faster version for large number of grains. now performing diffusion on a small window around each grain where window around each grain is obtained cheaply
This commit is contained in:
parent
fd8d85896a
commit
4537720895
|
@ -50,12 +50,15 @@ The final geometry is assembled by selecting at each voxel that grain index for
|
|||
|
||||
parser.add_option('-t', '--time', dest='t', type='int', \
|
||||
help='time for curvature flow [%default]')
|
||||
parser.add_option('-N', '--smooth', dest='N', type='int', \
|
||||
help='number of steps for curvature flow [%default]')
|
||||
parser.add_option('-b', '--black', dest='black', action='extend', type='string', \
|
||||
help='indices of stationary microstructures', metavar='<LIST>')
|
||||
parser.add_option('-2', '--twodimensional', dest='twoD', action='store_true', \
|
||||
help='output geom file with two-dimensional data arrangement [%default]')
|
||||
|
||||
parser.set_defaults(t = 1)
|
||||
parser.set_defaults(N = 1)
|
||||
parser.set_defaults(black = [])
|
||||
parser.set_defaults(twoD = False)
|
||||
|
||||
|
@ -149,19 +152,55 @@ for file in files:
|
|||
i += 1
|
||||
|
||||
#--- initialize helper data -----------------------------------------------------------------------
|
||||
winner = numpy.zeros(info['grid'],'i')
|
||||
diffusedMax = numpy.zeros(info['grid'])
|
||||
|
||||
diffusionWindow = int(math.ceil(4.0*numpy.sqrt(options.t)))
|
||||
for smoothIter in xrange(options.N):
|
||||
extendedMicro = numpy.zeros(2*diffusionWindow+info['grid']).astype(int)
|
||||
extendedMicro[:info['grid'][0],:info['grid'][1],:info['grid'][2]] = \
|
||||
numpy.roll(numpy.roll(numpy.roll(microstructure,shift=diffusionWindow,axis=0),\
|
||||
shift=diffusionWindow,axis=1),shift=diffusionWindow,axis=2)
|
||||
extendedMicro[-info['grid'][0]:,:info['grid'][1],:info['grid'][2]] = \
|
||||
numpy.roll(numpy.roll(numpy.roll(microstructure,shift=-diffusionWindow,axis=0),\
|
||||
shift=diffusionWindow,axis=1),shift=diffusionWindow,axis=2)
|
||||
extendedMicro[:info['grid'][0],-info['grid'][1]:,:info['grid'][2]] = \
|
||||
numpy.roll(numpy.roll(numpy.roll(microstructure,shift=diffusionWindow,axis=0),\
|
||||
shift=-diffusionWindow,axis=1),shift=diffusionWindow,axis=2)
|
||||
extendedMicro[-info['grid'][0]:,-info['grid'][1]:,:info['grid'][2]] = \
|
||||
numpy.roll(numpy.roll(numpy.roll(microstructure,shift=-diffusionWindow,axis=0),\
|
||||
shift=-diffusionWindow,axis=1),shift=diffusionWindow,axis=2)
|
||||
extendedMicro[:info['grid'][0],:info['grid'][1],-info['grid'][2]:] = \
|
||||
numpy.roll(numpy.roll(numpy.roll(microstructure,shift=diffusionWindow,axis=0),\
|
||||
shift=diffusionWindow,axis=1),shift=-diffusionWindow,axis=2)
|
||||
extendedMicro[-info['grid'][0]:,:info['grid'][1],-info['grid'][2]:] = \
|
||||
numpy.roll(numpy.roll(numpy.roll(microstructure,shift=-diffusionWindow,axis=0),\
|
||||
shift=diffusionWindow,axis=1),shift=-diffusionWindow,axis=2)
|
||||
extendedMicro[:info['grid'][0],-info['grid'][1]:,-info['grid'][2]:] = \
|
||||
numpy.roll(numpy.roll(numpy.roll(microstructure,shift=diffusionWindow,axis=0),\
|
||||
shift=-diffusionWindow,axis=1),shift=-diffusionWindow,axis=2)
|
||||
extendedMicro[-info['grid'][0]:,-info['grid'][1]:,-info['grid'][2]:] = \
|
||||
numpy.roll(numpy.roll(numpy.roll(microstructure,shift=-diffusionWindow,axis=0),\
|
||||
shift=-diffusionWindow,axis=1),shift=-diffusionWindow,axis=2)
|
||||
winner = numpy.zeros(extendedMicro.shape).astype(int)
|
||||
winner[diffusionWindow:-diffusionWindow,diffusionWindow:-diffusionWindow,diffusionWindow:-diffusionWindow] =\
|
||||
numpy.where(numpy.reshape(numpy.in1d(microstructure,options.black),microstructure.shape),\
|
||||
microstructure,0)
|
||||
diffusedMax = numpy.zeros(extendedMicro.shape)
|
||||
boundingSlice = ndimage.measurements.find_objects(microstructure)
|
||||
microList = set(numpy.unique(microstructure)).difference(set(options.black).union(set([0])))
|
||||
|
||||
#--- diffuse each grain separately ----------------------------------------------------------------
|
||||
for theGrain in xrange(1,1+numpy.amax(microstructure)):
|
||||
diffused = ndimage.filters.gaussian_filter((microstructure == theGrain).astype(float),\
|
||||
{True:0.0,False:numpy.sqrt(options.t)}[theGrain in options.black],\
|
||||
mode='wrap')
|
||||
winner = numpy.where(diffused > diffusedMax, theGrain, winner)
|
||||
diffusedMax = numpy.where(diffused > diffusedMax, diffused, diffusedMax)
|
||||
|
||||
microstructure = winner
|
||||
for grain in microList:
|
||||
xMin = boundingSlice[grain-1][0].start; xMax = boundingSlice[grain-1][0].stop + 2*diffusionWindow
|
||||
yMin = boundingSlice[grain-1][1].start; yMax = boundingSlice[grain-1][1].stop + 2*diffusionWindow
|
||||
zMin = boundingSlice[grain-1][2].start; zMax = boundingSlice[grain-1][2].stop + 2*diffusionWindow
|
||||
diffused = ndimage.filters.gaussian_filter((extendedMicro[xMin:xMax,yMin:yMax,zMin:zMax] == grain).astype(float),\
|
||||
numpy.sqrt(options.t))
|
||||
isMax = diffused > diffusedMax[xMin:xMax,yMin:yMax,zMin:zMax]
|
||||
winner[xMin:xMax,yMin:yMax,zMin:zMax][isMax] = grain
|
||||
diffusedMax[xMin:xMax,yMin:yMax,zMin:zMax] = numpy.where(isMax,diffused,diffusedMax[xMin:xMax,yMin:yMax,zMin:zMax])
|
||||
|
||||
microstructure = winner[diffusionWindow:-diffusionWindow,diffusionWindow:-diffusionWindow,diffusionWindow:-diffusionWindow]
|
||||
|
||||
# --- assemble header -----------------------------------------------------------------------------
|
||||
formatwidth = int(math.floor(math.log10(microstructure.max())+1))
|
||||
|
|
Loading…
Reference in New Issue