proper indication of transpose; polish
This commit is contained in:
parent
eefa2c29a2
commit
4485e1045c
|
@ -31,7 +31,7 @@ def deformation_Cauchy_Green_left(F: _np.ndarray) -> _np.ndarray:
|
||||||
-----
|
-----
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\vb{B} = \vb{F} \vb{F}^{T}
|
\vb{B} = \vb{F} \vb{F}^\text{T}
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _np.matmul(F,_tensor.transpose(F))
|
return _np.matmul(F,_tensor.transpose(F))
|
||||||
|
@ -55,7 +55,7 @@ def deformation_Cauchy_Green_right(F: _np.ndarray) -> _np.ndarray:
|
||||||
-----
|
-----
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\vb{C} = \vb{F}^{T} \vb{F}
|
\vb{C} = \vb{F}^\text{T} \vb{F}
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _np.matmul(_tensor.transpose(F),F)
|
return _np.matmul(_tensor.transpose(F),F)
|
||||||
|
@ -83,7 +83,7 @@ def equivalent_strain_Mises(epsilon: _np.ndarray) -> _np.ndarray:
|
||||||
|
|
||||||
\epsilon_\text{vM} = \sqrt{2/3 \epsilon^\prime_{ij} \epsilon^\prime_{ij}}
|
\epsilon_\text{vM} = \sqrt{2/3 \epsilon^\prime_{ij} \epsilon^\prime_{ij}}
|
||||||
|
|
||||||
where :math:`\vb{\epsilon}^\prime` is the deviatoric part
|
where :math:`\vb*{\epsilon}^\prime` is the deviatoric part
|
||||||
of the strain tensor.
|
of the strain tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -112,8 +112,8 @@ def equivalent_stress_Mises(sigma: _np.ndarray) -> _np.ndarray:
|
||||||
|
|
||||||
\sigma_\text{vM} = \sqrt{3/2 \sigma^\prime_{ij} \sigma^\prime_{ij}}
|
\sigma_\text{vM} = \sqrt{3/2 \sigma^\prime_{ij} \sigma^\prime_{ij}}
|
||||||
|
|
||||||
where :math:`\vb{\sigma}^\prime` is the deviatoric part
|
where :math:`\vb*{\sigma}^\prime` is the deviatoric part
|
||||||
of stress tensor.
|
of the stress tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _equivalent_Mises(sigma,3.0/2.0)
|
return _equivalent_Mises(sigma,3.0/2.0)
|
||||||
|
@ -160,7 +160,7 @@ def rotation(T: _np.ndarray) -> _rotation.Rotation:
|
||||||
|
|
||||||
\vb{R} = \vb{T} \vb{U}^{-1} = \vb{V}^{-1} \vb{T}
|
\vb{R} = \vb{T} \vb{U}^{-1} = \vb{V}^{-1} \vb{T}
|
||||||
|
|
||||||
where :math:`\vb{V}` and :math:`\vb{U}` are left
|
where :math:`\vb{V}` and :math:`\vb{U}` are the left
|
||||||
and right stretch tensor, respectively.
|
and right stretch tensor, respectively.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue