma_dot dotState(instance)%accumulatedShear(of) = gamma_dot
end subroutine plastic_isotropic_dotState end subroutine plastic_isotropic_dotState
@ -645,17 +635,15 @@ function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
integer(pInt) :: & integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model) instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array of, & !< shortcut notation for offset position in state array
ph, & !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
c, & c, &
o o
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress ! norm of (deviatoric) 2nd Piola-Kirchhoff stress
if (plastic_isotropic_dilatation(instance)) then if (param(instance)%dilatation) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v)) norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
else else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
@ -666,16 +654,16 @@ function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
c = 0_pInt c = 0_pInt
plastic_isotropic_postResults = 0.0_pReal plastic_isotropic_postResults = 0.0_pReal
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance) outputsLoop: do o = 1_pInt,param(instance)%Noutput
select case(plastic_isotropic_outputID(o,instance)) select case(param(instance)%outputID(o))
case (flowstress_ID) case (flowstress_ID)
plastic_isotropic_postResults(c+1_pInt) = plasticState(ph)%state(1,of) plastic_isotropic_postResults(c+1_pInt) = state(instance)%flowstress(of)
c = c + 1_pInt c = c + 1_pInt
case (strainrate_ID) case (strainrate_ID)
plastic_isotropic_postResults(c+1_pInt) = & plastic_isotropic_postResults(c+1_pInt) = &
plastic_isotropic_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_v & param(instance)%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v &
/ &!---------------------------------------------------------------------------------- / &!----------------------------------------------------------------------------------
(plastic_isotropic_fTaylor(instance) * plasticState(ph)%state(1,of)) ) ** plastic_isotropic_n(instance) (param(instance)%fTaylor * state(instance)%flowstress(of)) ) ** param(instance)%n
c = c + 1_pInt c = c + 1_pInt
end select end select
enddo outputsLoop enddo outputsLoop

View File

@ -71,7 +71,7 @@ module prec
sizeDotState = 0_pInt, & !< size of dot state, i.e. parts of the state that are integrated sizeDotState = 0_pInt, & !< size of dot state, i.e. parts of the state that are integrated
sizeDeltaState = 0_pInt, & !< size of delta state, i.e. parts of the state that have discontinuous rates sizeDeltaState = 0_pInt, & !< size of delta state, i.e. parts of the state that have discontinuous rates
sizePostResults = 0_pInt !< size of output data sizePostResults = 0_pInt !< size of output data
real(pReal), allocatable, dimension(:) :: & real(pReal), pointer, dimension(:), contiguous :: &
atolState atolState
real(pReal), pointer, dimension(:,:), contiguous :: & ! a pointer is needed here because we might point to state/doState. However, they will never point to something, but are rather allocated and, hence, contiguous real(pReal), pointer, dimension(:,:), contiguous :: & ! a pointer is needed here because we might point to state/doState. However, they will never point to something, but are rather allocated and, hence, contiguous
state, & !< state state, & !< state