fixed random Gaussian sampling
sampling needs to be performed from unfiform misorientation, NOT uniformly distributed rotations for Fiber, compute uniform tilt of Fiber axis
This commit is contained in:
parent
8fa8427c99
commit
44e5644e78
111
src/math.f90
111
src/math.f90
|
@ -1765,14 +1765,8 @@ end function math_sampleRandomOri
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief draw a sample from an Gaussian distribution around given orientation and Full Width
|
!> @brief draw a sample from an Gaussian distribution around given orientation and Full Width
|
||||||
! at Half Maximum (FWHM)
|
! at Half Maximum (FWHM)
|
||||||
!> @details: for very small FWHM values the given orientation is returned.
|
!> @details: A uniform misorientation (limited to 2*FWHM) is sampled followed by convolution with
|
||||||
!> @details: for intermediate FWHM values, an orientation is picked from uniformly distributed
|
! a Gausian distribution
|
||||||
!> @details: oreintations around the nominal orientation with maximum misorientation of 2*FWHM
|
|
||||||
!> @deatils: according to https://math.stackexchange.com/questions/13133 followed by
|
|
||||||
!> @details: the application of a Gaussian filter.
|
|
||||||
!> @details: for large FWHM values, a random orientation from a uniform distribution is picked
|
|
||||||
!> @details: followed by tge aookucatuib if a Gaussian filter. Additionally, the misorientation is
|
|
||||||
!> @details: limited to 2*FWHM,
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
function math_sampleGaussOri(center,FWHM)
|
function math_sampleGaussOri(center,FWHM)
|
||||||
|
|
||||||
|
@ -1781,35 +1775,25 @@ function math_sampleGaussOri(center,FWHM)
|
||||||
real(pReal), dimension(3), intent(in) :: center
|
real(pReal), dimension(3), intent(in) :: center
|
||||||
real(pReal) :: angle
|
real(pReal) :: angle
|
||||||
real(pReal), dimension(3) :: math_sampleGaussOri, axis
|
real(pReal), dimension(3) :: math_sampleGaussOri, axis
|
||||||
real(pReal), dimension(2) :: rnd
|
real(pReal), dimension(4) :: rnd
|
||||||
real(pReal), dimension(3,3) :: R
|
real(pReal), dimension(3,3) :: R
|
||||||
|
|
||||||
noScatter: if (FWHM < 0.1_pReal*INRAD) then
|
if (FWHM < 0.1_pReal*INRAD) then
|
||||||
math_sampleGaussOri = center
|
R = math_I3
|
||||||
else noScatter
|
else
|
||||||
GaussConvolution: do
|
GaussConvolution: do
|
||||||
selectiveSampling: if (FWHM*INRAD < 90.0_pReal) then
|
rnd = halton([8_pInt,3_pInt,6_pInt,11_pInt])
|
||||||
rnd = halton([3_pInt,6_pInt])
|
axis(1) = rnd(1)*2.0_pReal-1.0_pReal ! uniform on [-1,1]
|
||||||
axis(1) = rnd(1)*2.0_pReal-1.0_pReal ! uniform on [-1,1]
|
axis(2:3) = [sqrt(1.0-axis(1)**2.0_pReal)*cos(rnd(2)*2.0*PI),&
|
||||||
axis(2:3) = [sqrt(1.0-axis(1)**2.0_pReal)*cos(rnd(2)*2.0*PI),&
|
sqrt(1.0-axis(1)**2.0_pReal)*sin(rnd(2)*2.0*PI)] ! random axis
|
||||||
sqrt(1.0-axis(1)**2.0_pReal)*sin(rnd(2)*2.0*PI)] ! random axis
|
angle = (rnd(3)-0.5_pReal)*4.0_pReal*FWHM ! rotation by [0, +-2 FWHM]
|
||||||
do
|
R = math_axisAngleToR(axis,angle)
|
||||||
rnd = halton([14_pInt,10_pInt])
|
angle = math_EulerMisorientation([0.0_pReal,0.0_pReal,0.0_pReal],math_RtoEuler(R))
|
||||||
angle = (rnd(1)*(2.0_pReal*FWHM)**3.0_pReal)**(1.0_pReal/3.0_pReal) ! maximum misorientation of 2*FWHM
|
if (rnd(4) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2_pReal)) exit ! rejection sampling (Gaussian)
|
||||||
if (rnd(2) < sin(angle)**2.0_pReal/angle**2.0_pReal) exit ! rejection sampling
|
|
||||||
enddo
|
|
||||||
R = math_axisAngleToR(axis,angle)
|
|
||||||
else selectiveSampling
|
|
||||||
R = math_EulerToR(math_sampleRandomOri())
|
|
||||||
endif selectiveSampling
|
|
||||||
rnd = halton([8_pInt,11_pInt])
|
|
||||||
angle = math_EulerMisorientation([0.0_pReal,0.0_pReal,0.0_pReal],math_RtoEuler(R))
|
|
||||||
if (rnd(1) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2_pReal) .and. & ! rejection sampling (Gaussian)
|
|
||||||
angle < 2.0_pReal * FWHM) exit ! limit (in case of non-selective orientation selection
|
|
||||||
enddo GaussConvolution
|
enddo GaussConvolution
|
||||||
|
endif
|
||||||
|
|
||||||
math_sampleGaussOri = math_RtoEuler(math_mul33x33(R,math_EulerToR(center)))
|
math_sampleGaussOri = math_RtoEuler(math_mul33x33(R,math_EulerToR(center)))
|
||||||
endif noScatter
|
|
||||||
|
|
||||||
end function math_sampleGaussOri
|
end function math_sampleGaussOri
|
||||||
|
|
||||||
|
@ -1817,8 +1801,6 @@ end function math_sampleGaussOri
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief draw a sample from an Gaussian distribution around given fiber texture and Full Width
|
!> @brief draw a sample from an Gaussian distribution around given fiber texture and Full Width
|
||||||
! at Half Maximum (FWHM)
|
! at Half Maximum (FWHM)
|
||||||
!>@details: vector in cone around axis is uniformly distributed according to
|
|
||||||
! https://math.stackexchange.com/questions/56784
|
|
||||||
!-------------------------------------------------------------------------------------------------
|
!-------------------------------------------------------------------------------------------------
|
||||||
function math_sampleFiberOri(alpha,beta,FWHM)
|
function math_sampleFiberOri(alpha,beta,FWHM)
|
||||||
|
|
||||||
|
@ -1828,38 +1810,49 @@ function math_sampleFiberOri(alpha,beta,FWHM)
|
||||||
real(pReal), dimension(3) :: math_sampleFiberOri, &
|
real(pReal), dimension(3) :: math_sampleFiberOri, &
|
||||||
fInC,& !< fiber axis in crystal coordinate system
|
fInC,& !< fiber axis in crystal coordinate system
|
||||||
fInS,& !< fiber axis in sample coordinate system
|
fInS,& !< fiber axis in sample coordinate system
|
||||||
axis
|
u
|
||||||
real(pReal), dimension(5) :: rnd
|
real(pReal), dimension(3) :: rnd
|
||||||
real(pReal), dimension(3,3) :: &
|
real(pReal), dimension(:),allocatable :: a !< 2D vector to tilt
|
||||||
R_o, & !< rotation to aling fiber axis in crystal and sample system
|
integer(pInt), dimension(:),allocatable :: idx !< components of 2D vector
|
||||||
R_f, & !< random rotation along fiber axis [0, 2*Pi[
|
real(pReal), dimension(3,3) :: R !< Rotation matrix (composed of three components)
|
||||||
R_p !< deviation of axis alingment, bound by 2*FWHM
|
real(pReal):: angle,c
|
||||||
real(pReal) :: angle
|
integer(pInt):: j,& !< index of smallest component
|
||||||
|
i
|
||||||
|
|
||||||
fInC = [sin(alpha(1))*cos(alpha(2)), sin(alpha(1))*sin(alpha(2)), cos(alpha(1))]
|
fInC = [sin(alpha(1))*cos(alpha(2)), sin(alpha(1))*sin(alpha(2)), cos(alpha(1))]
|
||||||
fInS = [sin(beta(1))*cos(beta(2)), sin(beta(1))*sin(beta(2)), cos(beta(1))]
|
fInS = [sin(beta(1))*cos(beta(2)), sin(beta(1))*sin(beta(2)), cos(beta(1))]
|
||||||
|
|
||||||
R_o = math_EulerAxisAngleToR(math_crossproduct(fInC,fInS),-acos(dot_product(fInC,fInS)))
|
R = math_EulerAxisAngleToR(math_crossproduct(fInC,fInS),-acos(dot_product(fInC,fInS))) !< rotation to align fiber axis in crystal and sample system
|
||||||
|
|
||||||
if (FWHM > 0.0_pReal) then
|
rnd = halton([7_pInt,10_pInt,3_pInt])
|
||||||
|
R = math_mul33x33(R,math_EulerAxisAngleToR(fInS,rnd(1)*2.0_pReal*PI)) !< additional rotation (0..360deg) perpendicular to fiber axis
|
||||||
|
|
||||||
|
if (FWHM > 0.1_pReal*INRAD) then
|
||||||
|
reducedTo2D: do i=1_pInt,3_pInt
|
||||||
|
if (i /= minloc(abs(fInS),1)) then
|
||||||
|
a=[a,fInS(i)]
|
||||||
|
idx=[b,i]
|
||||||
|
else
|
||||||
|
j = i
|
||||||
|
endif
|
||||||
|
enddo reducedTo2D
|
||||||
GaussConvolution: do
|
GaussConvolution: do
|
||||||
rnd = halton(int([5,10,3,9,17],pInt))
|
angle = (rnd(2)-0.5_pReal)*4.0_pReal*FWHM ! rotation by [0, +-2 FWHM]
|
||||||
rnd(1:2) = [cos(FWHM*2.0_pReal),-1.0_pReal] + rnd(1:2)*[1.0_pReal - cos(FWHM*2.0_pReal),2.0_pReal]
|
! solve cos(angle) = dot_product(fInS,u) under the assumption that their smallest component is the same
|
||||||
axis = [sqrt(1.0_pReal - rnd(2)**2.0_pReal)*sin(rnd(1)),&
|
c = cos(angle)-fInS(j)**2
|
||||||
sqrt(1.0_pReal - rnd(2)**2.0_pReal)*cos(rnd(1)),rnd(2)]
|
u(idx(2)) = -(2.0_pReal*c*a(2) + sqrt(4*((c*a(2))**2-sum(a**2)*(c**2-a(1)**2*(1-fInS(j)**2)))))/&
|
||||||
angle = acos(dot_product([0.0_pReal,0.0_pReal,1.0_pReal],axis))
|
(2*sum(a**2))
|
||||||
if (rnd(3) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2.0_pReal)) exit
|
u(idx(1)) = sqrt(1-u(idx(2))**2-fInS(j)**2)
|
||||||
enddo GaussConvolution
|
u(j) = fInS(j)
|
||||||
if (rnd(4) <= 0.5) angle = -angle
|
|
||||||
R_p = math_EulerAxisAngleToR(math_crossproduct(axis,[0.0_pReal,0.0_pReal,1.0_pReal]),angle)
|
|
||||||
else
|
|
||||||
R_p = math_I3
|
|
||||||
rnd = halton(int([5,10,3,9,17],pInt))
|
|
||||||
endif
|
|
||||||
|
|
||||||
R_f = math_EulerAxisAngleToR(fInS,rnd(5)*2.0_pReal*PI)
|
|
||||||
|
|
||||||
math_sampleFiberOri = math_RtoEuler(math_mul33x33(R_p,math_mul33x33(R_f,R_o)))
|
rejectionSampling: if (rnd(3) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2_pReal)) then
|
||||||
|
R = math_mul33x33(R,math_EulerAxisAngleToR(math_crossproduct(u,fInS),angle)) ! tilt around direction of smallest component
|
||||||
|
exit
|
||||||
|
endif rejectionSampling
|
||||||
|
rnd = halton([7_pInt,10_pInt,3_pInt])
|
||||||
|
enddo GaussConvolution
|
||||||
|
endif
|
||||||
|
math_sampleFiberOri = math_RtoEuler(R)
|
||||||
|
|
||||||
end function math_sampleFiberOri
|
end function math_sampleFiberOri
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue